改性丝素蛋白/纳米羟基磷灰石复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然高分子丝素具有独特的力学性能,优良的生物相容性,极好的吸湿保湿和抗微生物能力,并且来源广泛,其与纳米羟基磷灰石复合,有望克服纯羟基磷灰石力学性能的不足,适用于硬组织尤其是负重骨的修复与替换。但再生丝素蛋白内部大量次级交联点(分子内氢键作用)的存在,导致其变硬变脆,进而造成了羟基磷灰石/丝素复合材料力学性能的不足。目前已有众多研究者通过不同的方法制备了羟基磷灰石/丝素蛋白复合材料,除了颗粒尺寸、复合方式不同之外,也均不可避免的存在力学强度不够的问题。为了弥补该缺陷,本实验致力于减少这种次级交联点,并构建纳米羟基磷灰石针晶在丝素网络中分布的仿生结构的研究。
     首先,为了得到最佳的工艺参数,我们在不同反应条件下原位合成了纳米羟基磷灰石(n-HA)/丝素复合材料。通过对合成过程中各种参数的考察,发现pH值高低及热处理过程对复合材料的微观形貌及构象有显著的影响;同时分析了复合材料中,羟基磷灰石晶体与丝素蛋白的结合方式及相互的作用。然后引入定量的交联剂聚乙二醇二缩水甘油醚(polyethylene glycoldiglycidyl ether,简称PGDE),希望其与丝素分子发生交联反应,从而抑制丝素分子内部的氢键作用,减少次级交联点。我们通过透射电镜、X射线衍射、热分析、红外光谱、力学性能测试、扫描电镜等手段对材料进行了检测与表征。
     结果表明:本实验中以丝素蛋白、CaCl_2和(NH_4)_2HPO_4等为反应原料用原位共沉淀法成功合成了纳米羟基磷灰石/丝素蛋白复合材料。该复合材料的颗粒尺寸尺寸为100-150nm,HA相在丝素溶液中成功合成,FTIR检测结果证实,该复合材料中无规线团结构的丝素蛋白与羟基磷灰石晶体之间存在着强烈的化学相互作用,而没有与HA相结合的丝素蛋白易溶于水中,在洗涤过程中流失。反应中,pH值对复合材料的颗粒形态、成分及构象均有显著的影响,高pH利于分散性好且纯度高的羟基磷灰石的形成,同时诱导了丝素构象向β折叠转变。
     再生丝素蛋白十分脆弱易碎,不易加工成样品作力学性能检测,而加入交联剂后,丝素蛋白力学性能得到明显改善,并且随着交联剂加入量的增加,丝素的柔韧性也越好,但加入量过高,丝素蛋白的拉伸强度会降低。
     在纳米羟基磷灰石/丝素蛋白复合材料中,加入交联剂PGDE对丝素蛋白进行改性,可以显著提高该复合材料的力学性能。力学测试数据显示加入交联剂的复合材料拥有更高的抗压强度及弹性模量,这揭示了交联剂对内交联的有效抑制作用,扫描电镜结果反映出加入交联剂的材料内部缺陷明显减少,致密度提高,脆性得到了削弱。PGDE的引入,改变了复合材料颗粒的形貌,促进了针状纳米羟基磷灰石的形成,提高了复合材料中丝素蛋白的结晶性,复合材料的韧性也得到了一定程度的改善。SBF浸泡实验及细胞毒性实验证明,交联剂PGDE的引入并没有降低复合材料的生物相容性。因此PGDE交联改性的纳米羟基磷灰石/丝素蛋白复合材料能较好的满足承载部位骨填充的需求。
Fibroin fibers from well-defined silkworm silk, which have unique mechanical properties and excellent biocompatibility in vitro and in vivo, have been used as biomedical suture material for centuries. The nano-hydroxyapatite/silk fibroin (n-HA/SF) composite is supposed to be a novel biomaterial that is fit for hard tissues even as load-bearing bone implants. However, the regenerated fibroin contains generally lots of molecule inner links, which extremely decreases the tenacity of solid silk fibroin materials. Therefore, the composite n- HA/SF without interface bonding is restricted on mechanical property and hard to meet the requirement of load-bearing application.
     In order to improve the weakness, the research is concentrated to reduce the molecule inner links in regenerated fibroin and construct a web structure to guide n-HA formation in the composite. Firstly, a series of composites were prepared under different reaction conditions in order to search optimal technical parameters for synthesizing of HA/SF composite. Secondly, a crosslinking agent named polyethylene glycol diglycidyl ether (PGDE) was adopted to improve the interface between n-HA and SF in the composite. By the connecting reaction between PGDE and SF molecules, the molecule inner links were expected to be reduced. Finally, the microstructure, phase composition and conformation of in-site synthesized composite were determined by Transmission Electron Microscope (TEM), X-Ray Diffraction (XRD), Fourier Transform Infra Red (FTIR) and so on.
