中国野生葡萄抗白粉病新基因遗传转化及检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以长穗无核白葡萄(Vitis vinifera cv. Long Thompson Seedless)为材料,对农杆菌侵染后叶片从愈伤组织到不定芽发生阶段的绿色荧关蛋白分布进行了观察;以拟南芥(Arabidopsis thaliana)为材料,通过农杆菌介导的花序浸蘸法,进行了中国野生葡萄抗白粉病新基因(GLOXrg,登录号:DQ201181)的遗传转化研究;以无核白葡萄(Vitis vinifera cv. Thompson Seedless)为材料,以脱水素基因为工具基因,进行了适于内、外源基因检测的方法研究。取得的主要结果如下:
     1.通过长穗无核白葡萄叶片农杆菌侵染后从愈伤化阶段到不定芽发生阶段绿色荧光蛋白的观察,认为在愈伤化阶段,在培养基中可只加入脱菌抗生素(头孢霉素,Cef) 500 mg/L,而不加入选择抗生素(潮霉素,HygB) 9 mg/L;在不定芽发生阶段,应当同时加入脱菌抗生素和选择抗生素。
     2.通过农杆菌介导的花序浸蘸法向拟南芥转化GLOXrg,经过花序浸蘸、种子采收、种子氯气消毒、潮霉素抗性筛选(MS + Hyg 50 mg/L),获得潮霉素抗性株系2株。
     3.建立了一种适于内、外源基因拷贝数鉴定及获得不同拷贝序列的方法(基于梯状回收的PCR法)。该方法步骤为:首先,基因组DNA被限制性内切酶充分酶切;其次,酶切产物通过琼脂糖凝胶电泳分离,分离产物被梯状回收;再次,通过PCR鉴定基因拷贝数;最后,测定PCR产物序列,获得每个拷贝核苷酸序列。
     4.应用“基于梯状回收的PCR法”法鉴定了无核白葡萄脱水素基因拷贝数,并获得了不同拷贝核苷酸序列。结果表明无核白葡萄脱水素基因拷贝数为2个,两者高度同源,在GenBank登录号分别为EF371881和EF371882。
GFP analysis of the infected explants was applied, and the phases covered were from callus formation to adventitious shoot formation; Also, we did the genetic transformation of the novel gene resistant to powdery mildew(GLOXrg, accession number: DQ201181) from Chinese wild grapevine on Arabidopsis thaliana by the Agrobacterium tumefaciens-mediated floral-dip method; Besides, we did some research on identification method available for endogenous and exogenous genes, and the reference gene used was dehydrin gene in Vitis vinifera cv. Thompson Seedless
     1. Based on GFP analysis from callus formation phase to adventitious shoot formation phase of the explant after infection with Agrobacterium tumefaciens, we obtained the following conclusion: it was available to just add cefotaxime (cef) 500 mg/L into the medium during the callus formation phase, and during the adventitious shoot formation phase, the cef and hygromycin B (hygB) 9 mg/L should were both added into the medium.
     2. Through Agrobacterium tumefaciens-mediated floral-dip transformation of the novel gene resistant to powdery mildew from Chinese wild grapevine on Arabidopsis thaliana, and after floral-dip、harvest of seeds、chlorine sterilization of seeds、selection on hygB added medium (MS + HygB 50 mg/L), two lines resistant to hygB were obtained.
     3. One method (ladderlike purification-based PCR method) available for estimating copy number and obtaining sequence of each copy was developed. The procedures of this method were as follows: First, DNA was digested with restriction endonuclease; Second, DNA fragments were separated on agarose gel, and separated fragments were purified ladderlikely; Third, copy number was estimated by PCR approach; Last, PCR products were sequenced for obtaining sequence of each copy.
     4. Copy number of dehydrin gene was estimated and sequence of each copy was obtained by ladderlike purification-based PCR method. It was shown that there were two copies of dehydrin gene in Vitis vinifera cv. Thompson Seedless, and these two copies were highly homologous to each other in nucleotide lever and the accession numbers were EF371881and EF371882 respectively.
引文
[1] 王西平. 中国葡萄属野生种抗白粉病基因克隆与序列分析 [D]. 西北农林科技大学博士论文, 2005.
    [2] Kersten P J, Kirk T K. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium [J]. J Bacteriol, 1987, 169(5):2195~2201.
