中国野生华东葡萄新基因乙二醛氧化酶基因遗传转化部分葡萄的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙二醛氧化酶(Glyoxal oxidase, VpGLOX)基因,为课题组前期通过mRNA差异显示技术及RACE(rapid amplification of cDNA ends)技术,从中国野生葡萄高抗白粉病的华东葡萄‘白河-35-1’(Vitis pseudoreticulata W.T. Wang‘Baihe-35-1’)中克隆到与抗白粉病相关的新基因。本研究以中国野生华东葡萄2个后代——高感白粉病‘6-12-2’,高抗白粉病‘6-12-6’,叶片为试材,通过农杆菌介导的真空渗透法将VpGLOX进行瞬时表达,对该基因进行功能分析;同时以‘6-12-2’,‘6-12-4’,‘6-12-6’,‘商南-2’(Vitis pseudoreticulata W.T.‘Shangnan-2’),‘湖南-1’(Vitis pseudoreticulata W.T.‘Hunan-1’),‘佳利酿’(Vitis vinifera cv.‘Carignane’),‘白河-35-1’为材料,运用并比较了多种遗传转化方法,对转基因植株进行检测。取得的主要结果如下:
     1.以培养6 w的‘6-12-2’,‘6-12-6’葡萄试管苗叶片为材料进行转化,通过GUS (β-glucuronidase)染色检测瞬时转化效率,结果表明,GUS报告基因在顶端第3-6片叶都可以表达,不同叶片部位造成的差异不显著,而第3-4片叶离体培养生长状态最佳。对上述4种野生型及转基因型叶片分别接种白粉菌,于3,5,7,12 d记录其菌丝发生过程,其中,12 d时可以明显观察到两个转基因型叶片内菌丝生长受到抑制。应用real-time PCR技术检测VpGLOX的表达,‘6-12-2’表达量只在转基因型叶片中增加,而且很快回复到原来水平;‘6-12-6’转基因型叶片中出现了第二个表达高峰。
     2.以‘6-12-2’为材料,研究TDZ,NAA不同组合对叶片、叶柄不定芽再生的影响。叶片在1/2MS + 1.0 mg·L-1 TDZ + 0.15 mg·L-1 NAA培养基上再生出不定芽,再生率为1.11%;叶柄在1/2MS + 2.0 mg·L-1 TDZ + 0.15 mg·L-1 NAA培养基上再生出不定芽,再生率为1.67%。生根成苗培养基为1/2MS + 0.15 mg·L-1 IBA + 0.02 mg·L-1 NAA。
     3.以‘湖南-1’(♀),‘商南-2’(♂)的花蕾为材料,研究葡萄胚状体再生途径并进行遗传转化。‘商南-2’在NN69 + 1.0 mg·L-1 2,4-D + 2.0 mg·L-1 6-BA培养基上诱导愈伤量最高,为8.06%,但之后转接到不同浓度组合的6-BA,NOA,IAA诱导愈伤培养基上,均没有胚状体形成;对其进行遗传转化研究,检测其绿色荧光蛋白(Green Fluorescent Protein, GFP)瞬时表达,结果表明,在花药单核靠边期进行原位转化,及转移到分芽繁殖培养基上1 w进行转化,‘湖南-1’,‘商南-2’转化率均可达到93.33%以上。
     4.以‘6-12-2’,‘6-12-6’为材料,分别对其花序、果实进行原位转化,研究该方法应用于葡萄的转基因效率。提取其种子、果皮及实生苗叶片DNA,进行PCR检测,结果表明没有得到转基因植株。
     5.以‘6-12-2’,‘6-12-4’,‘6-12-6’,‘商南-2’,‘佳利酿’,‘白河-35-1’为材料,研究微茎尖及带芽茎段快繁成苗途径。最适条件有,C2D4B液体培养基上80 rpm震荡,光照培养,随后转移到添加GA 0.5 mg·L-1的C2D4B固体培养基上,遗传转化前不需经过黄化培养;离体节间丛生芽生长的最适培养基为1/2MS + 2.0 mg·L-1 TDZ + 0.5 mg·L-1 NAA。
     6.对遗传转化体系进行优化。农杆菌浓度OD600为0.4,侵染10 min,共培养3 d有利于获得最高遗传转化效率。
     7.经潮霉素筛选,对抗性植株经PCR和PCR-Southern blot检测,表明目的基因已整合到植株基因组中,共获得‘6-12-2’45个转基因株系;‘6-12-4’17个转基因株系;‘6-12-6’10个转基因株系;‘白河-35-1’3个转基因株系;‘佳利酿’4个转基因株系。
     8.对转基因植株‘6-12-2’1株,‘白河-35-1’1株,进行炼苗、移栽。
Vitis pseudoreticulata glyoxal oxidase (VpGLOX) was previously isolated from the Chinese wild vine Vitis pseudoreticulata accession‘Baihe-35-1’during a screen for genes that are upregulated in response to infection with grapevine powdery mildew(Uncinula necator, PM). In the present study, a possible function of VpGLOX for defence against PM was investigated using Agrobacterium-mediated transient expression. After optimizing agro-infiltration, VpGLOX was transiently overexpressed in leaves of either PM-susceptible (accession‘6-12-2’) or PM-resistant (accession‘6-12-6’) plants;‘6-12-2’,‘6-12-4’,‘6-12-6’, which belongs to segregating populations derived from a Vitis pseudoreticulata‘Baihe-35-1’×Vitis vinifera cv.‘Carignane’cross, Vitis pseudoreticulata W.T.‘Shangnan-2’, Vitis pseudoreticulata W.T.‘Hunan-1’,‘Carignane’, and‘Baihe-35-1’were used for Agrobacterium-mediated genetic transformation by a variety of genetic transformation methods, and then the putative transformed grape lines were confirmed. The maily results were as follows:
