基于高阶统计量的雷达目标高分辨成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了基于高阶统计量的雷达目标高分辨成像技术。
     首先回顾了雷达成像技术的发展历史和研究现状,简要概述了基于高阶统计量的谐波恢复问题,并指出了目前存在的主要问题。
     第二章研究了基于乘积性高阶模糊函数的空间目标一维距离像运动补偿方法。推导了平动和转动状态下目标雷达回波的多分量多项式相位信号模型,分析了高速平动和转动对空间目标一维距离像的影响。给出了两类不同稳定状态的空间目标运动估计和补偿方法,并详细分析了影响模型参数估计精度的各种因素。
     第三章针对现有成像方法对高斯色噪声敏感的问题,研究了高斯色噪声背景下基于四阶混合累积量的雷达目标一维超分辨成像。首先对谐波信号的混合累积量概念进行了推广,给出了衰减谐波的混合累积量的定义并证明了其渐近盲高斯特性。利用超分辨谱估计技术,提出了基于四阶混合累积量对角切片的FOMCMP和FOMCESPRIT方法,分析了这两种方法的参数估计性能。最后给出实测数据的成像实验结果。
     第四章研究了高斯色噪声背景下基于二维四阶混合累积量的雷达目标二维超分辨成像。定义了衰减谐波的二维混合累积量,提出了二维衰减谐波信号参数估计的2d-FOMCESPRIT方法,分析了这种方法的计算量和参数估计性能。最后给出仿真数据和实测数据的成像实验结果。结果表明二维四阶混合累积量不仅能够降低雷达成像的高斯色噪声敏感性,而且可以大大减小成像算法的计算量。
     第五章针对真实信号中包含任意平稳加性和乘性噪声的情况,研究了基于高阶循环统计量的雷达目标成像。提出了乘积型和累加型循环统计量的概念,并从理论上证明了乘积型和累加型循环矩(累积量)估计子的渐近特性。针对多分量随机幅度和多分量时变幅度模型,重点研究了基于乘积型循环均值的模型参数估计方法。实验表明该方法的抗噪能力和可辨识性优于传统方法。
     最后对全文的工作进行了总结,指出了需要进一步深入研究和解决的问题。
The research presented investigates the use of higher-order statistics to the imaging techniques of high resolution radar targets.After briefly reviewing the developments of radar imaging and harmonic retrieval based on higher-order statistics, the first chapter discusses the main problems in these areas and introduces the main contents of this dissertation.Motion compensation of space target is studied in chapter 2. Firstly the influence on HRRP (high resolution range profile) of space target because of its translation and rotation is analyzed after the mc-PPS model of radar echoes is derived. Based on product high-order ambiguity function (PHAF), two methods to compensate the motion are proposed.Super resolution imaging methods for one-dimensional imaging is studied using fourth-order mixed c umulants (FOMC) in chapter3.At first, we extended the FOMC of sinusoids to damped exponential model (DE) and prove its asymptotic blind Gaussian noise character, then two efficient methods named FOMCMP and FOMCESPRIT for estimating the parameter of DE model in the presence of colored Gaussian noise are proposed. Monte Carlo simulations are demonstrated lastly.In the next chapter 4, the definitions and methods are extended to the two-dimensional (2d) ISAR imaging. Similar results of blind Gaussian noise character of 2d-FOMC are derived. The computation efficiency of the proposed method named 2d-FOMCESPRIT is greatly improved by holding the feature matrix's dimension in the condition of a long data record. Simulation results show that 2d-FOMC can suppress the colored Gaussian noise more effectively and has higher efficiency than former super resolution methods.In chapter 5, the cyclic statistics based radar imaging is discussed in the presence of additive and multiplicative stationary noise with any statistic distribution. The concepts of product and cumulate cyclic statistics are introduced and their asymptotic character is proved. A new approach based on product cyclic average for multi-component harmonic retrieval with random or time-varying amplitudes is presented. Finally, tests based on simulation data and real data validate the new method.At last, Summary of this dissertation is made and the problems which need further research are pointed out in chapter 6.
引文
[1] 刘永坦等.雷达成像技术.哈尔滨.哈尔滨工业大学出版社.1999.
    [2] 黄培康等.雷达目标特征信号.北京:宇航出版社.1993.
    [3] 张直中.微波成像术.北京:北京科学出版社.1990.
