中国华东葡萄抗白粉病新基因原核表达与抗体制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄白粉病是由葡萄白粉病菌[ Uncinula necator (Schw.) Burr.]引起的一种世界性的真菌病害。中国是葡萄属植物最重要的原产地之一,中国野生葡萄蕴藏丰富的抗病种质资源。本实验室研究人员通过mRNA差异显示技术(mRNA differential display reverse transcription-PCR , DDRT-PCR)及cDNA末端快速扩增技术(Rapid amplification of cDNA ends, RACE),从高抗白粉病的华东葡萄白河-35-1(Vitis pseudoreticulata)中克隆分离得到一条抗白粉病相关的新基因GLOXrg的cDNA全长序列。
     本研究利用生物信息学的常用工具及软件初步分析预测了该基因编码蛋白的功能及理化性质,将该新基因构建原核融合表达载体,运用体外表达技术获得其体外表达产物融合蛋白,并对其进行了纯化研究,为该基因体外功能的进一步验证提供依据。同时将获得的融合蛋白作抗原制备多克隆抗体,为目的基因产物在植株体内的定位研究、表达量的时空变化研究以及转基因植物的筛选和检测奠定基础。取得的主要结果如下:
     1新基因GLOXrg编码蛋白的物理化学性质与功能预测结果显示,其可能是一个定位于细胞膜上的催化醛类的氧化而产生H2O2的乙二醛氧化酶,但其编码蛋白的分子量56 kDa比已知真菌上乙二醛氧化酶分子量68kDa小。通过对H2O2抗病作用的分析,GLOXrg基因可能在葡萄抗白粉病的过程中起着重要的作用。
     2根据已知中国野生葡萄抗白粉病相关新基因GLOXrg基因序列,设计一对特异PCR引物,通过PCR方法,以华东葡萄白河-35-1(V. pseudoreticulata )5’RACE cDNA第一链为模板,扩增出一条约1572 bp的DNA条带,经克隆测序,结果显示所获片段含有实际大小为1572 bp的完整阅读框,与已知中国野生葡萄GLOXrg基因序列完全一致。将目的基因分别构建重组原核表达载体pGEX-GLOXrg,经双酶切鉴定,目的基因与表达载体均正确连接,重组表达载体构建成功。
     3重组原核表达载体pGEX- GLOXrg转入大肠杆菌E.coli BL21(coden plus)中,经诱导培养后,重组菌特异性表达了在SDS-PAGE上显示大小为83 kDa的融合蛋白,说明GLOXrg基因全长在E.coli BL21(coden plus)中得到表达。通过诱导剂IPTG不同浓度诱导对照、不同诱导培养时间对照以及不同诱导培养温度对照,确定了最佳表达条件(37℃,0.1 mM IPTG诱导表达5 h)。
     4以包涵体形式表达的GST-GLOXrg融合蛋白能够通过变性溶解、梯度透析方法复性,复性蛋白经GST亲和介质进行富集,SDS-PAGE结果显示获得了很好的纯化蛋白,
Powdery mildew, caused by Uncinula necator (Schw.) Burr., is the most ubiquitously damaging fungal disease of grapevines worldwide. China is one of the major centers of origin of Vitis species with the potential as sources of disease resistance. In our lab, by mRNA DDRT-PCR (mRNA differential display reverse transcription-PCR ) and RACE (Rapid amplification of cDNA ends ) , the novel GLOXrg gene of Chinese wild Vitis was cloned from Vitis pseudoreticulata Baihe-35-1, which has a high resistance to Uncinula necator.
     In our research, the physical and chemical character and the function of GLOXrg were predicted by the usual tools and softwares of bioinformatics. GLOXrg was cloned as fusion with GST, and expressed, and the fusion protein was purified, which provide the excellent tools for detecting further its function of resistance to Uncinula necator. Fusion protein GST-GLOXrg was isolated and used to raise the polyclonal anti-(GST-GLOXrg) in rabbits. These offer powful base for the research of the specific features of GLOXrg spatial and temporal expression and the detecting of transgenic grapevine plants. The research results are as follows:
     1. The prediction results of physical and chemical character and function of the induced protein of GLOXrg shows that GLOXrg was probably glyoxal oxidase.which catalyzes the oxidation of a number of aldehyde and a-hydroxy carbonyl compounds, reducing O2 to H2O2 in the process.But molecular weight of the induced protein of GLOXrg was smaller than knowed glyoxal oxidase of fungi. By the analysis of the disease-resistant H2O2, GLOXrg probably play a crucial role in the resistance to Uncinula necator.
