细菌纤维素增强复合材料制备、表征及对蛋白药物承载研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌纤维素是一类性能优异的生物高分子材料,在高分子功能材料研究领域中较为活跃,尤其是细菌纤维素增强复合材料的制备表征及性能研究颇受关注。细菌纤维素作为增强体制备的细菌纤维素复合材料种类繁多,性能各异,具有良好的应用前景,尤其在生物医学方面。细菌纤维素含有大量的羟基,具有良好的亲水性,与其他水溶性的高分子容易发生氢键结合,因而细菌纤维素增强水溶性高分子复合材料在细菌纤维素增强复合材料中的研究较为突出。目前细菌纤维素增强水溶性高分子复合材料的制备方法主要有以下三类:第一类是化学制备法,将细菌纤维素经过化学改性之后制备其复合材料;第二类是生物制备法,在细菌纤维素培养过程中加入其它水溶性高分子制备细菌纤维素增强复合材料;第三类是物理制备法,如冻融循环法、冷冻真空干燥法等,这两类方法在细菌纤维素增强水溶性高分子复合膜的制备中应用广泛。然而经过冻融法和冻干法制得细菌纤维素增强水溶性高分子复合材料容易吸水溶胀,降低了其机械性能,限制了其使用范围,另外,冻融循环法和冷冻真空干燥法对仪器的要求较高,成本也较大,因此,探索细菌纤维素增强水溶性高分子复合材料的新型制备方法,使得复合材料的性能进一步提高,而制备成本较低的理想方法是非常必要和迫切的。同时,制备性能、用途各异的细菌纤维素增强水溶性高分子多功能纳米复合材料已越来越被重视。为了进一步充分开发利用细菌纤维素增强水溶性高分子纳米复合材料,扩展其应用领域,应从以下两个方面着手:一是应对所需性能的细菌纤维素增强水溶性高分子纳米复合材料进行制备方法研究;二是应对细菌纤维素增强水溶性高分子纳米复合材料的应用进行开发研究。
     本课题首先探索得出细菌纤维素增强水溶性高分子复合材料的一种简易制备方法,即在过饱和的无机盐溶液中使用醛交联剂通过化学交联制备得到细菌纤维素增强水溶性高分子复合材料,包括细菌纤维素增强聚乙烯醇(BC/PVA)复合材料、细菌纤维素增强羧甲基纤维素钠(BC/CMC-Na)复合材料以及细菌纤维素增强黄原胶(BC/XG)复合材料。其次,对制得细菌纤维素增强水溶性高分子复合材料的性能进行表征研究,同时探索其在蛋白药物承载方面的初步应用。使用化学交联法制备细菌纤维素增强水溶性高分子复合材料,如BC/PVA、 BC/CMC-Na及BC/XG复合材料,为制备细菌纤维素增强复合材料提供了新思路,制得复合材料对蛋白药物的吸附及释放性能拓展细菌纤维素复合材料在生物医学方面的应用。
     首先,使用甲醛作为交联剂在过饱和氯化钠溶液中交联制备细菌纤维素/聚乙烯醇(BC/PVA)复合凝胶膜。通过对BC/PVA复合凝胶膜红外光谱特性、溶胀性能、力学性能、热稳定性的研究讨论了化学交联对BC/PVA复合凝胶膜性能的影响。实验结果表明甲醛作为交联剂分别与PVA和BC发生了化学交联,形成了新的化学键。化学交联后BC/PVA复合凝胶膜溶胀性能明显降低,拉伸强度和杨氏模量明显增加,而断裂伸长率降低,热稳定性明显增强。另外,作为增强体的细菌纤维素对化学交联也有明显贡献,随着BC/PVA复合凝胶膜中BC含量的增加,复合凝胶膜的溶胀性能降低,拉伸强度和杨氏模量增加。
     其次,对比双官能团交联剂与单官能团交联剂对BC/PVA复合凝胶膜性能的影响。参考甲醛交联制备BC/PVA复合凝胶膜的实验参数,分别使用单官能醛(甲醛、乙醛)和双官能团醛(乙二醛、戊二醛)作为交联剂通过化学交联法制备BC/PVA复合凝胶膜,在相近交联度下通过对复合凝胶膜红外光谱特性、溶胀性能、力学性能、热稳定性以及结晶性能的研究得出交联剂对复合凝胶膜性能的影响。实验结果表明在相近交联度下,双官能团醛交联剂交联制得BC/PVA复合凝胶膜溶胀性能相对较弱,拉伸强度和杨氏模量相对较高,而交联剂对BC/PVA复合凝胶膜热稳定性、结晶性能及生物降解性没有明显影响。然而通过化学交联制备得到的BC/PVA复合凝胶膜对蛋白药物牛血清白蛋白(BSA)的吸附效果和释放效果较差,可能是因为BC/PVA复合凝胶膜具有比较致密的表面结构。
     再次,为了提高BC/PVA复合材料对血清白蛋白的承载能力,制备了BC/PVA多孔结构复合材料和BC/PVA褶皱结构复合材料。即分别使用过饱和的氯化钠溶液和丙酮-无水乙醇处理BC与PVA混合浆液,再经过化学方法交联制备得到具有一定比表面积的BC/PVA多孔网状或褶皱状复合材料。这种BC/PVA多孔网状或褶皱状复合材料的结构对BSA的吸附提供了吸附空间,因此对BSA具有较好的吸附效果,并且对BSA的释放初期出现一定的线性释放,在创伤敷料方面有一定的应用前景。