     1. The efficiency of transfection was verified using aβ-glucuronidase (GUS) reporter and was found to comprise most leaf areas regardless of the initial leaf position on leaves of the third to the sixth leaves beneath the apex from 6-week old in vitro grown plants. The third and fourth leaves beneath the apex were most fit for infiltrated since they were fully expanded and vigorous. Upon infection with U. necator, clear differences were observed with respect to hyphal development between agro-infiltrated leaves and control groups of both, the susceptible and the resistant, genotypes. At 12 dpi, the overexpressed‘6-12-2’and‘6-12-6’presented sparse hyphae compared to the profuse fungal growth in control‘6-12-2’and‘6-12-6’. The expression of VpGLOX was followed by real-time PCR in both genotypes. Whereas‘6-12-2’expression was found to increase only in transfected leaves and remained transient,‘6-12-6’appeared a second peak later in transfected leaves.
     2. Regeneration systerm from leaf and petiole of‘6-12-2’and‘6-12-6’using TDZ and NAA was studied. The results were: adventitious bud from leaves of‘6-12-2’could regenerate on 1/2MS medium with 1.0 mg·L-1 TDZ and 0.15 mg·L-1 NAA, but little regenerating rate 1.11%;adventitious bud from petioles of‘6-12-6’could regenerate on 1/2MS medium with 2.0 mg·L-1 TDZ and 0.15 mg·L-1 NAA, regenerating rate of 1.67%. The medium fitted for roots inducing was 1/2MS + 0.15 mg·L-1 IBA + 0.02 mg·L-1 NAA.
     3. Somatic embryogenesis and plant regeneration from flowers of‘Hunan-1’and‘Shangnan-2’were studied.‘Shangnan-2’cultured on medium NN69 + 1.0 mg·L-1 2,4-D + 2.0 mg·L-1 6-BA were best for callus induction, with the induction rate of 8.06%. Then they were transferred to embryo proliferation medium supplementing combination of hormones, 6-BA,NOA and IAA, which turned out to be 0% formation of the somatic embryos. Transient-expression of green fluorescent protein (GFP) gene in transgenic flowers at different developmental stages showed that floweral dip at anthers’uninucleate pollen stage, or infection after 1 week on somatic embryos formation and proliferation, the trangenic rate could be over 93.33%.
     4. The study on in-planta Agrobacterium-mediated transgenic efficiency on the flowers and fruits of‘6-12-2’and‘6-12-6’were performed. The DNA from seeds, peels and seedling leaves were extracted. But none of them could be detected the putative VpGLOX by PCR analysis.
     5. In this study, shoot apical meristem explants of‘6-12-2’,‘6-12-4’,‘6-12-6’,‘Shangnan-2’and‘Baihe-35-1’were used for Agrobacterium-mediated genetic transformation. For the micropropagation shoots,which was determined should be in liquid C2D4B medium at 80 rpm constant orbital shaking. Then cultures were placed on fresh solidified C2D4B medium with 0.5 mg·L-1 GA. Besides, it did not need to be subjected to a dark growth phase before transformation. For the in vitro internode explants, which could grow well on 1/2MS medium with 2.0 mg·L-1 TDZ and 0.5 mg·L-1 NAA.
     6. The highest transformation frequency was obtained when explants were infected for 10 min with the concentration of Agrobacterium tunefaciens OD (600 nm) reached a value of 0.4, and then co-cultivated for 3 d.
     7. Polymerase chain reaction (PCR) and PCR-Southern blot analyses were used to confirm putative transformed grape lines. Up to forty-five micropropagation shoots of‘6-12-2’, seventeen micropropagation shoots of‘6-12-4’, ten micropropagation shoots of‘6-12-6’, three micropropagation shoots of‘Baihe-35-1’, four micropropagation shoots of‘Carignane’, produced stable transgenic plants.