    [3] 梁园园, 张朝晖, 周晓云. 黄抱原毛平革菌木素降解酶系的研究进展 [J]. 工业微生物, 2003, 33(4):42~49.
    [4] Whitaker M M, Kersten P J, Cullen D, et al. Identification of catalytic residues in glyoxal oxidase by targeted mutagenesis [J]. J Biol Chem, 1999, 274(51):36226~36232.
    [5] 洪伟杰, 张朝晖, 芦国营. 乙二醛氧化酶的研究进展 [J]. 纤维素科学与技术, 2006, 14(2):50~54.
    [6] Leuthner B, Aichinger C, Oehmen E, et al. A H2O2-producing glyoxal oxidase is required for filamentous growth and pathogenicity in Ustilago maydis [J]. Mol Gen Genomics, 2005, 272:639~650.
    [7] 王关林, 方宏筠. 植物基因工程原理与技术 [M]. 北京: 科学出版社, 2002.
    [8] Tzvi T, Yoon R, Min H C, et al. Nucleic acid transport in plant-microbe interactions:The molecules that walk through the walls [J]. Annu Rev Microbiol, 2000, 54:187~219.
    [9] Mullins M A, Tans F. Agrobacterium-mediated transformation of grapevine: transgenic plants of Vitis rupestris Schelle and shoots of Vitis vinifera L. [J]. Bio/Technol, 1990, 18:1041~1045.
    [10] Mauro M C,Toutain S,Walter B, et al. High efficiency regeneration of grapevine plants transferred with the GFLV coat protein gene [J]. Plant Sci, 1995, 112:97~106.
    [11] 周鹏, 王跃进, 贺普超. 人胰岛素样生长因子-I基因转化葡萄的研究 [J]. 热带作物学报, 2002, 23(1):1~6.
    [12] Emmanuelle V, Veronique K, Marc F. Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus [J]. Transgenic Research, 2003, 1277:1~15.
    [13] Vidal J R, Kikkert J R, Malnoy M A. Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew [J]. Transgenic Research, 2006, 15:69~82.
    [14] Dalsgaard K, Uttenthal A, Jones T D, et al. Plant-derived vaccine protects target animals against a viral disease [J]. Nat Biotechnol, 1997, 15(3):248~252.
    [15] Fitchen J, Beacky R N, Hein M B. Plant virus expressing hybrid coat protein with added murine epitope elicits autoantibody response [J]. Vaccine, 1995, 13(12):1051~1057.
    [16] Sabrina H, Nurbol G, Dariusz E, et al. Engineering the genome of Grapevine virus A into a vector for expression of proteins in herbaceous plants [J]. Journal of Virological Methods, 2006, 132:227~231.
    [17] Sanford J C, Clark H P, Chapman V M, et al. Differences in DNA methylation during oogenesis and spermatogenesis and their persistence during early embryogenesis in the mouse [J]. Genes Dev, 1987, 1:1039~1046.
    [18] Hebert D, Kikkert J R, Smith F S, et al. Optimization of biolistic transformation of embryogenic grapecell suspension [J]. Plant Cell Rep, 1993, 12:585~589.
    [19] Scorza R, Cordts J M, Ramming D W, et al. Transformation of grape (Vitis vinifera L.) zygotic-derived somatic embryos and regeneration of transgenic plants [J]. Plant Cell Rep, 1995, 14:589~592.
    [20] Xue B, Ling K S, Reid C L, et al. Transformation of five grape rootstocks with plant virus genes and a virE2 gene from Agrobacteriu tumefaciens [J]. In Vitro Cellular and Developmental Biology Plant, 1999, 35(3):226~231.
    [21] Kikkert J R, Ali G S, Wallace P G, et al. Expression of a fungal chitinase in Vitis vinifera L. ‘Merlot’ and ‘Chardonnay’ plants produced by biolistic transformation [J]. Acta Horticulture, 2000, 528:297~303.
    [22] Vidal J R, Kikkert J R, Wallace P G, et al. High-efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing nptⅡ and antimicrobial peptide genes [J]. Plant Cell Rep, 2003, 22:252~260.
    [23] Zhou G Y, Weng J, Zeng Y, et al. Introduction of exogenous DNA into cotton embryos [J]. Meth Enzymol, 1983, 101:433~481.