     Nano-HA/SF composites with the particle size of 100~150nm were prepared by an in situ co-precipitation method, with CaCl_2 and (NH_4)_2HPO_4 as reaction agents for HA. The XRD test showed HA phase was successfully synthesized with the existence of SF. FTIR results validated that the random coil SF has strong chemical interactions with HA in the composites, while the part without bonding with HA is easy to dissolve in water and gets lost. The pH value in the reaction had significant effect on morphologies, components and conformations of HA/SF. At high pH value, nano-HA/SF crystallites formed in high length/diameter ratio and the random coil SF easily convert to 6 sheet structure, while at low pH value additional phase than HA may appear.
     The regenerated fibroin is too frangible to test mechanical property. With the adopting of PGDE, its flexility is obviously improved, but superfluous coupling agent will decrease the tensile strength.
     PGDE was introduced to the HA/SF composite by in situ co-precipitation method, in order to obtain cross-linked structure by reacting with SF and enhance the interface bonding between n- HA particles and SF matrix. The coupling agent can strengthen the directional growth of HA particles in the composite and decrease the brittleness of solid SF. Various tests have proved that PGDE can improve the crystallization of SF in the composite, simultaneously the mechanical properties of HA/SF was significantly enhanced by 100%. The fracture surface of PGDE coupled composite took on traces of plastic deformation. This reveals the bonds between SF molecules by PGDE can reduce the inner molecule links, which is the main cause of SF's brittleness. And the results of SBF soaking and Cell culture experiments showed PGDE haven't decreased the biocompatibility of composite. So the cross-linked HA/SF by PGDE can meet the requirement of load-bearing application.
引文
[1]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社.2000.1.
    [2]L.L.Hench.Biomaterials:a forecast for the future.Biomaterials.1998,19:1419-1423.
    [3]崔福斋,冯庆玲.生物材料学.北京:科学出版社.1997.1.
    [4]张超武,杨海波.生物材料概论.北京:化学工业出版社.2005.12.
    [5]David I A,Scherer GW.An organic-iorganic single-phase compsite.Chem Mater.1995,7:1957-1967
    [6]Jackson C L,Bauer B J,Nakatani I A,et al.Synthesis of hybrid organic-iorganic materials from interpenetrating polymer network chemistry.Chem Mater.1996,8:727-733
    [7]Bao G.Mechanics of biomolecules.J.Mec.Phys.Sclids.2002,50(11):2237-2274
    [8]Li DL,Li D,Wang X.Effects of inorganic nanoparticles on human cell's reproduction and bramble tissue culture.J Xuzhou Normal Uni(Natural Sciences).2002,20(2):51-53
    [9]Can XY,Yan YH,Yang M J,Zhang Z.The improved technology and observed by electron microscopy on the primary culture of hepatocyte.J Wuhan Univ Technol.2001,23(4):35-36
    [10]Han X,Yang XD.An Experimental study on the biocompability of porcelain compounded with nanostructured material.J Chin Med Univ.2001,30(2):105-107
    [11]Nagaoka S,Ashiba K,Ckuyama Y.Interaction between fibroblast cells and fluorinated polyimide with nano-modifield surface.Int J Artif Organs.2003,26(4):339-345
    [12]Yoshimoto H,Shin YM,Terai H,et al.A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering.Biomaterials.2003,24(12):2077-2082
    [13]Li WJ,Laurencin CT,Caterson EJ,et al.Electrospun nanofibrous structure:a novel scaffold for tissue engineering.J Biomed Mater Res.2002,60(4):613-621
    [14]Prokop A.Bioartificial organs in the twenty-first century.Ann New York Acad Sci.2001,(944):472-490
    [15]Kikuchi M,Itoh S,Ichinose S,et al.Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vitro.Biomaterials.2001,22:1705-1711
    [16]Tan W,Krishnaraj R,Desai TA.Evaluation of nanostructured composite collagen-chitosan matrices for tissue engineering.Tissue Eng.2001,7(2):203-210