     8. One of‘6-12-2’and one of‘Baihe-35-1’have been domesticated and transplanted.
引文
陈宏. 2003.基因工程原理与应用.北京:中国农业出版社
    樊超红. 2006.中国野生葡萄芪合酶基因转化无核葡萄品种的研究. [硕士学位论文].杨凌:西北农林科技大学
    方莉. 2006.中国野生葡萄醛脱氢酶基因转化欧洲无核葡萄的研究. [硕士学位论文].杨凌:西北农林科技大学
    贺普超. 1999a.中国野葡萄资源与利用.中外葡萄与葡萄酒,特刊: 63–65
    贺普超. 1999b.葡萄学.北京:中国农业出版社
    贺普超,晁无疾. 1982.我国葡萄属野生种质资源的研究(简报).中外葡萄与葡萄酒, (2): 1–3
    贺普超,王跃进,王国英,任治邦,和纯成.中国葡萄属野生种抗病性研究.中国农业科学, 1991, 24(3), 50–56
    金万梅,董静,王媛花,毛海亮,肖政,陈梅香. 2009.葡萄器官发生途径再生不定芽的遗传稳定性.分子植物育种, 7(2): 375–379
    李华,张振文. 1989.葡萄优质抗病育种新的杂交育种方法.西北农业大学学报, 17(2): 112–114
    李华,张振文. 1992.欧亚种葡萄白粉病抗性及其稳定性研究.园艺学报, 19(1): 23–28
    李华,张振文. 1995.欧亚种葡萄白粉病微效抗病基因原取代积累.西北植物学报, 15(2): 120–124
    潘学军,王跃进,张剑侠,张文娥,江淑平. 2004.葡萄胚挽救苗移栽技术的研究.西北植物学报, 24 (6): 1077–1082
    邱强. 2004.中国果树病虫原色图鉴.郑州:河南科学技术出版社
    孙伟生. 2006.中国野生葡萄新基因转化欧洲葡萄品种的研究. [硕士学位论文].杨凌:西北农林科技大学
    王沛雅,王跃进,张建文,朱自果,张朝红. 2009.华东葡萄白河-35-1株系抗霜霉病基因cDNA文库构建及EST分析.农业生物技术学报, 17(2): 294–300
    王西平. 2004.中国葡萄属野生种抗白粉病基因克隆与序列分析. [博士学位论文].杨凌:西北农林科技大学
    许伟荣,王跃进,王西平,郝炜,孙马. 2005.中国葡萄属野生种抗白粉病抗逆基因植物表达载体的构建.西北植物学报, 25(5): 851–857
    熊燕. 2003.中国野生葡萄抗寒基因RAPD标记的研究. [硕士学位论文].杨凌:西北农林科技大学
    杨亚洲,王跃进,张剑侠,张朝红. 2007.中国葡萄属野生种抗旱基因的分子标记及遗传分析.园艺学报, 34(5): 2087–1092
    杨克强,王跃进,张今今,王西平,万怡震,张剑侠. 2005.葡萄无核基因定位与作图的研究.遗传学报, 32(3): 297–302
    张今今,王跃进,王西平,杨克强,杨进孝. 2003.葡萄总RNA提取方法的研究.果树学报, 20(3): 178–189
    张剑侠,王跃进,徐炎. 2001.中国野生葡萄及其F1代抗白粉病的遗传表现.中国农业科学, 34(6): 610–614
    张剑侠,王跃进,张艳艳,周邦军. 2009.中国野生葡萄抗黑痘病基因RAPD标记的克隆、序列分析及辅助育种应用.果树学报, 26(4): 456–460
    张建文,王跃进,朱自果,王沛雅,张朝红. 2009.中国野生华东葡萄抗霜霉病抑制消减文库构建及初步分析.中国农业科学, 42(3): 960–966
    张军科,罗世杏,李小伟,王跃进. 2008.白粉菌在不同抗病性葡萄叶片上的侵染过程比较.西北农林科技大学(自然科学版). 36(3): 161–170
    王跃进,杨英军,周鹏,张剑侠,王西平. 2002.用DNA探针检测我国栽培的无核葡萄及辅助育种初探.园艺学报, 29(2): 105–108
    Adlerz W C, Hopkins D L. 1981. Grape insects and diseases in Florida. Proc Florida Stat Hort Soc, 94: 331–336
    Ahmad M, Mirza B. 2005. An efficient protocol for transient transformation of intact fruit and transgene expression in Citrus. Plant Mol Bio Rep, 23: 419–420
    Akkurt M, Welter L, Maul E, T?pfer R, Zyprian E. 2006. Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (V. vinifera L. and V. sp.). Mol Breed, 19: 103–111
    Andrews L B, Curtis W R. 2005. Comparison of transient protein expression in tobacco leaves and plant suspension culture. Biotechnol Progr, 2: 946–952
    Barker C L, Donald T, Pauquet J, Ratnaparkhe M B, Bouquet A, Adam-Blondon A F, Thomas M R, Dry I. 2005. Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet, 111: 370–377
    Barlass M, Skene K G M. 1978. In vitro propagation of grapevine (Vitis vinifera L.) from fragmented shoot apices. Vitis, 17: 335–340
    Barlass M, Skene K G M. 1980. Studies on the fragmented shoot apex of grapevine. I. The regenerative capacity of leaf primordial fragments in vitro. J Exp Bot, 31: 483–488
    Batoko H, Zheng H Q, Hawes C, Moore I. 2000. A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell, 12: 2201–2217
    Bayir A, Uzun H I, Elidemir A Y. 2007. Effect of genotype on callus formation and organogenesis in Vitis. Proceedings of the international workshop on advances in grapevine and wine research, 754: 111–115
    Bechtold N, Ellis J and Pelletier G. 1993. In plant Agrobacteriummediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci, Paris: Life Sci: 316: 1194–1199
    Bendahmane A, Querci M, Kanyuka K, Baulcombe D C. 2000. Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to theRx2 locus in potato. Plant J, 21: 73–81
    Bent A F. 2000. Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol, 124: 1540–1547
    Bevan M, Barnes W M, Chilton M D. 1983. Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res, 11: 369–385
    Boubals D A. 1961. Study of the factors responsible for the resistance of Vitaceae to vine powdery mildew (U. necator Schw. Burr.) and their mode of inheritance. Plant Breeding Abstracts, 32: 946
    Bouquet A. 1980. Vitis×Muscadinia hybridization: A new way in grape breeding for disease resistance in France. Proc. 3rd Intl Symp Grape Breeding, 42–61
    Bowman J L, Eshed Y. 2000. Formation and maintenance of the shoot apical meristem. Trends Plant Sci, 5:110–115
    Braun A C. 1958. A physiological basis for autonomous growth of the crown-gall tumor cell. Proc Natl Acad Sci USA, 44: 344–349
    Bulit J, Lafen R. 1978. Powdery mildew of the vine.The powdery mildew. Spencer DW (ed). New York: Academic Press