    [4] C.C. Chen and H.C. Andrews. Target-motion-induced radar imaging. IEEE Trans. on AES. 1980,16(1):2~14.
    [5] G.Y.Delisle, H. Wu. Moving target imaging and trajectory computation using ISAR. IEEE Trans. on AES. 1994,30(3):887~899.
    [6] D.R. Wehner. High Resolution Radar(2nd edition).Boston:Artech House. 1995.
    [7] Y. Wang, H. Ling and V.C. Chen. ISAR motion compensation via adaptive joint time-frequency technique. IEEE Trans. on AES. 1998,34(2),670~677.
    [8] J.L. Walker. Range-Doppler imaging of rotating objects. IEEE Trans. on AES. 1980, 16(1):23~52.
    [9] A. W. Rihaczek, S.J. Hershkowitz. Radar Resolution and Complex-Image analysis. Boson: Artech House. 1996.
    [10] D.L. Mensa. High Resolution Radar Imaging. Boson: Artech House. 1982.
    [11] D.A. Ausherman, A. Kozma, J. L. Walker, H.M. Jones and E.C. Poggio. Developments in radar imaging, IEEE Trans. on AES. 1984,20(4): 363~400.
    [12] V.C. Chen and S. Qian. Joint time-frequency transform for radar range-Doppler imaging. IEEE Trans. on AES. 1998,34(2):486~499.
    [13] X. Xia, G. Wang and V.C. Chen. Quantitative SNR analysis for ISAR imaging using joint time-frequency analysis-short time fourier transform. IEEE Trans. on AES. 2002,38(2):649~659.
    [14] W.P. Delaney and W.W.Ward. Radar development at lincoln laboratory:an overview of the first fifty years. Lincoln laboratory journal. 2000,12(2):147~166.
    [15] 马骏声.目标识别与GBR地基成像雷达.航天电子对抗.1996(4):1~5.
    [16] D. Mehrholz, L. Leushacke, W. Flury, R. Jehn, H. Klinkrad, M. Landgraf. Detecting, tracking and imaging space debris. ESA bulletin 109, 2002, (2),128~134.
    [17] D Mehrholz. Radar techniques for the characterization of meter-sized objects in space. Advanced space reasearch. 2001, 28(9):1259~1268.
    [18] J.M. Mendal. Tutorial on higher-order statistics (spectra) in signal processing and system theory theoretical results and some applications. IEEE Proc. 1991,79(3):278~305.
    [19] C. L. Nikias and J. M.Mendal. Signal processing with higher-order spectra. IEEE on SP magazine. 1993, 10~37.
    [20] 张贤达.时间序列分析-高阶统计量方法.北京:清华大学出版社.1996.
    [21] 陈进,姜鸣.高阶循环统计量理论在机械故障诊断中的应用.振动工程学报.2001,14(2):125~134.
    [22] Lacrosse/Onyx. http://www.fas.org/spp/military/program/imint/lacrosse.htm
    [23] Lacrosse4-Information. http://www.heavens-above.com/css/ha.css.
    [24] R. Horn. E-SAR-The experimental airborne L/C band SAR systems of DLR. Proc. of IGARSS. 1988.1025~1026.
    [25] S.N. Maden, E. L. Christensen, N. Skou and J. Ball. The danish SAR system:design and initial tests. IEEE Trans. on GRS. 1991, 29(3) :417~426.
    [26] J. Dall, J.H. Jorgensen, E.L. Christensen and S. N. Madsen. Real-time processor for the danish airborne SAR. IEE Proceedings-F. 1992, 139(2):115~121.
    [27] W.M. Brown. Synthetic aperture radar. IEEE Trans. on AES. 1967, (2) :217~229.
    [28] W.M. Brown and R. J. Fedororwicz. Synthetic aperture radar imaging of rotating objects. Proc. of the 13th annual radar symposium. 1967.
    [29] R.D. Porter,W. Nagy, J. Wilhelm and S. Crippen. A high fidelity ground to air imaging radar system .IEEE national radar conference record. 1994,29~34.
    [30] N92-23968. Radar tracking and observation of noncooperation space objects due to reentry of SALYUT-7/KOSMOS-1686.
    [31] 逆合成孔径雷达论文集.国家高技术信息获取与处理技术主题.1996.
    [32] 张贤达.现代信号处理(第二版).北京:清华大学出版社.2002.