    [17]Jean-Marie L.Toward complex matter:supramolecular chemistry and self-organization.J Proc Natl Acad Sci USA.2002,99(8):4763-4768
    [18]Hartgerink JD,Benjash E,Stupp SI.Self-assembly and mineralization of peptide-amphiphile nanofibers.Science.2001,23:294(5547):1684-1688
    [19]Hartgerink JD,Benjash E,Stupp SI.Peptide-amphiphile nanofibers:a versatile scaffold for the preparation of self-assembling materials.Proc Natl Acad Sci USA.2002,99(8):5133-5138
    [20]Niece KL,Hartgerink JD,Dormers JJ,et al.Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction.J Am Chem Soc.2003,125(24):7146-7147
    [21]Gu HY,Chen Z,Sa RX,et al.The immobilization of hepatocytes on nanometer size gold colloid for enhanced hepatocytes proliferation.Biomaterials.2004,25(17):3445-3451
    [22]Zhang S,Holmes TC,Dipersio CM,et al.Self-comple mentary oligopeptide matrices support mammalian cell attachment.Biomaterials.1995,16:1385-1393
    [23]Kisiday J,Jin M,Kutz B,et al.Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division:implications for cartilage tissue repair.PNAS.2002,99(15):9996-10001
    [24]冯庆玲,崔福斋,张伟,纳米羟基磷灰石/胶原骨修复材料.中国医学科学院报.2002,24(24):124-128
    [25]Li Y B,Wei J,Klein CPAT,et al.Preoaration and characterization of nanograde osteoapatite-like rod crystals.J of Material Science:Material in Medicine.1994,5(5):252-257
    [26]王学江,汪建新,李玉宝等.常压下纳米羟基磷灰石针状晶体的合成.高科技通讯.2000,(11):92-94
    [27]姚晖,杨韶华等.纳米羟晶—胶原仿生骨修复家兔颅颌缺损的实验研究.中国材料研讨会论文集.1996,3(1):325-327
    [28]Itoh S,Shinomiya K,Kawauchi T.The biocompatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial and its function as a carrier of rh-BMP-2.J of Biomedical Materials Research.2001,54(3):445-453
    [29]黄立业,徐可为,纳米针状羟基磷灰石涂层的制备及其性能的研究.硅酸盐学报.1999,27(3):351-356
    [30]Li Tuantuan,Junhee L,Kobayashi T.HAP coating by dipping method and bone bonding strength.J of Materials Science:Materials in Medicine.1996,7(6):355-357
    [31]Hideki A,Masataka O.Effects of Adriacin-adsorbing HAP-sol on Ca-9cell Growth.Reports of the Institute for Medical and Dental Engineering.1993,(27):39-44
    [32]#12. 各种药剂吸着特性.Drug Delivery System.1993,8(6):467-471
    [33]Ijntema K,Heuvelsl and W J,Dirix C A.Hydroxyapatite microarriers for biocontrolled release of protein drugs.International Journal of Pharmacy.1994,112(3):215-224
    [34]Hideki A,Masataka O,Seisuke K.Effects of HAP-sol on cell growth.Report of the Institute for Medical and Dental Engineering.1992,(26):15-21
    [35]张士成,李世普,磷灰石超微粉对癌细胞作用的初步研究.武汉工业大学学报.1996,18(1):5-8
    [36]夏清华,陈道达,闫玉华等.HASM对W—256细胞系DNA含量及细胞周期的影响.武汉工业大学学报.1999,21(3):20-21
    [37]曹献英,李世普,张然,闫玉华.Effect on the Hepatocellular Carcinoma Cell Proliferation and Cell Cycle Treated with Hydroxyapatite Nanoparticles.肿瘤防治杂志.2003,10(3):256
    [38]魏凤香,罗佳滨,孟祥才.羟基磷灰石纳米粒子对Hela细胞凋亡作用的研究.Heilongjiang Medicine and Pharmacy Jun.2005,Vol.28 No.3:25-29
    [39]Zhou JM,Zhang XD,et al.High temperature characteristics of synthetic hydroxyapatite.J.Mater.Sci.Mater.Med.1991,2(5):83-86
    [40]伍源等.用水热合成羟基磷灰石.无机盐工业.1991,2(5):83-86
    [41]廖其龙等.水热合成纳米羟基磷灰石粉末及其结构表征.四川大学学报 工程科学版.2002,3(34):31-35
    [42]李玉峰等.水溶液合成纳米羟基磷灰石的动物实验研究.攀枝花大学学报.2002,19(1):42-45
    [43]应波等.饮水降氟材料—羟基磷灰石合成方法的优化.卫生研究.2001,30(4):58-62
    [44]Liu Yingkai,Hou Dedong,Wang Guanghou.A simple wet chemical synthesis and characterization of hydroxyapatite nanorods.Materials Chemistry and Physics.2004,86:69-73
    [45]任卫等.纳米羟基磷灰石合成及表面改性的途径和方法.硅酸盐通报.2002,1:56-61
    [46]黄志良等.溶胶—凝胶法合成羟基磷灰石的热稳定性研究.武汉化工学院学报,2002,24(2):75-81
    [47]袁缓.溶胶—凝胶法制备纳米羟基磷灰石.中国医学院学报.2002,47(4):106-109
    [48]童义平.羟基磷灰石工艺研究.化学研究与应用.2002,14(1):103-106
    [49]Lim GK,Wang J,Ng SC,et al.Processing of hydroxyapatite via micro emulsion and emulsion routes.Biomaterials.1997,18(21):1433-1439
    [50]So Hyun Kim,Young Sik Nam,Taek Seung LEE,et al.Silk Fibroin nanofiber,electrospirming,properties,and structure[J].Polymer Journal,2003,35(2):185-190.