     2. Based on the cDNA full sequence of GLOXrg gene of Vitis pseudoreticulata, we designed a pair of specific primers, and obtained DNA band of about 1572 bp length by PCR from the first strain of 5’RACE cDNA of Vitis pseudoreticulata Baihe-35-1. The sequencing result shows that the factual length of the open reading frames is 1572 bp, and the sequence is
引文
[1] Glenn JF, Morgan MA, Mayfield MB, etc. An extrancelluas H2O2-requir enzyme preparation involved in lignin bio-degradation by the white rot basidiomycete phaenerochaete chrysosporium [J]. Biochem Biophy Research commun, 1983, 114(13): 1077-1083.
    [2] Tien M, Kirk TK. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds [J]. Science, 1983, 221: 661-663.
    [3] Greene RV, Gould JM. Fatty acyl-coenzyme A oxidase activity and H2O2 production in Phanerochaete chrysosporium mycelia [J]. Biochem Biophys Res Commun. 1984, 118(2): 437-443.
    [4] Kersten PJ, Kirk TK. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium [J]. J Bacteriol. 1987, 169(5): 2195-2201.
    [5] Kirk TK, Groan S and Tien M. Production of multiple ligninases by phaenerochaete chrysosporium and use of a mutant strain [J]. Enzyme Microb. Tecbnol., 1986, 8: 27-32.
    [6] Jager A, Groan S and Kirk TK. Production of ligninases and degradation of lignin in agitated submerged cultures of phaenerochaete chrysosporium [J]. Appl. Enviton. Microbiol., 1985, 50: 1274-1278.
    [7] 刘文娜,汪 矛,李重九. 植物细胞程序化死亡研究进展[J ]. 植物学通报,2002, 19 (5): 549.
    [8] 蔡以滢,陈 珈. 植物防御反应中活性氧的产生和作用[J ]. 植物学通报,1999, 16 (2).
    [9] 张 骁, 董发才,宋纯鹏. 植物细胞的氧化猝发和H2O2 的信号转导[J ]. 植物生理学通讯,2000, 36 (4): 376- 81.
    [10] 林久生,王根轩. 活性氧与植物细胞编程性死亡[J ]. 植物生理学通讯,2001, 37 (6): 551-554.
    [11] 孙大业,郭艳林,马文耕. 细胞信号转导(第2 版) [M]. 北京:科学出版社,1998 :245.
    [12] 邱金龙,金巧铃,王钧. 活性氧与植物抗病反应[J ]. 植物生理学通讯,1998 , 34 (1): 56 - 61.
    [13] 王利国,李 玲. 活性氧中间体和NO 在植物抗病中的作用[J ]. 植物学通报,2003, 20(3): 354-362.
    [14] 张 骁,董发才,宋纯鹏. 植物细胞的氧化猝发和H2O2 的信号转导[J ]. 植物生理学通讯,2000, 36 (4): 376-381.
    [15] 陈晓梅,郭顺星. 植物抗病性物质的研究进展[J ]. 植物学通报,1999, 16(6).
    [16] 吴丹,仇华吉,童光志.几种表达系统的比较[J]. 生物技术通报. 2002,(2): 30 - 34.
    [17] Reed J L, Palsson B. Thirteen Years of Building Constraint Based In Silico Models of Escherichia coli [J]. Journal of Bacteriology, 2003, 185(9): 2692.
    [18] Lee P S, Lee K H. Escherichia Coli-A Model System That Benefits From and Contributes to the Evolution of Proteomics [J]. Biotechnol Bioeng, 2003, 84(7): 801.
    [19] Bert hold D A, Stenmark P, Nordlund P. Screening for functional expression and overexpression of a family of diiron-containing interfacial membrane proteins using the univector recombination system [J]. Protein Science, 2003, 12: 124.
    [20] Qing G, Ma L, Khorchid A, etc. Cold-shock induced high-yield protein production in Escherichia coli [J]. Nature Biotechnology, 2004, 22: 877.
    [21] Choi J H, Lee S Y. Secretory and extracellular production of recombinant proteins using Escherichiacoli [J]. Appl Microbiol Biotechnol, 2004, 64(5): 625.
    [22] Egorov M V, Tigerstrom A, Pestov N B, etc. Purification of a recombinant membrane protein tagged with a calmodulin-binding domain: properties of chimeras of the Escherichia coli nicotinamide nucleotide transhydrogenase and the C-terminus of human plasma membrane Ca2 + -ATPase [J]. Protein Expr Purif, 2004, 36(1): 31.