    [33] D.H. Johnson. The application of spectral estimation methods to bearing estimation problems. IEEE Proc. 1982,70(9):1018~1028.
    [34] S.M. Kay and S.L. Marple. Spectral analysis-a modern perspective. IEEE Proc. 1981,69(11):1380~1419.
    [35] S.R. DeGraaf. SAR imaging via modern 2-D spectral estimation methods. SPIE proceedings on optical engineering in aerospace sensing. April, 1994.36~49.
    [36] G.R. Benitz. Adaptive high-definition imaging. SPIE proceedings on optical engineering in aerospace sensing. April, 1994.106~119.
    [37] S.R. DeGraaf. Sidelobe reduction via Adaptive FIR filtering in SAR imagery. IEEE Trans. on image processing. 1994,3(5):292~301.
    [38] J. Li and P. Stoica, An adaptive filtering approach to spectral estimation and SAR imaging. IEEE Trans. on signal processing. 1996,44(6):1469~1484.
    [39] H.C. Stankwiitz. R.J. Dallaire and J.R. Fienup. Non-linear apodization for sidelobe control in SAR imagery. IEEE Trans. on AES. 1995,31(1):267~279.
    [40] G. Thomas, J.S. Son and B.C. Flores. SAR sidelobe apodization using parametric windows. Proc. of SPIE. 1999,3721(2):68~77.
    [41] E.K. Walton, A. Moghaddar and C. Demattio. Superresolution radar target imaging. In proc. 1991 Antenna Meas. techniques Assoc symp. Oct, 1991.123~126.
    [42] R. Carriere and R.L. Moses. High resolution radar target modeling using a modified prony estimator. IEEE Trans. on AP. 1992,40(1):13~18.
    [43] J.J. Sacchini and W.M. Steedly. Two-dimensional prony modeling and parameter estimation .IEEE Trans. on signal processing, 1993,41(11):3127~3136
    [44] I.J. Gupta. High-resolution radar imaging using 2-D linear prediction. IEEE Trans. on AP. 1994,42(1):31~37.
    [45] R. Kumaresan and D.W. Tufts. Estimating the parameters ofexponentially damped sinusoids and pole-zero modeling in noise. IEEE Trans. on ASSP, 1982,30(6): 833~840.
    [46] J.W. Odendall, E. Barnard and C.W.I. Pistorius. Two-dimensional superresolution radar imaging using the MUSIC algorithm. IEEE Trans. on AP. 1994,42(10): 1386~1391.
    [47] S. Barbarossa, L. Marsili and G. Mungari. SAR super-resolution imaging by signal subspace projection techniques. Proceedings of EUSAR' 96. Konigswinter, Germany. 1996.267~270.
    [48] V.F. Pisarenko. The retrieval of harmonics from a covariance function, Geophys. Journal Roy. Astron. Soc. 1973,33(2):347~366.
    [49] R. Kumaresan and D.W.Tufts. Estimating the angle of arrival of multiple plane waves. IEEE Trans. on AES. 1983,19(1):134~139.
    [50] R.O. Schmidt. A signal subspce approach to multiple emitter location and spectral estimation. Ph.D. dissertation, Stanford University. 1981.
    [51] R.O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Trans. on AP. 1986,34(3):276~280.
    [52] D.H. Johnson. The application of spectral estimation method to bearing estimation problems .IEEE Proc. 1982,70(9):1018~1028.
    [53] Y. Hua. High resolution imaging of continuously moving target using stepped frequency radar. Signal processing. 1994,35(1):33~40.
    [54] R. Roy and T. Kailath. ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. on ASSP. 1986,34(5):1340~1342.
    [55] R. Roy and T. Kailath. Total least squares ESPRIT. Proceedings of 21st Asilomar conference on signal, system and computation. 1987,297~301.
    [56] M. Zoltowski. Novel techniques for estimating the array signal parameters based on matrix pencil, subspace rotation and total least squares, ln Proc. IEEE ICASSP. 1988,4(10):2861~2864.
    [57] M. Zoltowski and D. Stavinides. Sensor array signal processing via a Procrustes rotations based eign-analysis of the ESPRIT data pencil. IEEE Trans. on ASSP. 1989,37(6):832~861.
    [58] P. Stoica and A. Nehorai. MUSIC, maximum likelihood and Cramer-Rao bound. IEEE Trans. on ASSP. 1989,37(5):720~741.
