高超声速飞行器气动特性估算与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速技术是21世纪航空航天技术领域的战略制高点,高超声速飞行器具有速度快、突防能力强等特点,成为当今世界军事强国关注的战略发展方向。高超声速空气动力学作为高超声速技术中的关键技术之一,也得到迅速的发展。为了提高高超声速飞行器的总体性能,必须对其进行外形设计和气动布局等方面的优化,参数化模型则是以上工作的重要基础。本文先建立了高超声速巡航飞行器类乘波体飞行器的参数化几何模型,再以此参数化模型为基础,研究了高超声速气动力和气动热特性工程算法。主要内容有:
     1) 为了满足高超声速飞行器概念研究、初步设计阶段及优化设计的需求,在现有资料的基础上,采用部件分解法,通过坐标旋转、坐标变换建立起类乘波体飞行器完整的参数化几何模型。
     2) 应用面元法并根据具体情况选用不同的压力系数计算方法对类乘波体飞行器的无粘气动力特性进行计算,采用经验公式法计算飞行器的摩擦阻力,并考虑了飞行器各部件间的气动干扰。
     3) 在充分考虑高超声速飞行器飞行热环境的基础上,应用热流量平衡方程,建立了飞行器面中心线上的温度分布工程算法。主要采用参考温度法和经验公式法,并考虑了边界层转捩,对飞行器迎风面中心线上的温度分布进行了计算。
     分析比较计算结果,并与CFD计算结果和相关文献进行比较,表明本文所采用的工程算法精度上满足工程要求,快捷有效,可以作为高超声速飞行器概念研究、初步设计阶段及优化设计的计算工具。
Hypersonic technology is the best stratage in the realm of aerospace technology in the 21st century. The hypersonic vehicle is characterized by its high speed and high ability of penetration., so the research on the conception of hypersonic vehicle system becomes The research on the conception of hypersonic vehicle system becomes strategical development way of martial powerful countries of the world. Hypersonic aerodynamics is one of key technologies, and develops rapidly. It is necessary to optimize shape designing and aerodynamic disposing for improving performance of hypersonic vehicle, and parametrical model is important base. This thesis establishes parametrical geometrical model of hypersonic cruise vehicle's qausi-waverider vehicle, and study hypersonic aerodynamic force and heating characteristic based on the model. This thesis has done following works:
    1) For the need of hypersonic vehicle's concept study and preliminary design and optimize design, it has established parametrical geometrical model of quasi-waverider vehicle by decomposing components, transforming and circumgyrating coordinate based on existing data.
    2) Inviscous aerodynamic has been computed by surface element method and pressure coefficient has been computed by different instance. Viscous drag coefficient has been computed by experiential formularies and aerodynamic disturbing between components has also been considered.
    3) Engineering calculating method of hypersonic spin-craft's body centerline has been established by heat flux balance equation based on heat environment of hypersonic vehicle. The temperature of body centerline has been computed by reference temperature and experience formulas and boundary layer transition has been considered.
    The results have been analyzed and compared with results of CFD and related data, to improve that precision of the engineering method of this thesis satisfies the need of engineer and the method is compact and effective and could be computation tool for hypersonic vehicle's concept study and preliminary design and optimize design.
引文
(1) Ryan. P.Starkey, Investigation of Air-Breathing, Hypersonic Missile Con- figuration Within External Box Constraints, UMI 800-521-0600
    (2) G.Burton Northam. Hypersonic Propulsion Research. Aeropropulsion'87, High-Speed Propulsion Technology. NASA-CP-10003-6.