    [23] Lamla T, Erdmann V A. The Nano-tag, a streptavidin-binding peptide for the purification and detection of recombinant proteins [J]. Protein Expr Purif, 2004, 33(1): 39.
    [24] Trabbic-Carl son K, Liu L, Kim B, etc. Expression and purification of recombinant proteins from Escherichia coli: Comparison of an elastin-like polypeptide fusion with an oligohistidine fusion [J]. Protein Sci., 2004, 13(12): 3274.
    [25] Mao H. A self-cleavable sortase fusion for one-step purification of free recombinant proteins [J]. Protein Expr Purif, 2004, 37 (1): 253.
    [26] Lee S H, Choi J, Park S J, etc. Display of Bacterial Lipase on the Escherichia coli Cell Surface by Using FadL as an Anchoring Motif and Use of the Enzyme in Enantioselective Biocatalysis [J]. Applied and Environmental Microbiology, 2004, 70(9): 5074.
    [27] Yang T H, Pan J G, Seo Y S, etc. Use of Pseudomonas putida EstA as an Anchoring Motif for Display of a Periplasmic Enzyme on the Surface of Escherichia coli [J]. Appl Environ Microbiol, 2004, 70(12): 6968.
    [28] Dzivenu O K, Park H H, Wu H. General co-expression vectors for the overexpression of heterodimeric protein complexes in Escherichia coli [J]. Protein Expr Purif, 2004, 38(1): 1.
    [29] Deuerling E, Schulze-Speching A, Tomoyasu T, etc. Trigger factor and DnaKcooperate in folding of newly synthesized proteins [J]. Nature, 1999, 400: 693.
    [30] Marco A, Marco V D. Bacteria co-transformed with recombinant proteins and chaperones cloned in independent plasmids are suitable for expression tuning [J]. J Biotechnol, 2004, 109(122): 45.
    [31] Ferrer M, Chernikova T N, Timmis, etc. Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain [J]. Appl Environ Microbiol, 2004, 70(8): 4499.
    [31] Hu J C, Kornacker M G, Hochschild A. Escherichia coli One- and Two-hybrid systems for the analysis and identification of protein-protein interaction [J]. Methods, 2000, 20: 80.
    [32] Flores S, de Anda-Herrera R, Gosset G, etc. Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway [J]. Biotechnol Bioeng, 2004, 87(4): 485.
    [33] Masip L, Pan J L, Haldar S, etc. An Engineered Pathway for the Formation of Protein Disulfide Bonds [J]. Science, 2004, 303: 1185.
    [34] Baneyx F, Mujacic M. Recombination protein folding and misfolding in E. coli [J]. Nature Biotechnology, 2004, 22: 1399.
    [35] Wang J D, Herman C, Tipon K, etc. Directed evolution of substrate-optimized GroEL/S chaperonins [J]. Cell, 2002, 111: 1027.
    [36] D ring V, Mootz H D, Nangle LA, etc. Enlarging the Amino Acid Set of Escherichia coli by Infilt ration of the Valine Coding Pathway [J]. Science, 2001, 292: 501.
    [37] Wang L, Brock A, Herberich B, etc. Expanding the Genetic Code of Escherichia coli [J]. Science, 2001, 292: 498.
    [38] Wacker M, Linton D, Hitchen P G, etc. N-Linked Glycosylation in Campylobacter jejuni and its Functional Transfer into E. coli [J]. Science, 2002, 298: 1790.
    [39] Zhang Z, Gildersleeve J, Yang Y Y, etc. A New Strategy for the Synthesis of Glycoproteins [J]. Science, 2004, 303: 371.
    [40] 吴丽娟,蒋建新,朱佩芳等. 酵母表达系统及其应用研究. 生命的化学[J]. 2003, 23(1): 46 - 49.
    [41] 丁云菲,刘勇,戴长柏.巴斯德毕赤酵母研究进展.生命科学[J]. 2003, Vol 15, No.1: 26-30.
    [42] Ignatova Z, Mahsunah A, Georgieva M, etc. Improvement of Posttranslational Bottlenecks in the Production of Penicillin Amidase in Recombinant Escherichia coli Strains [J]. Appl. Environ.Microbiol., 2003, 69(2): 1237-1245.
    [43] Schein C H, Boix E, Haugg M, etc. Secretion of Mammalian Ribonucleases from Escherichia-coli Using the Signal Sequence of Murine Spleen Ribonuclease [J]. Biochem. J., 1992, 283: 137-144.
    [44] Derman A I, Prinz W A, Belin D, etc. Mutations that Allow Disulfide Bond Formation in the Cytoplasm of Escherichia-coli [J]. Science, 1993, 262: 1744-1747.