    [59] P. Stoica and K.C. Sharman. Maximum likelihood methods for direction-ofarrival estimation. IEEE Trans. on ASSP. 1990, 38(7):1132~1143.
    [60] D.Starer and A. Nehorai. Newton algorithms for conditional and unconditional Maximum likelihood estimation of the parameters of exponential signals in noise. IEEE Trans. on ASSP. 1992,40(6):720~741.
    [61] J. Li, G. Liu, N. Jiang and P. Stoica. Moving target feature extraction for airborne high-range resolution phased-array radar. IEEE Trans. on SP. 2001, 49(2):277~289.
    [62] J. Li and P. Stoica. Efficient mixed-spectrum estimation with applications to target feature extraction. IEEE Trans. on SP. 1996,44(2):281~295.
    [63] 邱天爽,张旭峰,李小兵,孙永梅.统计信号处理-非高斯信号处理及其应用.北京:电子工业出版社.2004.
    [64] W.A. Gardner and C.M. Spooner. The cumulant theory of cyclostionary time-series, part 1:foundation. IEEE Trans. on SP. 1994,42(12):3387~3408.
    [65] 程乾生.多谱估计的参数方法.电子学报.1991,19(1):98~104.
    [66] 程乾生.非高斯过程的可识别性和参数估计.第四届全国信号处理学术会议论文集.1992.134~136.
    [67] H. Li and Q. Cheng. Almost sure convergence analysis of mixed time averages and kth-order cyclic statistics. IEEE Trans. on IT. 1997,43(4):1265~1268.
    [68] 李宏伟,程乾生.乘性和加性噪声中谐波恢复的循环统计量方法.电子学报,1998,26(7):105~116.
    [69] 李宏伟,程乾生.几乎周期MA信号参数的闭式递推估计.电子学报.2000,28(10):126~126.
    [70] 毛用才.几种复高阶循环平稳信号的参数估计研究.西安:西安电子科技大学博士学位论文,1997.
    [71] Y. Zhang and S.X. Wang. Harmonic retrieval in colored non-Gaussian noise using cumulants. IEEE Trans. on SP. 2000,48(4):982~987.
    [72] 黄佑勇.基于高阶累积量的阵列信号多参数估计技术.成都:电子科技大学博士学位论文,2001.
    [73] C.K. Papadopoulos and C. L. Nikias. Parameter estimation of exponentially damped sinusoids using higher order statistics. IEEE Trans. On ASSP, 1990, 38(8):1424~1436.
    [74] A. Swami and J.M. Mendel. Cumulant-based approach to harmonic retrieval and related problems. IEEE Trans. on SP. 1991,39(5):1099~1109.
    [75] X. Zhang, Y. Liang and Y. Li.A hybrid approach to harmonic retrieval in non-Gaussian ARMA noise. IEEE Trans. on IT. 1994,40(4):1220~1226.
    [76] J.M.M. Anderson, G.B. Giannakis and A. Swami. Harmonic retrieval using higher order statistics: a deterministic formulation. IEEE Trans. on SP. 1995,43(8): 18809~1889.
    [77] G.B. Giannikis and G. Zhou. Harmonics in multiplicative and additive noise:parameter estimation using cyclic statistics. IEEE Trans. on SP. 1995,43(9):2217~2221.
    [78] S. Shamsunder, G. B. Giannakis and B. Friedlander. Estimating random amplitude polynomial phase signals: a cyclostationary approach. IEEE Trans. on Signal Processing, 1995,43(2): 492~505.
    [79] J.M. Francos and B. Friedlander. Parameter estimation of 2-D random amplitude polynomial-phase signals. IEEE Trans, on SP. 1999,47(7):1795~1810.
    [80] M.R. Morelande. Statistical analysis of phase parameter estimates of random amplitude linear FM signals. Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. 1999,14~16.
    [81] 戴征坚.空间目标的雷达特性预估与识别.长沙:国防科技大学博士学位论文.2000.
    [82] 刘雅娟.空间目标宽带成像技术研究.长沙:国防科技大学硕士学位论文.2002.
    [83] 黄鸿勋译.观测外层空间目标用的跟踪和成像雷达系统.电子工程信息.1997(9):1~11.
    [84] M. Wang, A.K. Chan and C.K. Chui. Linear frequency-modulated signal detection using randon-ambiguity transform. IEEE Trans. on SP. 1998,46(3):571~578.