    [24] Zhu T, Mogensen H L, Smith S E. Quantitative, three dimensional analysis of alfalfa egg cells in two genotypes: implication for biparental plastid inheritance [J]. Planta, 1993, 190:143~150.
    [25] Willemse M T M, Van Went J L. Embryology of Angiosperms [M]. Berlin Heidelberg New York: Springer Verlag, 1984.
    [26] 潘重光, 叶正祥, 吴爱忠, 等. 导入模糊多基因提高上农香糯抗病性的研究 [J]. 上海农学院学报, 1993, 11(4):284~290.
    [27] 何迎春, 高必达. 含烟草几丁质酶基因的质粒Pbg1121的构建及水稻转化 [J]. 湖南农业大学学报(自然科学版), 2002, 28(2):93~96.
    [28] 倪建福, 周文麟, 王亚复. 高粱DNA导入小麦选育出抗条锈白粒新品系 [J]. 1994, 30:144~147.
    [29] 王秀玲, 卢茜, 刘君, 等. 野生大豆DNA导入小麦及RAPD分子验证 [J]. 中国农业科学, 1999, 32(5):49~54.
    [30] 王景雪, 孙毅, 崔贵梅, 等. 花粉介导法获得玉米转基因植株 [J]. 植物学报, 2001, 43(3):275~279.
    [31] 崔岩, 杨庆凯, 周思军, 等. 利用花粉管通道技术导入大豆抗病虫目的基因 [J]. 生物技术, 2002, 12(6):5~7.
    [32] 谢道昕, 倪万潮. 苏云金芽孢杆菌杀虫晶体蛋白基因导入棉花获得转基因植株 [J]. 中国科学(B辑), 1991, 4:367~373.
    [33] 李乃坚, 袁四清, 蒲汉丽, 等. 抗菌肽B基因转化烟草及转基因植株抗青枯病的鉴定 [J]. 农业生物技术学报, 1998, 6(2):178~184.
    [34] 薛林宝, 葛才林, 杨晓峰, 等. 辐照外源DNA导入番茄研究-D1、D2代分析 [J]. 激光生物学报, 2001, 10(1):18~22.
    [35] 田长恩, 王正询, 陈韬, 等. 抗菌肽D基因导入番茄及转基因植株的鉴定 [J]. 遗传, 2000, 22(2):86~89.
    [36] Lawrence R J, Pikaard C S. Transgene-induced RNA interference:a strategy for overcoming gene redundancy in polyploids to generate loos-of-function mutations [J]. The Plant Journal, 2003, 36:114~l21.
    [37] Gspar Y M. Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of agrobacterium transformation [J]. Plant Physiol, 2004, 135(4):2l62~2171.
    [38] Clough S J. Floral dip:agrobacterium-mediated germline transformation [J]. Methods Mol Biol, 2005, 286:9l~102.
    [39] Clough S J, Steven J, Bent A F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arahidopsis thaliana [J]. The Plant Journal, 1998, 16(6):735~743.
    [40] Bechtold N, Ellis J, Pelletier G.In planta Agrobacterrium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants [J]. Compt Rend Acad Sci Paris, 1993, 316:ll94~1199.
    [41] Feldmann K A, Marks M D. Agrobacterrium-mediated transformation of germinating seeds of Arabidopsis thaliana:a non-tissue approach [J]. Mol Gen Genet, l987, 208:l~9.
    [42] Katavic V, Haughn G W, Reed D.In Planta transformarion of Arabidopsis thaliana [J]. Mol Gen Genet, 1994, 245:363~370.
    [43] Chang S S, Park S K, Kim B C, et a1. Stable genetic transformation of Arabidopsis thaliana by Agrohacterium inoculation in planta [J]. The Plant Journal, 1994, 5(4):55l~558.
    [44] Cao M Q, Liu F, Yao L, et a1. Transformation of Pakchoi (Brassiea rapa L.ssp.chinensis) by Agrobacterium infiltration [J]. Mol Breed, 2000, 6:67~72.
    [45] Esau K. Plant Anatomy (2nd eds). [M]. New York: John Wiley and Sons, Pergamon Press, 1965.
    [46] Stewart R N, Burk L G. Independence of tissues derived from apical layers in ontogeny of the tobacco leaf and ovary [J]. Am J Bot, 1970, 57:l0l0~l0l6.