    (3) A.J.Roch, Missile integrated design analysis system. AIAA.81-0285
    (4) Sobieczky H. Hypersonic waverider design from given shock waves.In:
    (5) Anderson J D,ed. Procedings of the first International Hypersonic
    (6) Waverider Symposium. Maryland: University of Maryland, 1990
    (7) Eugene A. Morelli and Stephen D. Derry, Aerodynamic Parameter estimation for the X-43A(Hyper-X) from Flight Data. AIAA Atmospheric Flight Mechanics Conference and Exhibit 15-18 August 2005, San Francisco, California
    (8) Charles E. Cockrell, Jr, Aaron H. Auslender and Jeffrey A. White. Aeroheating Predictions for the X-43 Hyper-X Cowl-Closed Configuration at Mach 7 and at Mach 7 and 10
    (9) Laurie A. Marshall, Catherine Bahm, and Griffin P. Corpening. Overview With Results and Lessons Learned of the X-43A Mach 10 Flight. NASA Dryden Flight Research Center, Edwards, California, 93523-0273, USA
    (10) Dr. Philip T. Harsha and Mr. Lowell C. Keel. X-43A Vehicle Design and Manufacture. AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technolo
    (11) Donald B. Johnson, X-43D CONCEPTUAL DESIGN AND FEASIBILITY STUDY, AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technolo
    (12) Thomas W. Jones and Charles B. Lunsford, Design and Development of a Real-Time Model Attitude Measurement System for Hypersonic Facilities, NASA Langley Research Center Hampton, VA 23681-2199
    (13) Francis A. Greene, Gregory M. Buck , and Willi, Measured and Computed Hypersonic Aerodynamic/Aeroheating Characteristics for an Elliptically Blunted Flared Cylinder , c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization 800-521-0600
    (14) Ajay Kumar, J Philip Drummond, Charles R McClinton, et al. Research in Hypersonic Vehicle Airbreathing Propulsion at the NASA Langley Research Center. ISABE-2001:Invited Lecture 4, 2001
    (15) Lee F Scuderi, George F Orton, James L Hunt. Mach 10 Cruise/Space Access Vehicle Study. AIAA Paper, 1998
    (16) Murray B A, Glenn A G. Using Pareto genetic algorithms for preliminary subsonic wing design. A1AA96-4023, 1996
    (17) Oyama A, Obayashi S, Nakamura T. Transonic Wing Optimization Using Genetic Algorithm. AIAA97-1854, 1997
    (18) 何广.日本高超音速飞行技术发展迅速.中国航天.1992,(6):44~45
    (19) 丛敏.国外高超声速计划一瞥.飞航导弹.2003,(3):9~10
    (20) 王淑芬.美欧加紧对高超声速技术的研究.飞航导弹.2000,(9):29~35
    (21) 王淑芬.法国航空航天公司进行高超音速研究.飞航导弹.1998,(9):29~30
    (22) 丛敏.印度依靠本国力量开发导弹——问津可重复使用的高超声速导弹.飞航导弹.2001,(1):3~6
    (23) 张家骅.国外超声速、高超声速导弹及无人机吸气式推进技术发展述评.航空兵器.2000,(3):30~33
    (24) 赵桂林等,乘波构形和乘波飞行器研究综述,力学进展,2003年第3期
    (25) 牛东兵,“乘波体”气动外形设计综述,飞航导弹,1998年第8期
    (26) 钱翼谡等,乘波飞机——理想的高超音速飞行器外形,飞行器发展,1997.7
    (27) 王卓等,乘波机外形设计,北京航空航天大学学报,1999年第25卷第2期
    (28) 肖洪,吻切锥乘波机的构型设计与性能研究,宇航学报,2004年第2期
    (29) 刘桐林,俄罗斯高超声速技术飞行试验计划,飞航导弹,2000年第5期
    (30) 周军,法国试验超声速和高超声速发动机,飞航导弹,2003年第2期
    (31) 周军,美国高超声速研制的最新进展,飞航导弹,2003年第1期
    (32) 周军,高超声速导弹弹体的创新设计方案,飞航导弹,1999年第11期
    (33) 车竞,高超声速飞行器乘波布局优化设计研究,西北工业大学博士论文,2006年12月。
    (34) 姚文秀等,高超声速乘波飞行器气动实验研究,宇航学报,2002年11月第23卷第6期
    (35) 吕学富,飞行器飞行力学,西安:西北工业大学出版社,1995
    (36) 傅德熏.计算空气动力学.北京:宇航工业出版社,1994
    (37) 黄志澄.高超声速飞行器空气动力学.北京:国防工业出版社,1995
    (38) 陈志敏,雷延花.天地往返运输器气动力和气动热工程计算方法研究.西北工业大学学报.2001,19(2):205~208
    (39) 吕国鑫等.飞航导弹气动设计.北京:宇航出版社,1989.12
    (40) 徐敏,严恒元.飞行器空气动力工程计算方法.西安:西北工业大学出版社,1998.04
    (41) 沈仲书,刘亚飞.弹丸空气动力学.北京:国防工业出版社,1984.12
    (42) 雷延花.高超声速飞行器气动特性工程估算.西安:西北工业大学硕士学位论文.2001
    (43) 姜贵庆,刘连元.高速气流传热与烧蚀热防护.北京:国防工业出版社,2003.01.
    (44) 张志成主编.高超声速气动热和热防护.北京:国防工业出版社,2003.05.
    (45) 雷延花,徐敏,陈士橹.高超音速飞行器气动加热计算.上海航天.2001(5):10~13
    (46) LE Jia-ling, V L Ganimedov, M I Muchnaja, et al. The calculation of aerodynamic heating and viscous friction forces on the surface of hypersonic flight vehicle. Experiments and Measurements in Fluid Mechanics. 2002(1):8~20
    (47) Dinesh K Prabhu, Mark P Loomis, et al. X-33 Aerothermal Environment Simulations and Aerothermodynamic Design. AIAA98-0868,1998
    (48) K Cowart, J Olds. Integrating Aeroheating and TPS Into Conceptual RLV Design. AIAA99-4806,1999
    (49) Charles G Miller. Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles. AIAA98-2600,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700