    [45] Agatha B, Montserrat L, Eduardo G J. In vivo Chaperone-assisted Folding of α-1, 6-Fucosyltransferase from Rhizobium sp. [J]. Chem.Bio. Chem., 2003, 4: 531-540.
    [46] Kwon M J, Park S L, Kim S K, etc. Overproduction of Bacillus Macerans Cyclodextrin Glucanotransferase in E-coli by Coexpression of GroEL/ES Chaperone [J]. J. Microbiol. Biotechnol., 2002, 12(6): 1002-1005.
    [47] Ashiuchi M, Yoshimura T, Kitamura T, etc. In vivo Effect of GroESL on the Folding of Glutamate Racemase of Escherichia coli [J]. J. Biochem., 1995, 117: 495-498.
    [48] Battistoni A, Carri M T, Steinkuhler C, etc. Chaperonins Dependent Increase of Cu, Zn Superoxide Dismutase Production in Escherichia coli [J]. FEBS Lett., 1993, 322: 6-9.
    [49] Caspers P, Stieger M, Burn P. Overproduction of Bacterial Chaperones Improves the Solubility of Recombinant Protein Tyrosine Kinase in Escherichia coli [J]. Cell. Mol. Biol., 1994, 40: 635-644.
    [50] Lee S C, Olins P O. Effect of Overproduction of Heat Shock Chaperons GroESL and DnaK on Human Procollagenase Production in Escherichia coli [J]. J. Biol. Chem., 1992, 267: 2849-2852.
    [51] Yoon S, Hirata R, Da Silva A, etc. Cloning and Expression of Soluble Recombinant Protein Comprising the Extracellular Domain of the Human Type I Interferon Receptor 2c Subunit (IFNAR-2c) in E-coli [J]. Biotechnol. Lett., 2002, 24(17): 1443-1448.
    [52] Gordon C L, Sather S K, Casjens S, etc. Selective in vivo Rescue by GroEL/GroES of Thermolabile Folding Intermediate to Phage P22 Structural Proteins [J]. J. Biol. Chem., 1994, 269: 27941?27951.
    [53] Schneider E L, Thomas J G, Bassuk J A, etc. Manipulating the Aggregation and Oxidation of Human SPARC in the Cytoplasm of Escherichia coli [J]. Nat. Biotechnol., 1997, 15: 581?585.
    [54] Yasukawa T, Kanei-Ishii C, Maekawa T, etc. Increase of Solubility of Foreign Proteins in Escherichia coli by Coproduction of the Bacterial Thioredoxin [J]. J. Biol. Chem., 1995, 270: 25328?25331.
    [55] Thomas J G, Baneyx F. Protein Folding in the Cytoplasm of Escherichia coli Cells Overproducing Heat-shock Proteins [J]. J. Biol. Chem., 1996, 271: 11141?11147.
    [56] Jiro K, Yasunori E. Improvement of Productivity of Active Form of Glutamate Racemase in Escherichia coli by Coexpression of Folding Accessory Proteins [J]. Biochem. Eng., 2002, 10: 39?45.
    [57] Kallio P T, Bailey J E. Intracellular Expression of Vitreoscilla Hemoglobin (VHb) Enhances Total Protein Secretion and Improves the Production of α-Amylase and Neutral Protease in Bacillus subtilis[J]. Biotechnol. Prog., 1996, 12: 31?39.
    [58] Mergulhao F J M, Monteiro G A, Larsson G, etc. Evaluation of Inducible Promoters on the Secretion of a ZZ-proinsulin Fusion Protein [J]. Biotechnol. Appl. Biochem., 2003, 38: 87?93.
    [59] Baneyx F. Recombinant Protein Expression in Escherichia coli [J]. Curr. Opin. Biotechnol., 1999, 10: 411?421.
    [60] Vasina J A, Baneyx F. Expression of Aggregation-prone Recombinant Proteins at Low Temperatures: A Comparative Study of the Escherichia coli cspA and tac Promoter Systems [J]. Protein Express. Purific., 1997, 9: 211?218.
    [61] Clement J M, Jehanno M, Popescu O, etc. Expression and Biological Activity of Genetic Fusions between MalE, the Maltose Binding Protein from Escherichia coli and Portions of CD4, the T-Cell Receptor of the AIDS Virus [J]. Protein Express. Purific., 1996, 8: 319?331.
    [62] Spangfort M D, Ipsen H, Sparholt S H, etc. Characterization of Purified Recombinant Bet v 1 with Authentic N-Terminus, Cloned in Fusion with Maltose-binding Protein [J]. Protein Express. Purific., 1996, 8: 365?373.