    Caldo R A, Nettleton D, Peng J, Wise R P. 2006. Stage-specific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles. Mol Plant Microbe In, 19: 939–947
    Caldo R A, Nettleton D, Wise R P. 2004. Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell, 16: 514–528
    Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H, Van Montagu A, InzéD, Van Camp W. 1998. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci USA. 95: 5818–5823
    Chee R, Pool R M, Bucher D. 1984. A method for large scale in vitro propagation of Vitis. N Y Food Life Sci Bull, 109: 1–9
    Chen Z, Silva H, Klessig D F. 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262: 1883–1886
    Chilton M D, Drummond M H, Merlo D J, Sciaky D, Montoya A L, Gordon M P, Nester E W. 1977 Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell, 11: 263–271
    Clog E, Bass P, Walter B. 1990. Plant regeneration by organogenesis in Vitis rootstock species. Plant Cell Rep, 10: 726–728
    Clough S J, Bent A F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743
    Colby S M, Meredith C P. 1990. Kanamycin sensitivity of cultured tissues of Vitis. Plant Cell Rep, 9: 237–240
    Curtis I S, Nam H G. 2010. Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method–plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res, 10: 363–371
    daSilva L L P, Snapp E L, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F. 2004. Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell, 16: 1753–1771
    Dat J F, Foyer C H, Scott I M. 1998. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol, 118: 1455–1461
    Dedefrancesco L. 2008. Vintage genetic engineering. Nat Biotechnol, 26: 261–263
    Delledonne M, Zeier J, Marocco A, Lamb C. 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA, 98: 13454–13459
    Dhekney S A, Li Z T, Dutt M, Gray D J. 2008. Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape). Plant Cell Rep, 27: 865–872
    Doke N. 1983. Involvement of superoxide anion generation in hypersensitive response of potato tuber tissues to infection with an incompatible race of phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol, 23: 345–357
    Dordrecht. 1998. Molecular improvement of cereal crops. In: Vasil I K (ed). Advances in cellular and molecular biology of plants. Vol 4, Netherlands: Kluwer Academic Publishers Duncan DB. 1955. Multiple range and multiple F test. Biometrics 11: 1–42
    Durner J, Klessig D F. 1996. Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem, 271: 28492–28501
    Dutt M, Li Z T, Dhekney S A, Gray D J. 2007. Transgenic plants from shoot apical meristems of Vitis vinifera L.‘‘Thompson Seedless’’via Agrobacterium-mediated transformation. Plant Cell Rep, 26: 2101–2110
    Fan C H, Pu N, Wang X P, Wang Y J, Fang L, Xu W R, Zhang J X. 2008. Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tiss Organ Cult, 92: 197–206
    Farhi M, Lavie O, Masci T. Hendel-Rahmanim K, Weiss D, Abeliovich H, Vainstein. 2010. Identification of rose phenylacetaldehyde synthase by functional complementation in yeast. Plant Mol Biol, 72: 235–245
    Faver J M. 1997. Ann. Amélior. Pl. 27: 151–169
    Feldmann K A, Marks M D. 1987. Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: anon-tissue culture approach. Mol Gen Genet, 208: 1–9
    Fillppenko I M, Shtin L T. 1975. Inheritance of resistance of downy and powdery mildew in hybrids European vines with V. amuresis. Plant Breeding Abstract, 45: 677
    Fiore S D, Hoppmann V, Fischer R, Schillberg S. 2004. Transient gene expression of recombinant terpenoid indole alkaloid enzymes in Catharanthus roseus leaves. Plant Mol Biol Rep, 22: 15–22
    Fladung M, Schenk T M H, Polak O, Becher D. 2010. Elimination of marker genes and targeted integration via FLP/FRT recombination system from yeast in hybrid aspen (Populus tremula L.×P. trmuloides Michx.). Tree Genetics & Genomes, 6: 205–217
    Fung R W M, Gonzalo M, Fekete C, Kovacs L G, He Y, Marsh E, McIntyre L M, Schachtman D P, Qiu W P. 2008. Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol, 146: 236–249
    Gambino G, Ruffa P, Vallania R, Gribaudo I. 2007. Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (Vitis spp.). Plant Cell Tiss Organ Cult, 90: 79–83
    Geier T, Eimert K, Scherer R, Nickel C. 2008. Production and rooting behaviour of rolB-transgenic plants of grape rootstock‘Richter 110’(Vitis berlandier i×V. rupestris). Plant Cell Tiss Organ Cult, 94: 269–280