    [51]Kwang Young Cho,Jae Yu Moon,Yong Woo Lee,et al.Preparation of self-assembled silk sericin nanoparticles. International Journal of Biological Macromolecules, 2003,(32): 36-42
    [52] Yu-qing Zhang. Applications of natural silk protein sericin in biomaterials.Biotechnology advances, 2002, 20: 91-100
    [53] Han Zhang, Jun Magoshi, Mary Beckers, et al. Thermal properties of Bombyx mori silk fibers. Journal of applied polymer science, 2002, Vol.86:1817-1820
    
    [54] Doi,Y.Microbial Polyesters,New York;VCH publishers 1990
    [55] Anderson,A.J.Dawes,E.A.MicrobioI.Rev.l990.54.450
    [56] Giuliano Freddi, Raffaella Mossotti, Riccardo Innocenti. Degumming of silk fabric with several proteases. Journal of Biotechnology, 2003, (106): 101-102
    [57] Peng XH,Zhang LN,Pan XL. Studies on the structure and controlled release of chitosan/fibroin microsphere inclusion drug[J]. Acta Polymerica Sinica, 2000,4:502-505.
    [58] Megeed Z, Cappello J, Ghandehari H. Controlled release of plasmid DNA from a genetically engineered silk-elastinlike hydrogel[J]. Pharmaceutical Research, 2002,19:954-959.
    [59] Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials[J]. Biomaterials, 2003,24:401-416.
    [60] Kweon H,Ha EC, Um IC, et al. Physical properties silk fibroin/chitosan blend films[J]. Journal of Applied Polymer Science, 2001,80:928-934.
    [61] Cirillo B, Morra M, Catapano G Adhesion and function of rat liver cells adherent to silk fibroin/collagen blend films[J]. International Journal of Artificial Organs, 2004,27:60-68.
    [62] Jin HJ, Chen JS, Karageorgiou V, et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats[J]. Biomaterials,2004,25:1039-1047.
    [63] Unger RE, Peters K, Wolf M, et al. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of hunian endothelial cells [J]. Biomaterials,2004,25:5137-5146.
    [64] Mori H , Tsukada M. New silk protein: modification of silk protein by gene engineering for production of biomaterials[J]. Biotechnol, 2000,74:95-103.
    [65] Xiao-hong Zong, Ping Zhou, Zheng-Zhong Shao, et al. Effect of pH and copper(II) on the conformation transitions of silk fibroin based on EPR, NMR and Raman spectroscopy. Biochemistry, 2004, (43): 11932-11941
    [66] Lin F H,Yao C H,;Sun J S,Liu H C,Huang C W.Biomaterials 1998,19,905
    [67] Alman G H, Diaz F, Jakuba C, etc. Silk-based biomaterials [J].Biomaterials,2003,24(3):401
    [68] Greenwald D, Shumway S, Albear P, et al. Mechanical comparison of suture materials before and after in vivo incubation. J Surg REs,1994;56(4):372
    [69]Cai K,Yao K,Lin S,et al.Poly(D,L-latic acid)surfaces modified by silk fibroin;effects on the culture of osteoblast in vitro.Biomaterials,2002;23(4);1153
    [70]Minoura N,Aiba S,Gotoh Y,et al.Attachment and growth of cultured fibroblast cells on silk protein matrices[J].J Biomed Mater Res,1995,29:1215-1221
    [71]Sofia S,McCarthy MB,Gronowicz G,et al.Functionalized silk-based biomaterials for bone formation.J Biomed Mater Res,2001;54(1):139
    [72]Jin-wei Gu,Xin-lin Yang,He-sun Zhu.Surface sulfonation of silk fibroin film by plasma treatment and in vitro antithrombogenicity study[J].Mat Sci Eng C,2002,20:199.