    [63] Mohanty A K, Wiener M C. Membrane Protein Expression and Production: Effects of Polyhistidine Tag Length and Position [J]. Protein Express. Purific., 2004, 33: 311?325.
    [64] Lee C, Lee S G, Takahashi S, etc. The Soluble Expression of the Protein Using Fusion Parters: Thioredoxin, Maltose Binding Human Rennin Binding a Comparison of Ubiquitin, Protein and NusA [J]. Biotechnol. Biopro. Eng., 2003, 8(2): 89?93.
    [65] Vavis G D, Elisee C, Newham D M, etc. New Fusion Protein Systems Designed to Give Soluble Expression in Escherichia coli [J]. Biotechnol. Bioeng., 1999, 65(4): 382?388.
    [66] Terpe K. Overview of Tag Protein Fusions: From Molecular and Biochemical Fundamentals to Commercial Systems [J]. Appl. Microbiol. Biotechnol., 2003, 60: 523?533.
    [67] Picking W L, Mertz J A, Marquart M E, etc. Cloning, Expression, and Affinity Purification of Recombinant Shigella Flexneri Invasion Plasmid Antigens IpaB and IpaC [J]. Protein Express. Purific., 1996, 8: 401?408.
    [68] Rosenberg H E. Isolation of Recombinant Secretory Proteins by Limited Induction and Quantitative Harvest [J]. Biotechniques, 1998, 24: 188?191.
    [69] Huang H C, Sherman M Y, Kandror O, etc. The Molecular Chaperone Dnaj Is Required for the Degradation of a Soluble Abnormal Protein in Escherichia coli [J]. J. Biol. Chem., 2001, 276: 3920?3928.
    [70] Koster M, Bitter W, Tommassen J. Protein Secretion Mechanisms in Gram-negative Bacteria [J]. Int. J. Med. Microbiol., 2000, 290: 325?331.
    [71] Palacios J L, Zaror I, Martinez P, etc. Subset of Hybrid Eukaryotic Proteins is Exported by the Type I Secretion Systems of Erwinia chrysanthemi [J]. J. Bacteriol., 2001, 183: 1346?1358.
    [72] Kajava A V, Zolov S N, Kalinin A E, etc. The Net Charge of the First 18 Residues of the Mature Sequence Affects Protein Translocation Across the Cytoplasmic Membrane of Gram-negative Bacteria [J]. J. Bacteriol, 2000, 182: 2163?2169.
    [73] Nielsen H J, Engelbrecht J, Brunak S, etc. Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of Their Cleavage Sites [J]. Protein Eng., 1997, 10: 1?6.
    [74] Bothmann H, Pluckthun A. The Periplasmic Escherichia coli Peptidylprolyl Cistrans-isomerase FkpAI Increased Functional Expression of Antibody Fragments with and without Cis-proteins [J]. J. Biol. Chem., 2000, 275: 17100?17105.
    [75] Joly J C, Leung W S, Swartz J R. Overexpression of Escherichia coli Oxidoreductases Increases Recombinant Insulin-like Growth Factor-I. Accumulation [J]. Proc. Natl. Acad. Sci. USA, 1998, 95: 2773?2777.
    [76] Nishihara K, Kanemori M, Kitagawa M, etc. Chaperone Coexpression Plasmids: Differential and Synergistic Roles of DnaK?dnaJ?grpE and GroEL?groES in Assisting Folding of an Allergen of Japanese Cedar Pollen Cryj2 in Escherichia coli [J]. Appl. Environ. Microbiol., 1998, 64: 1694?1699.
    [77] Kane J E. Effects of Rare Codon Clusters on High Level Expression of Heterologous Proteins in Escherichia coli [J]. Curr. Opin. Biotechnol., 1995, 6: 494?500.
    [78] Holm L. Codon Usage and Gene Expression [J]. Nucl. Acid R., 1986, 14: 3075?3087.
    [79] Bonekamp F, Dalboge H, Chiristensen H, etc. Translation Rates of Individual Codons Are Not Correlated with Trna Abundance or with Frequencies of Utilization in Escherichia coli [J]. J. Bacteriol., 1989, 171: 5812?5816.
    [80] Guisez Y, Robbens J, Remaut E, etc. Folding of the MS2 Coat Protein in Escherichia coli Is Modulated by Translational Pauses Resulting from mRNA Secondary Structure and Codon Usage: A Hypothesis [J]. J. Theor. Biol., 1993, 162: 243?252.
    [81] Mainfroid V, Terpstra P, Beauregard M, etc. Three hTIM Mutants that Provide New Insights on Why TIM Is a Dimer [J]. J. Mol. Biol., 1996, 257: 441?456.