    [85] 保铮,孙长印,邢孟道.机动目标的逆合成孔径雷达成像原理与算法.电子学报.2000,28(6):24~28.
    [86] S. Barbarossa, A. Scaglione and G.B. Giannakis. Product High-Order Ambiguity Function for Multicomponent Polynomial-Phase Signal Modeling. IEEE rrans, on SP. 1998,46(3):691~708.
    [87] S. Peleg and B. Friedlander. The discrete polynomial phase transform. IEEE Trans. on SP. 1995,43(8):1901~1914.
    [88] S. Peleg and B. Friedlander. multicomponent signal analysis using the polynimial phase transform. IEEE Trans. on AP. 1996, 32(1):378~387.
    [89] 林茂庸,柯有安.雷达信号理论。北京.国防工业出版社.1984.
    [90] S. Peleg and B. Porat. Estimation and classification of polynominal signals. IEEE Trans. on IT, 1991,37(2):422~430.
    [91] B. Porat. Digital processing of random signals:theory and methods. New Jersey. Prentice-Hall. 1994.
    [92] S.Y. He. On Estimating the hidden periodicities in linear time series models. Acta Mathematicae Applicatae Sinica, 1987,3(2):168~179.
    [93] A. Scaglione and S. Barbarossa, Statistical Analysis of the Product High-Order Ambiguity Function. IEEE Trans. on IT, 1999, 45(1):343~356.
    [94] Y. Wang and G. Zhou. On the use of high order ambiguity function for multicomponent polynomial phase signals. Signal Processing. 1998;65:283~296.
    [95] H.J. Li and S.H. Yang. Using range profiles as feature vectors to identify aerospace objects. IEEE Trans. on AP, 1993,41(3):261~268.
    [96] S. Hudson and D. Psaltis. Correlation filters for aircraft identification from radar range profiles. IEEE Trans. On AES, 1993, (29)3:741~748.
    [97] H.J. Li, Y.D. Wang and L.H. Wang. Matching score properties between range profiles of high resolution radar targets. IEEE Trans. on AP. 1996, 44(4): 444~452.
    [98] A. Zyweck and R. E. Bogner. Radar target classification of commercial aircraft. IEEE Trans. On AES, 1996, (32)2:598~606.
    [99] A.K. Shaw. Automatic target recognition using high range resolution data. ADA343438, 1998.
    [100] K.T. Kim and H.T. Kim. One-dimensional scattering centre extraction for efficient radar target classification. IEE Proceedings On Radar, Sonar and Navigation, 1999,146(3):147~158.
    [101] K.T. Kim, D.K. Seo and H.T. Kim. Radar target identification using onedimensional scattering centres. IEE Proceedings On Radar, Sonar and Navigation, 2001,148(5):285~296.
    [102] J. Ma. Feature study for high-range-resolution based automatic target recognition Analysis and extraction. Ph.D. dissertation, The ohio state university ,columbus. 2001.
    [103] R. Wu, Q. Gao and H. Gu. ATR scheme based on 1-D HRR profiles. IEE Electronics Letters. 2002,38(24):1586~1588.
    [104] X.J. liao, P. Runkle and L. Carin. Identification of ground targets from sequential high-range-resolution radar signatures. IEEE Trans. On AES. 2002, (38)4:1230~1242.
    [105] K.T. Kim, D.K. Seo and H.T. Kim. Efficient radar target recognition using the MUSIC algorithm and invariant features. IEEE Trans. On AP. 2002,50(3):325~337.
    [106] B. Pei and Z. Bao. Radar target recognition based on peak location of HRR profile and HMMS classifiers. IEEE Radar conference. 2002, 414~418.
    [107] R. Bose and H. Khas. Sequence clean technique using BGA for contiguous radar images with high sidelobes. IEEE Trans. On AES. 2003, (39)1:368~373.
    [108] 黄德双.雷达目标一维像识别识别技术研究.西安:西安电子科技大学博士学位论文,1992.
    [109] 何松华.高距离分辨率毫米波雷达目标识别的理论与应用.长沙:国防科技大学博士学 位论文,1993.
    [110] 陈曾平.雷达目标结构特征识别的理论与应用.长沙:国防科技大学博士学位论文,1994.
    [111] 孙光民.基于高分辨回波的雷达目标识别.西安:西安电子科技大学博士学位论文,1995.