    [47] Curtis I S, Nam H G.Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral dip method-plant development and surfactant are important in optimizing transformation efficiency [J]. Transgenic Res, 2001, 10:363~371.
    [48] 严继勇, 何玉科, 曹家树. 一种新的植物基因遗传转化方法一花蕾微量注射法 [R]. 全国蔬菜遗传育种学术讨论会, 2002, 379~383.
    [49] 徐光硕, 饶勇强, 陈雁, 等. 用in planta方法转化甘蓝型油菜 [J]. 作物学报, 2004, 30(1):l~5.
    [50] Southern E M. Detection of specific sequences among DNA fragments separated by gel electrophoresis [J]. J Mol Biol, 1975, 98:503~517.
    [51] Gilliland G, Perrin S, Blanchard K, et al. Analysis of cytokine mRNA and DNA: detection and quantification of competitive polymerase chain reaction [J]. Proc Natl Acad Sci USA, 1990, 87:2725~2729.
    [52] Litcher P, Tang C J C, Call K, et al. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones [J]. Science, 1990, 247:64~69.
    [53] Higuchi R, Dollinger G, Walsh P S, et al. Simultaneous amplification and detection of specific DNA sequences [J]. Biotechnology, 1992, 10:413~417.
    [54] Higuchi R, Fockler C, Dollinger G, et al. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions [J]. Biotechnology, 1993, 11:1026~1030.
    [55] Lichtenstein A V, Moiseev V L, Zaboikin M M. A procedure for DNA and RNA transfer to membrane filters avoiding weight-induced gel flattening [J]. Anal Biochem, 1990, 191:187~191.
    [56] Chomczynski P. One hour downward alkaline capillary transfer for blotting of DNA and RNA [J]. Anal Biochem, 1992, 201:134~139.
    [57] Medveczky P, Chang C W, Mulder C, et al. Rapid vacuum driven transfer of DNA and RNA from gels to solid supports [J]. Bio Techniques, 1987, 5:242~246.
    [58] Olszewska E, Jones K. Vacuum blotting enhances nucleic acid transfer [J]. Trends Genet, 1988, 4:92~94.
    [59] Trnovsky J. Semi-dry electroblotting of DNA and RNA from agarose and polyacrylamide gels [J]. Bio Techniques, 1992, 13:800~804.
    [60] Reed K C, Mann D A. Rapid transfer of DNA from agarose gels to nylon membranes [J]. Nucleic Acids Res, 1985, 13:7207~7221.
    [61] Zhang J L, Day I N M, Byrne C D. A novel medium throughput quantitative competitive PCR technology to simultaneously measure mRNA levels from multiple genes [J]. Nucleic Acids Res, 2002, 30 (5): e20.
    [62] Honda M, Minetoki T, Gomi K, et al. Rapid detection of homologously integrated DNA fragments and accurate quantitation of their copy number in transgenic Aspergillus oryzae by PCR [J]. Journal of Bioscience and Bioengineering, 2000, 90:577~579.
    [63] Munechika H, Yasunori M, Tsuyoshi K, et al. Determination of gene copy number and genotype of transgenic Arabidopsis thaliana by competitive PCR [J]. Journal of Experimental Botany, 2002, 53:1515~1520.
    [64] Gall J G, Pardue M L. Formation and detection of RNA-DNA hybrid molecules in cytological preparations [J]. Proc Natl Acad Sci USA, 1969, 69:378~383.
    [65] John H A, Birnstiel M L, Jones K W. RNA-DNA hybrids at the cytological level [J]. Nature, 1969, 223:582~587.
    [66] Litcher P, Tang C J C, Call K, et al. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones [J]. Science, 1990, 247:64~69.
    [67] Leitch I J, Leitch A R, Heslop H J S. Physical mapping of plant DNA sequences by simultaneous in situ hybridization of two different fluorescent probes [J]. Genome, 1991, 34:329~333.
    [68] Ambros P F, Matzke M A, Matzke A J M. Detection of a 17kb unique sequence (T-DNA) in plant chromosomes by in situhybridization [J]. Chromosoma, 1986, 94:11~18.