    [82] Donovan R S, Robinson C W, Glick B R. Review: Optimizing Inducer and Culture Conditions for Expression of Foreign Protein under the Control of the Lac Promoter [J]. J. Ind. Microbiol., 1996, 16: 145?154.
    [83] Horn U, Strittmayer W, Krebber A, etc. High Volumetric Yields of Functional Dimeric Miniantibodies in Escherichia coli, Using an Optimized Expression Vector and High-cell-density Fermentation under Non-limited Growth Conditions [J]. Appl. Microb. Miotechnol., 1996, 46: 524?532 .
    [84] Carter P, Kelley R F, Rodrigues M L, etc. High-level Escherichia-coli Expression and Production of a Bivalent Humanized Antibody Fragment [J]. Bio-technology, 1992, 10: 163?167.
    [85] Lee S Y. High Cell-density Culture of Escherichia coli [J]. Trends Biotechnol., 1996, 14(3): 98?105.
    [86] Donovan R S, Robinson C W, Glick B R. Optimizing the Expression of a Monoclonal Antibody Fragment under the Transcriptional Control of the Escherichia coli Lac Promoter [J]. Can. J. Microbiol., 2000, 46(6): 532?541.
    [87] Lee H W, Yoon S J, Kim H K, etc. Overexpression of an Alkaline Lipase Gene from Proteus vulgaris K80 in Escherichia coli BL21/pKLE [J]. Biotechnol. Lett., 2000, 22: 1543?1547.
    [88] Hoffmann F, van den Heuvel J, Zidek N, etc. Minimizing Inclusion Body Formation during Recombinant Protein Production in Escherichia coli at Bench and Pilot Plant Scale [J]. Enzyme Microb. Technol., 2004, 34: 235?241.
    [89] Palva I, Lehtovaara P, Kèèrièinen L, etc. Secretion of Interferon by Bacillus-subtilis [J]. Gene, 1983, 22: 229?235.
    [90] Slabaugh M B, Davis R E, Roseman N A, etc. Vaccinia Virus Ribonucleotide Reductase Expression and Isolation of the Recombinant Large Subunit [J]. J. Biol. Chem., 1993, 268: 17803?17810.
    [91] Kagawa1 N, Cao Q W. Osmotic Stress Induced by Carbohydrates Enhances Expression of ForeignProteins in Escherichia coli [J]. Arch. Biochem. Biophys., 2001, 393(2): 290?296.
    [92] Han N S, Tao B Y. A Simple Method to Expression Soluble, Highly Active Cyclodextrin Glycosyltransferase in Recombinant E. coli [J]. Biotechnol. Tech., 1999, 13: 631?635.
    [93] Schein C H, Kashiwagi K, Fujisawa A, etc. Secretion of Mature IFN-alpha-2 and Accumulation of Uncleaved Precursor by Bacillus-subtilis Transformed with a Hybrid Alpha-amylase Signal Sequence-IFN-alpha-2 Gene [J]. Bio-technology, 1986, 14: 719?725.
    [94] McDonald J R, Org M, Shen C, etc. Large-scale Purification and Characterization of Recombinant Fibroblast Growth Factor-Saporin Mitotoxin [J]. Protein Express. Purific., 1996, 8: 97?108.
    [95] Nygren P A, Stahl S, Uhlen M. Engineering Proteins to Facilitate Bioprocessing [J]. Trends Biotechnol., 1994, 12: 184?188.
    [96] Murby M, Samuelsson E, Nguyen T N, etc. Hydrophobicity Engineering to Increase Solubility and Stability of a Recombinant Protein from Respiratory Syncytial Virus [J]. Eur. J. Biochem., 1995, 230: 38?44.
    [97] Schein C H, Haugg M. Deletions at the C-terminus of Interferon-gamma Reduce RNA-binding and Activation of Double-stranded-RNA Cleavage by Bovine Seminal Ribonuclease [J]. Biochem. J., 1995, 307: 123?127.
    [98] Mary A D, Loren L L, Homme W H. Computational Design of a Biologically Active Enzyme [J]. Science, 2004, 304: 1967?1971.
    [99] Reinhard S, Franz X S. De Novo Design of an Enzyme [J]. Science, 2004, 304: 1916?1917.
    [100] Kifarbet T, Roudolph R, Kohler H H, etc. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation [J]. Biol Technology, 1991, 9: 825-829.
    [101] 高永贵,关怡新,姚善径.包涵体蛋白的变复性[J].研究.科技通报,2003, 1, Vol(19): 10-15.