    [112] 唐劲松.高分辨雷达目标检测与识别.南京:南京航天航空大学博士学位论文.1996.
    [113] 张恂.雷达目标的高分辨参数建模及其在目标识别中的应用.长沙:国防科技大学博士学位论文.1997.
    [114] 周德全.基于一维距离像的雷达目标识别研究.南京:南京理工大学博士学位论文.1998.
    [115] 廖学军.基于高分辨距离像的雷达目标识别.西安:西安电子科技大学博士学位论文,1999.
    [116] 姜卫东.光学区雷达目标结构成像的理论及其在雷达目标识别中的应用.长沙:国防科技大学博士学位论文,2000.
    [117] 周代英.雷达目标一维距离像识别研究.成都:电子科技大学博士学位论文,2001.
    [118] 傅耀文.雷达目标融合识别研究.长沙:国防科技大学博士学位论文,2003.
    [119] Y. Hua and T. K. Sarker. Matrix pencil method for estimating parameters exponentially damped/undamped sinusoids in noise. IEEE Trans. on ASSP. 1990, 38(5) : 814~824.
    [120] Y. Hua and T.K. Sarkar. On SVD for estimating generalized eigenvalues of singular matrix pencil in noise. IEEE Trans. on SP. 1991,39(4):892~900.
    [121] D. P. Ruiz, M. C. Carrion, A. Gallego and A. Medouri. Parameter estimation of exponentially damped sinusoids using a higher order correlation-based approach. IEEE Trans. on SP. 1995, 43 (11) :2665~2677.
    [122] L. C. Potter, D. M. Chiang, R. Cattiere and M. J. Gerry, A GTD-based parametric model for radar scattering, IEEE Trans on AP , 1995, 43(10):1058~1066
    [123] D.F. Fuller, A dispersive scattering center parameteric model for 1-D ATR, M. S. Thesis, The Air Force Institute of Technology, 1997
    [124] D. K Fuller, A. J. Terzuoli, P. J. Collins and R. Williams. 1-D feature extraction using a dispersive scattering center parametric model. IEEE Antennas and Propagation Society International Symposium, 1998.
    [125] A.V. Dandawate, G. B. Giannakis. Asymptotic theory of mixed time averages and kth-order cyclic-moment and cumulant statistics. IEEE Trans. on IT. 1995, 41(1):216~232.
    [126] R. Roy and T. Kailath. ESPRIT-Estimation of signal parameters via rotational invariance techniques. IEEE Trans. on ASSP. 1989,37(7):985~995.
    [127] 张贤达.现代信号处理(第一版).北京:清华大学出版社,1995
    [128] T.J. Shan, M. Wax and T. Kailath. On spatial smoothing for direction-of- arrival estimation of coherent signals. IEEE Trans. On ASSP. 1985,33(4):806~811.
    [129] H. Yamada, M. Ohmiya, Y. Ogawa and K. Itoh. Superresolution techniques for timedomain measurement with a network analyzer. IEEE Trans. On AP. 1991,39(2): 177~183.
    [130] L.C. Potter and R.L. Moses. Attributed scattering centers'for SAR ATR. IEEE Trans. on image processing. 1997,6(1):79~91.
    [131] Y. Hua. Estimating two-dimensional frequencies by matrix enhancement and matrix pencil IEEE Trans. on SP. 1992,40(9):2267~2280.
    [132] S. Rouquette and M. Najim. Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods. IEEE Trans. on SP. 2001,49(1):237~245.
    [133] M. W. Tu, I.J. Gupta and E.K. Walton. Application of maximum likelihood estimation to radar imaging. IEEE Trans. On AP. 1997, 45(1) :2027~2036
    [134] J. Li, R. Wu and V. C. Chen. Robust autofocus algorithm for ISAR imaging of moving targets. IEEE Trans. On AES. 2001:37(3) :1056~1068.
    [135] 孙长印.SAR/ISAR超分辨成像研究.西安:西安电子科技大学博士学位论文.2000.
    [136] J. Wang. Feature extraction of localized scattering centers using the modified TLS-Prony algorithm and its applications. Journal of systems engineering and electronics. 2002,13(3):31~39.
    [137] J. W. Brewer. Kronecker products and matrix calculus in system theory. IEEE Trans. on Circuits and System. 1978,25(9):772~781.