    [69] Mouras A, Saul M W, Essad S, et al. Localization by in situ hybridization of a low copy chimeric resistance gene introduced into plants by direct gene transfer [J]. Mol Gen Genet, 1987, 207:204~209.
    [70] Mouras A, Negrutiu I. Localization of the T-DNA on marker chromosomes in transformed tobacco cells by in situ hybridization [J]. Theor Appl Genet, 1989, 78:715~729.
    [71] Kharb P, Dong J, Islam F M N, Stelly D M, et al. Fluorescence in situ hybridization of single copy transgenes in rice chromosomes [J]. In Vitro Plant Cell Dev Biol Plant, 2001, 37:1~5.
    [72] Wang J, Lewis M E, Whallon J H, et al. Chromosomal mapping of T-DNA inserts in transgenic petunia by in situ hybridization [J]. Transgen Res, 1995, 4:241~246.
    [73] Abranches R, Beven A F, Aragon A L, et al. Transcription sites are not correlated with chromosome territories in wheat nuclei [J]. J Cell Biol, 1998, 143:5~12.
    [74] Jackson S A, Zhang P, Chen W P, et al. High-resolution structural analysis of biolistic transgene integration into the nuclear genome of wheat [J]. Theor Appl Genet, 2001, 103:56~62.
    [75] Svitashev S, Ananiev E, Pawlowski W P, et al. Association of transgene integration sites withchromosome rearrangements in hexaploid oat [J]. Theor Appl Genet, 2000, 100:872~880.
    [76] Svitashev S, Ananiev E, Pawlowski W P, et al. Association of transgene integration sites with chromosome rearrangements in hexaploid oat [J]. Theor Appl Genet, 2000, 100:872~880.
    [71] 张贺,李波,周虚,等.实时荧光定量PCR技术研究进展及应用 [J]. 动物医学进展, 2006,27 (增):5~12.
    [72] Makino S, Cheun H. Application of the real-time PCR for the detection of airborne microbial pathogens in reference to the anthrax spores [J]. Microbio Methods, 2003, 53(2):141~147.
    [73] Girard B M, May V, Bora S H, et al. Regulation of neurotrophic peptide expression in sympathetic neurons : quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction [J]. Regul Peptides, 2002, 109 (123):89~101.
    [74] Wickert L, Steinkruger S, Abiaka M, et al. Quantitative monitoring of the mRNA expression pattern of the TGF-β-isoforms (β1, β2, β3) during transdifferentiation of hepatic stellate cells using a newly developed real-time SYBR Green PCR [J]. Biochemical and Biophysical Research Communications, 2002, 95(2):330~335.
    [75] Hiroshi S, Kazue O, Yonemura K, et al. Quantitative PCR to evaluate small amounts of BCL2 mRNA in human peripheral T cells: implication of equimolar target and competitor end products [J]. Clinica Chimaica Acta, 2003, 328 (122):147~153.
    [76] Ulrike M S, Bayerer B, Wolf S, et al. Rapid and reliable method for cytochrome P450 2D6 genotyping [J]. Clin Chem, 2002, 48:1412~1417.
    [77] Stahlberg A, Aman P, Ridell B, et al. Quantitative real-time PCR method for detection of B-lymphocyte monoclonality by comparison of κ and λ, immunoglobulin light chain expression [J]. Biochemistry, 2002, 35 (8):591~596.
    [78] Mitas M, Cole D J, Hoover L, et al. Real-time reverse transcription-PCR detects KS1/ 4 mRNA in mediastinal lymph nodes from patients with non-small cell lung cancer [J]. J Clin Chem, 2003, 49:312~2315.
    [79] Yang L T, Ding J Y, Zhang C M, et al. Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR [J]. Plant Cell Rep, 2005, 23:759~763
    [80] Ingham D J, Beer S, Money S, et al. Quantitative realtime PCR assay for determining transgene copy number in transformed plants [J]. Biotechniques, 2001, 31:132~140.
    [81] Mason G, Provero P, Vaira A M, et al. Estimating the number of integrations in transformed plants by quantitative real-time PCR [J]. BMC Biotechnol, 2002, 2:20.
    [82] Miki B L, Labbé H, Hattori J, et al.Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance [J]. Theor Appl Genet, 1990, 80:449~458.
    [83] Nelson R S, Mccormick S M, Delanney X, et al. Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus [J]. Biotechnology, 1988, 6:403~409.