    [102] 方敏,黄华.包涵体蛋白体外复性的研究进展[J].生物工程学报,2001, Vol 17 No.6: 608-612.
    [103] 纪剑飞,张成刚.包涵体重组蛋白的纯化及复性[J].1998, Vol 15, No.4: 235-239.
    [104] 白东亭,许丽锋.重组大肠杆菌的包涵体[J].中国生物制品学杂志,1996, Vol 9 No.4: 188-191.
    [105] 冯小黎.重组包涵体蛋白质的折叠复性[J].生物化学与生物物理进展,2001, 28 (4): 482-485.
    [106] 凌明圣,许祥裕,丁树标. 以包涵体形式存在的重组蛋白的纯化和体外折叠[J].中国生化药物杂质,1995, Vol 16(3): 135-138.
    [107] King J. Unexpected pathways to protein stabilization [J]. Nat Biotechnol, 1996, 14(4): 436.
    [108] Samuel D, Kumar TK, Ganesh G, etc. Proline inhibits aggregation during protein refolding [J]. Protein Sci, 2000, 9(2): 344-352.
    [109] Shi Y, Jiang C, Chen Q, etc. One-step on-column affinity refolding purification and functional analysis of recombinant human VDAC1 [J]. Biochem Biophys Res Commun, 2003, 303(2): 475-482.
    [110] Ito M, Nagata K, Kato Y, etc. Expression, oxidative refolding, and characterization of six-histidine-tagged recombinant human LECT2 , a 162kDa chemotactic protein with three disulfide bonds [J]. Protein Expr Purif, 2003, 27(2): 272-278.
    [111] Meng F, Park Y, Zhou H. Role of proline, glycerol, and heparin as protein folding aids during refolding of rabbit muscle creatine kinase [J]. Int J Biochem Cell Biol, 2001, 33(7): 701-709.
    [112] Carlson JD, Yarmush ML. Antibody assisted protein refolding.Biotechnology (NY), 1992, 10(1): 86-91.
    [113] Bourot S, Sire O, Trautwetter A, etc. Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli [J]. J Biol Chem, 2000, 275(2): 1050-1056.
    [114] 刘箭,杨晓贺,吴显荣.小分子量热激蛋白胶体金免疫电镜定位[J].植物学报,1995, 37( 8): 652- 654.
    [115] 芦光新. 胶体金标记小麦与白粉病菌中 β-1,3-葡聚糖酶底物的制备及定位[J].青海大学学报,Vol 22, No.1: 5-8.
    [116] 黄景花,张红,李明等.采用免疫胶体金电镜技术对黄瓜幼叶叶肉细胞中的钙调素(CaM)进行定位[J].园艺学报,2003, 30(6): 728 – 730.
    [117] 丁明孝,梁凤霞,焦仁杰.胶体金标记技术—DNA,RNA、蛋白质和糖的定性与定位研究[J].电子显微学报,1994(5): 377.
    [118] 黄丛林,张大鹏,贾文锁.葡萄种子细胞中脱落酸的胶体金免疫电镜定位[J].中国农业大学学报,1999, 1(5): 111-117.
    [119] 贾文锁,王学臣,娄成后.蚕豆(Vicia faba L.)叶肉细胞中ABA的胶体金免疫电镜定位[J].植物生理学报,1994, 20(4): 380一384.
    [120] 盖树鹏,孟祥栋.转基因植物的筛选与检测[J].山东农业大学学报(自然科学版),2000, 31(1): 95-100.
    [121] Morgan A. J, P. N. Cox, D. A. Turner,E. Peel, M. R. Davey, K. M. A. Gartland and B. J. Mulligan. Transformation of tomato using an Riplas mid vector [J] . Plant science. 1987, 49: 37 一 49.
    [122] 毛慧珠,唐惕,曹湘玲等.抗虫转基因甘蓝及其后代的研究[C].中国科学(C 辑),1996, 26(4): 339 – 347.
    [123] Nilgun,E. T. M. keith,S. N. Richard, etc. Expression of alfalfa mosaic virus coat protein gene confers cross protection in transgenic tobacco and tomato plant [J] . The EMBO Journal. 1987,6(5):1181-1188.
    [124] 张中林,任延国,沈燕新等.苏云金芽抱杆菌(Bt)晶体毒蛋白基因在烟草叶绿体中的表达[J].遗传学报,2000, 27(3): 270-277.
    [125] 王冰山,窦道龙,张永强等.人溶菌酶基因在烟草中的表达[J].农业生物技术学报,2002, 10 (4): 338-342.