    Gordon J W, Scangos G A, Plotkin D J, Barbosa J A, Ruddle F H. 1980. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA, 12: 7380–7384
    Gray D J, Benton C M. 1991. In vitro micropropagation and plant establishment of muscadine grape cultivars (Vitis rotundifolia). Plant Cell Tiss Org Cult, 27: 7–14
    Gray D J, Mortensen J A. 1987. Initiation and maintenance of long term somatic embryogenesis from anthers and ovaries of Vitis longii‘Microsperma’. Plant Cell Tiss Org Cult, 9: 73–80
    Gray DJ, Meredith CP. 1992. Grape biotechnology, In: Hammerschlag F A, Litz RE (eds) Biotechnology in perennial fruit crops. UK: CAB International Wallingford: 229–262
    Gribaudo I, Gambino G, Vallania R. 2004. Somatic embryogenesis from grapevine anthers: the optimal developmental stage for collecting explants. Am J Enol Vitic, 4: 427–431
    Heintz C, Blaich R. 1990. Ultrastructural and histochemical studies on interactions between Vitis vinifera L. and Uncinula necator (Schw.) Burr. New Phytol, 115: 107–117
    Hoffmann S, Gaspero D G, Kovács L, Howard S, Kiss E, Galbács Z, Testolin R, Kozma P. 2008.
    Resistance to Erysiphe necator in the grapevine‘Kishmish vatkana’is controlled by a single locus through restriction of hyphal growth. Theor Appl Genet, 116: 427–438
    Horsch R B, Fry J E, Hoffman N L, Eichholtz D, Rogers S G, Fraley R T. 1985. A simple and general method of transferring genes into plants. Science, 227: 1229–1231
    https://colloque.inra.fr/gdpm_2010_bordeaux[2010-4-20]
    http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/[2009-12-20]
    http://www.nebi.ntm.nih.gov/blast[2010-2-18]
    http://www.patentlens.net/daisy/AgroTran/g2/g5/881.html[2010-5-3]
    Hussey G, Johnson R D, Warren S. 1989. Transformation of meristematic cells in the shoot apex of cultured pea shoots by Agrobacterium tumefaciens and A. rhizogenes. Protoplasma, 148: 101–105
    Jaillon O, Aury J M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449: 463–467
    Jang M, Cai L, Udeani G O, Slowing K V, Thomas C F, Beecher C W W, Fong H H S, Farnsworth N R, Kinghorn A D, Mehta R G, Moon R C, Pezzuto J M. 1997. Cancer chemopreventive activity of resveratrol, a nutural, product derived from grapes. Science, 275: 218–220
    Jefferson R A. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep, 5: 387–405
    Joubert P, Beaupère D, Wadouachi A, Chateau S, Sangwan R S, Sangwan-Norreel B S. 2004. Effect of phenolic glycosides on Agrobacterium tumefaciens virH gene induction and plant transformation. J Nat Prod, 67: 348–351
    Pérez-Hernández J B, Rosell-García P. 2008. Inflorescence proliferation for somatic embryogenesis induction and suspension-derived plant regeneration from banana (Musa AAA, cv.‘Dwarf Cavendish’) male flowers. Plant Cell Rep, 27: 965–971
    Kapila J, De Rycke R, Van Montagu M, Angenon G. 1997. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci, 122: 101–108
    K?rk?nen A, Warinowski T, Teeri T H, Simola L K, Fry S C. 2009. On the mechanism of apoplastic H2O2 production during lignin formation and elicitation in cultured spruce cells–peroxidases after elicitation. Planta, 230: 553–567
    Katageri I S, Vamadevaiah H M, Udikeri S S, Khadi BM, Kumar PA. 2007. Genetic transformation of an elite Indian genotype of cotton (Gossypium hirsutum L.) for insect resistance. Curr Sci, 93: 12–25
    Kasajima I, Ide Y, Ohkama-Ohtsu N, Hayashi H, Yoneyama T, Fujiwara T. 2004. A protocol for rapid DNA extraction from Arabidopsis thaliana for PCR Analysis. Plant Mol Biol Rep, 22: 49–52
    Kenneth A B, Andrew N B, Antonius J M M, Mary-Dell C. 1983. Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell, 4: 1033–1043
    Kersten P J. 1990. Glyoxal oxidase of Phanerochaete chrysosporium: Its characterization and activation by lignin peroxidase. Pro Natl Acad Sci USA, 87: 2936–2940
    Kersten P J, Cullen D. 1993. Cloning and characterization of a cDNA encoding glyoxal oxidase, a hydrogen peroxide-producing enzyme from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci. USA., 90: 7411–7413
    Kersten P J, Kirk T K. 1987. Involvement of a new enzyme, glyoxal oxidase, in H2O2 production by Phanerochaete chrysosporium. J Bacteriol, 169: 2195–2201