    [84] 宫雪超,于丽杰,高金秋. 转基因植物的检测与鉴定 [M]. 2007, 1:15~17.
    [85] Prasher D C, Eckenrode V K, Ward W W, et a1. Primary structure of the aequorea victoria green 2 fluorescent protein [J]. J Gene, 1992, 111:229~233.
    [86] Li Z T, Dhekney S, Dutt M, et al. Optimizing agrobacterium-mediated transformation of grapevine [J].In Vitro Cell Dev Biol Plant, 2006, 42:220~227.
    [87] Murray F, Brettell R, Matthews P, et al. Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes [J]. Plant Cell Rep, 2004, 22:397~402.
    [88] Chabaud M, Carvalho-Niebel F de, Barker D G. Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1 [J]. Plant Cell Rep, 2003 22:46~51.
    [89] Guo W W, Duan Y X, Olivares F O, et al. Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene [J]. Plant Cell Rep, 2005, 24:482~486.
    [90] Puddephat I J, Robinson H T, Fenning T M, et al. Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay [J]. Molecular Breeding, 2001, 7:229~242.
    [91] Hardegger M, Sturm A. Transformation and regeneration of carrot (Daucus carota L.) [J]. Molecular Breeding, 1998, 4:119~127.
    [92] Schreuder M M, Raemakers C J J M, Jacobsen E, et al. Efficient production of transgenic plants by Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) [J]. Euphytica, 2001, 120:35~42.
    [93] Cheon B Y, Kim H J, Oh K H, et al. Overexpression of human erythropoietin (EPO) affects plant morphologies: retarded vegetative growth in tobacco and male sterility in tobacco and Arabidopsis [J]. Transgenic Research, 2004, 13:541~549.
    [94] Almeida1 A M, Villalobos E, Araújo1 S S, et al. Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses [J]. Euphytica, 2005, 146:165~176.
    [95] Yang Z N, Ingelbrecht I L, Louzada E, et al. Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradisi Macf.) [J]. Plant Cell Rep, 2000, 19:1203~1211.
    [96] Nagadhara D, Ramesh S, Pasalu I C, et al.Transgenic rice plants expressing the snowdrop lectin gene (gna) exhibit high-level resistance to the whitebacked planthopper (Sogatella furcifera) [J]. Theor Appl Genet, 2004, 109:1399~1405.
    [97] Malathi B, Ramesh S, Rao K V, et al. Agrobacterium-mediated genetic transformation and production of semilooper resistant transgenic castor (Ricinus communis L.) [J]. Euphytica, 2006, 147:441~449.
    [98] Wang J X, Chen Z L, Du J Z, et al. Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes [J]. Plant Cell Rep, 2005, 24:549~555.
    [99] Zhang B, Yang Y H, Lin Y M, et al. Expression and production of bioactive human interleukin-18 in transgenic tobacco plants [J]. Biotechnology Letters, 2003, 25:1629~1635.
    [100] Yang H, Singsit C, Wang A, et al. Transgenic peanut plants containing a nucleocapsid protein gene of tomato spotted wilt virus show divergent levels of gene expression [J]. Plant Cell Rep, 1998, 17:693~699.
    [101] 徐伟荣, 王跃进, 王西平, 等.中国葡萄属野生种抗白粉病抗逆基因植物表达载体的构建 [J]. 西北植物学报, 2005, 25:851~857.
    [102] Doyle J L, Doyle J J. Isolation of plant DNA from fresh tissue [J]. Focus, 1990, 12:13~15.
    [103] Xiao H G, Nassuth A. Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera [J]. Plant Cell Rep, 2006, 25:968~977.
    [104] Das D K, Reddy M K, Upadhyaya K C, et al. An efficient leaf-disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.) [J]. Plant Cell Rep, 2002, 20:999~1005.
    [105] Perl A, Lotan O, Abu A M, et a. Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interactions [J]. Nature Biotechnology, 1996, 14(5):624~628.
    [106] Iocco P, Franks T, Thomas M R. Genetic transformation of major wine grape cultivars of Vitis vinifera L [J]. Transgenic Research, 2001, 10:105~112.
    [107] Scorza R, Cordts J M, Ramming D W, et al. Transformation of grape (Vitis vinifera L.) zygotic-derived somatic embryos and regeneration of transgenic plants [J]. Plant Cell Rep, 1995, 14(9):589~592.