    [126] 林尤剑,谢联辉.应用改进的多克隆抗体 Western blot 技术研究柑桔速衰病毒蛋白[J].植物病理学报,2000, Vol 30, No.3: 251-257.
    [127] 青玲,吴建祥,戚益军等. 蚕豆萎蔫病毒单克隆抗体制备及检测应用[J].微生物学报,2000, Vol 40, No.2: 166-173.
    [128] Jules J, etc. Advance in fruit breeding, purdue University, 1975, 134-135
    [129] Adlerz W C, etc. Grape insects and diseases in Florida, Proceedings of the Florida State Horticulture Society, 1982, 94: 331-336.
    [130] 贺普超.中国野葡萄资源与利用[C].中外葡萄与葡萄酒,1999,特刊 12.
    [131] 贺普超主编.葡萄学[M].北京:科学出版社,1999.
    [132] 王跃进,贺普超.中国葡萄属野生种叶片抗白粉病遗传研究[J].中国农业科学,1997, 30(1): 19-25.
    [133] 王跃进,张剑侠,周鹏等.中国葡萄属野生种抗白粉病基因的 RAPD 标记[J].西北农林科技大学学报,2001, 29(1): 1 - 5.
    [134] 王跃进.中国葡萄属野生种对白粉病抗性及遗传的研究[D].西北农业大学,1993 届攻读博士学位研究生毕业论文.
    [135] 王西平.中国葡萄属野生种抗白粉病基因克隆与序列分析[D].西北农林科技大学博士毕业论文.
    [136] Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain rection [J]. Sci., 1922, 257: 967-970.
    [137] Liang P, Arerboukh L,Pardee A B. Distribution and cloning of eukaryotic mRNAs by means of differential display : refinements and optimization [J]. Nucleic Acids Res, 1993, 21(14): 3269-3275.
    [138] Frohman MA, Dush MK and Martin CR. Rapid production of full –length cDNA from rare transcripts; amplication using a single-specific oligonucleotide primer [J]. Proc Natl Acad Sci USA, 1988, 85: 8998.
    [139] Sambrook J , Fritsch EF , Maniatis . Molecular cloning 2 nd ed [M]. New York: Cold Spring Harbor Laboratory Press, 1989, 60-68.
    [140] Sambrook J, Fritsch EF, Maniatis. Molecular cloning 3 rd ed [M]. New York: Cold Spring Harbor Laboratory Press, 2002.
    [141] Pharmacia publication. Affinity chromatography: Principles and methods [M]. Pharmacia LKB Biotechnology, Piscataway, New Jersey.
    [142] Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analyt. Biochem., 1976, 72, 248–254.
    [143] Zuo, S.-S. and Lundahl, P. A micro-Bradford membrane protein assay [J]. Analyt. Biochem., 2000, 284: 162–164.
    [144] Sedmak, J. J. and Grossberg, S. E. A rapid, sensitive and versatile assay for protein using Coomassie Brilliant Blue G250 [J]. Analyt. Biochem., 1977, 79, 544–552.
    [145] 李慎著,秦建民,满晓波等. gpc3 / mx r7 基因的原核表达及其多克隆抗体的制备[J].中国现代医学杂志,2003, Vo1.13 No.8:15-17.
    [146] 谭志平,黄亮群,郑多等. P11 融合蛋白表达、纯化及抗血清的制备[J]. 湖南到大学学报,2002, 27(3): 189-191.
    [147] 马忠良,王冰晶,林仲翔等. α- cateru4 GST 融合蛋白的原核表达及其多克隆抗体制备[J]. 解剖学报,2001, Vol. 32, No. 4: 370-374.
    [148] 林清华 . 免疫学实验[M]. 武汉:武汉大学出版社,2004.
    [149] Rothel JS, Wood PR, Seow HF, etc. Urea/DTT solubilization of a recombinant Taenia ovis antigen, 45W, expressed as a GST fusion protein results in enhanced protective immune response to the 45W moiety [J]. Vaccine. 1997, 15(5): 469-72.
    [150] Lamb, C., Dixon, R.A. The oxidative burst in plant disease resistance [J]. Ann. Rev. Plant Physiol. Plant Molec. Biol. 1997, 48: 251-275.
    [151] Hückelhoven, R., Kogel, K.H. Tissue-specific superoxide generation at interaction sites in resistant and susceptible near-isogenic barley lines attacked by the powdery mildew fungus (Erysiphe graminis f.sp. hordei) [J]. Mol. Plant-Microbe Interact. 1998, 11: 292-300.
    [152] Peng, M., Kuc, J. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks [J]. Phytopathol. 1992, 82: 696-699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700