    Kersten P J, Cullen D. 1993. Cloning and characterization of a cDNA encoding glyoxal oxidase, a hydrogen peroxide-producing enzyme from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci USA, 90: 7411–7413
    Kersten P J, Kirk T K. 1987. Involvement of a new enzyme, glyoxal oxidase, in H2O2 production by Phanerochaete chrysosporium. J Bacteriol, 169: 2195–2201
    Kim K K, Fravel D R, Papavizas G C. 1988. Identification of a metabolite produced by Talaromyces flavus as glucose oxidase and its role in the biocontrol of Verticillium dahliae. Phytopathol, 78: 488–492
    Komatsu S, Muhammad A, Rakwal R. 1999. Separation and characterization of proteins from green and etiolated shoots of rice (Oryza sativa L.): towards a rice proteome. Electrophoresis, 20: 630–636
    Lal M, Singh R K, Srivastava S, Singh N, Singh S P, Sharma M L. 2008. RAPD marker based analysis of micropropagated plantlets of sugarcane for early evaluation of genetic fidelity. Sugar Tech, 1: 99–103
    Leal F, Loureiro J, Rodriguez E, Pais M S, Santos C, Pinto-Carnide O. 2006. Nuclear DNA content of Vitis vinifera cultivars and ploidy level analyses of somatic embryoderived plants obtained from anther culture. Plant Cell Rep, 25: 978–985
    Leuthner B, Aichinger C, Oehmen E, Koopmann E, Muller O, Muller P, Kahmann R, Bolker M, Schreier P H. 2005. A H2O2-producing glyoxal oxidase is required for filamentous growth and pathogenicity in Ustilago maydis. Mol Gen Genomics, 272: 639–650
    Levenko B A, Rubtsova M A. 2000. Herbicide resistant transgenic plants of grapevine. Acta Hortic, 528: 337–339
    Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, et al. 2005. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science, 310: 1180–1183
    Luo K M, Duan H, Zhao D G, Zheng X L, Deng W, Chen Y Q, Stewart C N, McAvoy R, Jiang X N, Wu Y H, He A G, Pei Y, Li Y. 2007.‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J, 5: 263–374
    Luo K M, Sun M, Deng W, Xu S. 2008. Excision of selectable marker gene from transgenic tobacco using the GM-gene-deletor system regulated by a heat-inducible promoter. Biotechnol Lett, 30: 1295–1302
    Mauro M C, Toutain S, Walter B, Pinck L, Otten L, Coutos-Thevenot P, Deloire A, Barbier P. 1995. High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci, 112: 97–106
    Mauro M Cl, Nef C, Fallot J. 1986. Stimulation of somatic embryogenesis and plant regeneration fromanther culture of Vitis vinifera cv. Cabernet-Sauvignon. Plant Cell Rep, 5: 377–380
    Marsh E, Alvarez S, Hicks L M, Barbazuk W B, Qiu W, Kovacs L, Schachtman D. 2010. Changes in protein abundance during powdery mildew infection of leaf tissues of cabernet sauvignon grapevine (Vitis vinifera L.). Proteomics, Online
    Martinelli L, Bragagna P, Poletti V, Scienza A. 1993. Somatic embryogenesis from leaf- and petiole-derived callus of Vitis rupestris. Plant Cell Rep, 12: 207–210
    Martinelli L, Zambanini J, Grando M S. 2004. Genotype assessment of grape regenerants from floral explants. Vitis, 3: 119–122
    Mestre P, Brigneti G, Baulcombe D C. 2000. An Ry-mediated resistance response in potato requires the intact active site of the NIa proteinase from potato virus Y. Plant J, 23: 653–661
    Mezzetti B, Pandolfini T, Navacchi O, Landi L. 2002. Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnol, 2: 18–27
    Miguel A G S, Rita De G, Gregory A E. 2010. Animal transgenesis: an overview. Brain Struct Funct, 214: 214–109
    Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Plant Sci, 9: 490–498
    Mullins M A, Tans F. 1990. Agrobacterium-mediated transformation of grapevines: transgenic plants of Vitis rupestris Schelle and shoots of Vitis vinifera L. Bio Technol, 18: 1041-1045
    Mullins M G, Srinivasan C. 1976. Somatic embryos and plantlets from an ancient clone of the grapevine (cv.‘Cabernet Sauvignon’) by apomixes in vitro. J Exp Bot, 27: 1022–1030
    Mullins M G, Tang F C, Facciotti D. 1990. Agrobacterium mediated genetic transformation of grapevines: transgenic plants of Vitis rupestris Scheele and buds of Vitis vinifera. Biotechnol 8: 1041–1045
    Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol, 15: 473–497
    Muthali M T, Newbury H J, Ford-Lolyd B V. 1996. The detection of somaclonal variants of beet using RAPD. Plant Cell Report, 7: 474–478
    Nitsch J P, Nitsch C. 1969. Haploid plants from pollen grains. Science, 163: 85–87