    [73]Altman GH,Horan RL,Lu HH,et al.Silk matrix for tissue engineered anterior cruciate ligaments.Biomaterials,2002;23(20):4131
    [74]Lin.P.J.Application of silk in food and bio-material were reviewed[J].BioIndustry,1996,13(3):3438
    [75]Tamada Yasushi,Antithrombotic agent and its production method[P],1997,Jpn.Kokai Tokyo,Koho,JP09,2227,402
    [76]闻荻江,王辉,朱新生,孙建平.丝素蛋白的构象与结晶性.纺织学报,2006,26(1):110-112
    [77]杜孟芳,薛金增,闵思佳,张海萍,朱良均.丝素共混膜的研究进展.纺织学报,2005,26(3):132-135
    [78]朱正华,朱良均,闵思佳.蚕丝蛋白纤维改性的研究进展.中国蚕学会第七次全国代表大会学术论文:32-34
    [79]叶勇,张剑韵,黄龙全.甘油和戊二醛对丝素膜性能的改良效果.蚕叶科学,2006(2):231-235
    [80]卢神州,李明忠,刘洋,张可达.聚乙二醇缩水甘油醚对丝素蛋白膜的改性.高分子材料科学与工程,2003,19(1):104-107
    [81]任黎明,固减法制备二缩水甘油醚的合成工艺研究.浙江化工,2002,33(2):52-53
    [82]卢神州,李明忠,刘洋,张可达.聚乙二醇缩水甘油醚对丝素蛋白膜的改性.高分子材料科学与工程,2003,19(1):104
    [83]闵思佳,陈芳芳,田莉,朱良均.不同温度下环氧化合物与丝素蛋白作用形成的凝胶结构.蚕业科学,2005,31(2):161-165
    [84]左葆齐,吴徵宇,肖焰林.等离子体处理对丝素膜和丝素涂层织物柔软性的影响.丝绸,2001(8):7-9
    [85]卢神州,李明忠,白伦.羟基磷灰石/丝素蛋白纳米复合颗粒的制备.研究与技术—丝绸,2006:17-19
    [86]刘佳佳,李明忠,卢神州.羟基磷灰石/丝素蛋白复合材料的制备.高分子材料科学与工程,2006,22(5):245-248
    [87]赵勇,邓霞,聂蓉蓉,贺刚,梁志红,陈治清.丝素蛋白膜仿生沉积磷灰石的实验研究.Journal of Oral Science Research,2006, 22(2):116-119
    [88]L.Wang,Rei Nemoto,Mamoru Senna.Changes in microstructure and physico-chemical properties of hydroxyapatite-silk fibroin nanocomposite with varying silk fibroin content.Journal of the European Ceramic Society 2004,24:2707-2715
    [89]L.Wang,G.L.Ning,Mamoru Senna.Microstructure and gelation behavior of hydroxyapatite-based nanocomposite solcontaining chemically modified silk fibroin[J].Colloids and Surfaces A:Physicochem.Eng.Aspects254(2005)159-164
    [90]X.D.Kong,F.Z.Cui,X.M.Wang,etc.,Silk fibroin regulated mineralization of hydroxyapatite nanocrystals[J],Journal of Crystal Growth,2004,270:197-202
    [91]王德平,王璐,黄文山,pH值对化学沉淀法制备纳米羟基磷灰石的影响,同济大学学报(自然科学版),2005,33(1):53-56
    [92]陈芳芳,闵思佳,田莉,交联丝素凝胶制备条件的分析,纺织学报,2006,27:10
    [93]F.X.Jiang,X.Y.Lu,J.Weng,etc.,Regulating the size,morphology and dispersion of nano-crystallites of hydroxyapatite by pH value and temperature in the microemulsion system,Key Engineering Materials 2008,361-363:195-198
    [94]WANG Zhenlin,YAN Yuhua,WAN Tao,Preparation and Characterization of Hydroxyapatite/Collagen Bonelike Biomimetic Composite,Acta Materiae Compositae Sinica,2005,22(2):83-86
    [95]赵莉,林开利,常江,生物活性陶瓷材料表面碳酸羟基磷灰石及其微观结构的研究,无机材料学报,2003,18(6):1280-1285
    [96]段友容,王朝元,张兴栋等,多孔磷酸钙陶瓷在动态SBF中类骨磷灰石形成的研究,生物医学工程学杂志,2002,19(3):365-369

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700