    [138] 张旭东,付强,庄钊文.高分辨距离像的运动参数估计.电子学报.2002,30(3):386~389.
    [139] M. Ghogho, A. Swami, and A.K. Nandi. Non-linear least squares estimation for harmonics in multiplicative and additive noise. Signal Processing. 1999, (10): 43~60.
    [140] B. Friedlander and J. Francos. Estimation of amplitude and phase parameters of multicomponent signals. IEEE Trans on SP. 1995, 43 (9):2176~2185.
    [141] G.B. Giannakis and G. Zhou. Harmonics in multiplicative and additive noise: parameter estimation using cyclic statistics. IEEE Trans. on SP. 1995, 43 (9) :2217~2221.
    [142] G.B. Giannakis and G. Zhou. Harmonics in multiplicative and additive noise: Cramer-Rao bounds. IEEE Trans. on SP. 1995, 43(5) :1217~1231.
    [143] G.B. Giannakis and G. Zhou. Harmonics in multiplicative and additive noise: performance analysis of cyclic estimators. IEEE Trans. on SP. 1995,43(6): 1445~1460.
    [144] M. Ghogho, A. Swami and B. Garel. Performance analysis of cyclic statistics for the estimation of harmonics in multiplicative and additive noise. IEEE Trans on SP. 1999, 47 (12) :3235~3249.
    [145] 毛用才,保铮.多个具有零均值复乘性噪声复谐波信号的循环估计量的性能分析.电子科学学刊.1999,21(4):482~486.
    [146] 毛用才,保铮.多个具有非零均值复乘性噪声复谐波信号的循环估计量的性能分析.电子科学学刊.1999,21(3):289~295.
    [147] 汪飞,王树勋,窦慧晶.基于二维循环统计量的二维谐波信号参数估计.电子学报.2003,31(10):1522~1525.
    [148] 窦慧晶,王树勋,汪飞.乘性和加性噪声相关背景下的二维谐波频率估计.电子学报.2004,32(1):83~86.
    [149] B. Friedlander and J. Francos. Estimation of amplitude and phase parameters of multicomponent signals. IEEE Trans on SP. 1995, 43(4):917~926.
    [150] G. Zhou. and A. Swami. Performance analysis for a class of amplitude modulated polynomial phase signals. Proceedings of IEEE international conference on acoustic, speech and signal process. 1995,1593~1596.
    [151] G. Zhou. and G.B. Giannakis. On polynomial phase signals with time-varying amplitudes. IEEE Trans on SP. 1996,44(4):848~861.
    [152] 毛用才,保铮.估计时变幅值复线性调频信号的循环平稳方法及其统计性能分析.电子学报.1999,27(4):135~136.
    [153] M.R. Morelande and A.M. Zoubir. On the Performance of Cyclic Moments-Based Parameter Estimators of Amplitude Modulated Polynomial Phase Signals. IEEE Trans. on SP. 2002, 50 (3) : 590~606.
    [154] A. W. Dandawate and G. B. Giannakis. Nonparametric polyspectral estimators for kth-order (almost) cyclostationary processes. IEEE Trans. on IT. 1994, 40(1) : 67~84.
    [155] A. W. Dandawate and G. B. Giannakis. Asymptotic theory of mixed time averages and kth-order cyclic-moment and cumulant statistics. IEEE Trans. on IT. 1995, 41 (1) : 216~232.
    [156] A. W. Dandawate, G. B. Giannakis. Statistical tests for presence of cyclostation -arity. IEEE Trans. on SP. 1994, 42(9) :2355~2369.
    [157] 张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998.
    [158] L. Izzo, A. Napolitano. The higher order theory of generalized almostcyclostationary time series. IEEE Trans. on SP. 1998,46(11):2975~2989.
    [159] D.R. Brillinger. Time Series: Data Analysis and Theory. San Francisco, CA: HoldenDay, 1981.
    [160] G.H.戈卢布,C.F.范洛恩.袁亚湘等译.矩阵计算.北京:科学出版社.2002,293~294.
    [161] S.Y. He. On Estimating the hidden periodicities in linear time series models. Acta Mathematicae Applicatae Sinica, 1987, 3(2):168~179.
    [162] S.M.Kay[美]著,罗鹏飞等译.统计信号处理基础-估计与检测理论.北京:电子工业出版社,2003.
    [163] Radar data. http://airborne.nrl.navy.mil/~vchen/data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700