    Ohnuma M, Takashi Y, Inouye T, Sekine Y, Tanaka K. 2008. Polyethylene glycol (PEG)-mediated transient gene expression in a red Alga, Cyanidioschyzon merolae 10D. Plant and Cell Physiol, 49: 117–120
    Onay A, Pirinc V, Tikat E, Akturk Z, Yildirim H. 2004. Somatic embryogenesis of pistachio from female flowers. J Hortic Sci Biotech, 6: 960–964
    Palanichelvam K, Cole A B. 2000. Agroinfiltration of cauliflower mosaic virus gene VI elicits hypersensitive response in Nicotiana species. Mol Plant-Microbe Interact, 11: 1275–1279
    Patel G I, Olmo H P. 1955. Cytogenetics of Vitis: I. The hybrid V. vinifera×V. rotundifolia. Am J Bot, 42: 141–159
    Pearson R C. 1988. Powdery mildew. In: Pearson R C, Goheen A C (eds). Compendium of grape diseases. St Paul: APS Press
    Petri C, Burgos L. 2005. Transformation of fruit trees. Useful breeding tool or continued future prospect. Transgenic Res, 14: 15–26
    Polesani M, Bortesi L, Ferrarini A, Zamboni A, Fasoli M, Zadra C, Lovato A, Pezzotti M, Delledonne M, Polverari A. 2010. General and species-specific transcriptional responses to downy mildew infectionin a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species. B M C Genomics Online
    Rafique M Z, Zia M, Rashid H, Chaudhary M F, Chaudhry Z. 2010. Comparison of transgenic plant production for bacterial blight resistance in Pakistani local rice (Oryza sativa L.) cultivars. Afr J Biotechnol, 13: 1892–1904
    Rao A Q, Bakhsh A, Kiani S, Shahzad K, Shahid A A, Husnain T, Riazuddin S. 2009. The myth of plant transformation. Biotechnol Adv, 27: 753–763
    Reinert J. 1958. Morphogenese und ihre Kontrolle an Gewebekulturen aus Carotten. Naturwiss, 45: 344–345
    Riaz S, Garrison K E, Dangl G S, Boursiquot J M, Meredith C P. 2002. Genetic divergence and chimerism within ancient asexually propagated wine grape cultivars. J Am Soc Hortic Sci, 127: 508–514
    Roubelakis-angelakis K A. 2008. Grapevine Molecular Physiology & Biotechnology (Second Edition). Springer: 495–508
    Rossi L, Escugero J, Hohn. 1993. Efficient and sensitive assay for T-DNA–Dependent transient gene expression. Plant Mol Bio Rep, 11: 220–229
    Rumbolz J, Kassemeyer H H, Steinmetz V, Deising H B, Mendgen K, Mathys D, Wirtz S, Guggenheim R. 2000. Differentiation of infection structures of the powdery mildew fungus Uncinula necator and adhesion to the host cuticle. Can J Bot, 78: 409–421
    Salunkhe C K, Rao P S, Mhatre M. 1997. Induction of somatic embryogenesis and plantlets in tendrils of Vitis vinifera L. Plant Cell Rep, 17: 65–67
    Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P. 2008. Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep, 27: 1053–1063
    Sattarzadeh A, Fuller J, Moguel S, Wostrikoff K, Sato S, Covshoff S, Clemente T, Hanson M, Stern DB. 2010. Transgenic maize lines with cell-type specific expression of fluorescent proteins in plastids. Plant Biotechnol J, 2: 112–125
    Schrammeijer B, Sijmons P C, van den Elzen P J M, Hoekema A. 1990. Meristem transformation of sunflower via Agrobacterium. Plant Cell Reports, 2: 55–60
    Sch?b H, Kunz C, Meins F J. 1997. Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing. Mol Gen Genet, 256: 581–585
    Scorza R, Hammerschlag F A, Zimmerman T W, Cordts J M. 1995. Genetic transformation in Prunus persica (peach) and Prunus domestica (plum). In: Bajaj YPS (ed). Plant Protoplasts and Genetic Engineering VI. Springer-Verlag, Berlin Heidelberg: 255–268
    Sessions A, Yanofsky M F, Weigel D. 2000. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science, 289: 779–781
    Smith E F, Townsend C O. 1907. A Plant-tumor of bacterial origin. Science, 643: 671–673
    Spolaore S, Trainotti L, Casadoro G. 2001. A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. J Exp Bot, 52: 845–850
    Stamp J A, Colby S M. 1990. Improved shoot organogenesis from leaves of grape. J Amer Soc Hort Sci, 115: 1038–1042
    Stamp J A, Meredith C D. 1988. Somatic embryogenesis from leaves and anthers of grapevine. Scientia Hort, 35: 235–250
    Staudt G. 1980. Vitis armata, a new source of germplasm in grape breeding. Proc. 4th Intl Symp on Grape Breeding. Davis, CA, USA, June, 15-18: 62–64
    Stein M, Dittgen J, Sanchez-Rodriguez C, Hou B H, Molina A, et al. 2006. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell, 18: 731–746.