    [108] Mezzetti B, Pandolfini T, Navacchi O, et al. Genetic transformation of Vitis vinifera via organogenesis [J]. BMC Biotechnology, 2002, 2:18.
    [109] 唐孝青, 李斌, 伍小兵,等. 绿色荧光蛋白及其应用的研究进展 [J]. 陕西农业科学, 2007, (1):123~126.
    [110] 李云, 冯慧, 田砚亭. 葡萄再生系统研究进展 [J]. 生物技术报, 2000, 2:28~31.
    [111] Curtis I S. Production of transgenic crops by the floral-dip method [J]. Methods Mol Biol, 2005, 286:l03~113.
    [112] 付绍红, 牛应泽, 杨洪全, 等.表面活性剂silwetL-77对floral-dip转化甘蓝型油菜效果的影响 [J].分子植物育种, 2004, 2(5):66l~666.
    [113] Clough S J, Steven J, Bent A F. Floral dip:a simplified method for Agrobacterium-mediated transform ation of Arahidopsis thaliana [J]. The Plant Journal, 1998, 16(6):735~743.
    [114] 韦献雅, 付绍红, 牛应泽. 农杆菌介导floral-dip转基因方法研究进展 [J]. 2006, 2Z(3):362~367.
    [115] Mundy J, Chua N H. Abscisic acid and water-stress induce the expression of a novel rice gene [J]. EMBO J, 1988, 7:2279~2286.
    [116] 翟大勇, 沈黎明. 脱水蛋白研究进展 [J]. 生物化学与生物物理学进展, 1998, 25(2):119~122.
    [117] Close T J. Dehydrins: a commonalty in the response of plants to dehydration and low temperature [J]. Physl Plant, 1997, 100:291~296.
    [118] Close T J. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins [J]. Physl Plant, 1996, 97:795~803.
    [119] Danyluk J , Perron A , Houde M , et al. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimationof wheat [J]. Plant Cell, 1998, 10:623~638.
    [120] Close T J. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins [J]. Physl Plant, 1996, 97:795~803.
    [121] Rinne P L, Kaikuranta P L M, van der Plas L H W, et al. Dehydrins in cold-acclimated apices of birch (B e-tula pubescens Ehrh): production, localization and potential role in rescuing enzyme function during dehydration [J]. Planta, 1999, 209:377~388.
    [122] Hara M, Terashima S, Kuboi T. Characterization and cryoprotective activity of cold-responsivedehydrin from Citrus unshiu [J]. J Plant Physiol, 2001, 158: 1333~1339.
    [123] Hara M, Fujinaga M, Kuboi T. Radical scavenging activity and oxidative modification of citrus Dehydrin [J]. Plant Physiol Biochem, 2004, 42:657~662.
    [124] Hara M, Terashima S, Fukaya T, Kuboi T. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco [J]. Planta, 2003, 217:290~298.
    [125] Allagulova C R, Gimalov F R, Shakirova F M, et al. The plant dehydrins: structure and putative functions [J]. Biochemitry, 2003, 68:945~951.
    [126] Asghar R, Fenton R D, DeMason D A, et al. Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin [J]. Protoplasma, 1994, 177:87~94.
    [127] Pool R M, Pearson R C, Wesler M J, et al. Influence of powdery mildew on yield and growth of rosette grapevines [J]. Plant Dis, 1984, 68:590~593.
    [128] Gadoury D M, Seem R C, Wilcox W F, et al. Effects of powdery mildew on vine growth, yield, and quality of concord grapes [J]. Plant Dis, 2001, 85:137~140.
    [129] Reuveni M. Efficacy of trifloxystrobin (Flint), a new strobilurin fungicide, in controlling powdery mildews on apples, mango and nectarine, and rust on prune trees [J]. Crop Protection, 2000, 19:35~341.
    [130] 王跃进, 贺普超. 中国葡萄属野生种叶片抗白粉病遗传研究 [J].中国农业科学, 1997, 30:19~25.
    [131] Wang Y J, Liu Y, He P, et al. Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species [J]. Vitis, 1995, 34:159~164.
    [132] Alleweldt G, Possingham J V. Progress in grapevine breeding [J]. Theor Appl Genet, 1988, 75:669~673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700