    Steward F C, Mapes M O, Smith J. 1958. Growth and organized development of cultured cells. II Organization in cultures grown fromfreely suspended cells. Am J Bot, 45: 705–708
    Sun S B, Meng L S, Sun X D, Feng Z H. 2010. Using high competent shoot apical meristems of cockscomb as explants for studying function of ASYMMETRIC LEAVES2-LIKE11 (ASL11) gene of Arabidopsis. Molecular Biology Reports, online
    Trieu A T, Burleigh S H, Kardailsky I V, Mendoza I E, Versaw W K, Blaylock L A, et al. 2000. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J, 22: 531–541
    Vanacker H, Carver T L W, Foyer C H. 2000. Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol, 123: 1289–1300
    Van Breusegem F, VranováE., Dat J F, Inzé. 2001. The role of active oxygen species in plant signal transduction. Plant Sci, 161: 405–414
    VanderGheynst J S, Guo H Y, Simmons C W. 2008. Response surface studies that elucidate the role of infiltration conditions on Agrobacterium tumefaciens-mediated transient transgene expression in harvested switchgrass (Panicum virgatum). Biomass Bioenerg, 32: 372–379
    Velasco R, Zharkikh A, Troggio M, Cartwright D A, Cestaro A et al. 2007. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE, 2: e1326
    Vidal J R, Rama J, Taboada L, Martin C, Iba?ez M, Segura A, González-Benito ME. 2009. Improved somatic embryogenesis of grapevine (Vitis vinifera) with focus on induction parameters and efficient plant regeneration. Plant Cell Tiss Organ Cult, 96: 85–94
    Wang Q C, Li P, Hanania U, Sahar N, Mawassi M, Gafny R, Sela I, Tanne E, Perl A. 2005. Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and utilizing cryopreserved cell suspensions. Plant Sci, 168: 565–571
    Wang Y J, Liu Y, He P C, Chen J, Lamicanra O, Lu J. 1995. Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis, 34: 159–164
    Wan Y, Schwaniniger H, He P, Wang Y. 2007. Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. Vitis, 46: 132–136
    Weathers J. 1913. Commercial Gardening Vol 3. The Gresham Publishing Company Welter L J, G?ktürk-Baydar N, Akkurt M, Maul E, Eibach R, T?pfer R, Zyprian EM. 2007. Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breed, 20: 359–374
    Wolf G, Fri? F. 1981. A rapid staining method for Erysiphe graminis f. sp. hordei in and on whole barley leaves with a protein-specific dye. Phytopathology, 71: 596–598
    Wroblewski T, Tomczak A, Michelmore R. 2005. Optimization of Agrobacterium-mediated transientassays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J, 3: 259–273
    Xu Y, Zhu Z G, Xiao Y, Wang Y J. 2009. Construction of a cDNA Library of Vitis pseudoreticulata native to China inoculated with Uncinula necator and the analysis of potential defence-related expressed sequence tags (ESTs). S Afr J Enol Vitic, 30: 65–71
    Yasmeen A, Mirza B, Inayatullah S, Safdar N, Jamil M, Sli S, Choudhry M F. 2009. In plants transformation of Tomato. Plant Mol Bio Rep, 27: 20–28
    Yang Y, Li R, Qi M. 2000. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J, 22: 543–551
    Zapata C, Srivatanakul M, Park S-H, Lee B-M, Salas M G, Smith R H. 1999. Improvements in shoot apex regeneration of two fiber crops: cotton and kenaf. Plant Cell tiss Org Cult, 56: 185–191
    Ziemienowicz A. 2007. Plant Transgenesis. In: Kovalchuk I, Zerp F J (eds). Plant Epigenetics: Methods and Protocols. New York City: Humana Press: 631: 253–268
    Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones J D G, Boller T, Felix G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 125: 749–760
    Zottini M, Barizza E, Costa A, Formentin E, Ruberti C, Carimi F, Lo Schiavo F. 2008. Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep, 27: 845–853

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700