     最后,为了进一步提高细菌纤维素增强水溶性高分子复合材料对BSA的吸附效果,通过化学交联法交联制备了细菌纤维素增强水溶性纤维素的复合材料,即细菌纤维素/羧甲基纤维素钠(BC/CMC-Na)和细菌纤维/素黄原胶(BC/XG)复合材料。即先用丙酮-无水乙醇分别处理BC/CMC-Na和BC/XG混合匀浆,最后将得到的复合材料在过饱和氯化钠溶液中经过化学交联,最终得到BC/CMC-Na和BC/XG复合材料。通过对所得BC/CMC-Na和BC/XG复合材料形态特征观察发现CMC-Na和XG能均匀的包覆在BC表面,并能进入到BC的网络结构中,最终形成的BC/CMC-Na和BC/XG复合材料呈现出多孔道网络结构。细菌纤维素增强的BC/CMC-Na和BC/XG多孔道网络结构复合材料提供了BSA的吸附空间,对BSA具有较好的吸附作用,同时也具有一定的释放效果,在手术后的防感染方面具有较好的应用前景。
Cellulose is one of the most plentiful nature biopolymer on the Earth, being synthesized by plants and by some bacteria species as well. In particular bacterial cellulose (BC) composed of nano-sized fibril network is produced by some bacterial, such as Gluconacetobacter xylinus. The molecular formula of BC is (C6H10O5)n, having a β-1,4linkage between two glucose molecules. BC has unique structural, functional, physical and chemical properties. Recently, BC has obtained increasing attention in the research realm due to the unique properties it possesses; such as its remarkable mechanical properties in both dry and wet states, porosity, high purity and crystallinity, water absorption, excellent biodegradability and biocompatibility, therefore, BC has a wide range of applications in food, paper, and electronic industries, especially has potential application in biomedical engineering. For instance, bacterial cellulose has been used for wound dressings, vascular plants, artificial skin, and tissue engineering scaffold, and applied actively in other areas. From an environmental perspective, it is necessary to use renewable resources instead of increasingly scarce non-renewable resources. BC is produced by bacterial, so it is a green polymer. Lately, BC and functionalized BC used as reinforcement or scaffold to produce green nanocomposites, which exhibited some desirable properties, and the properties of BC based nanocomposites was extensive investigated in order to expand its applications area, especially for biomedical application.
     At present, there are kinds of BC based nanocompoistes with various properties, those BC based nanocomposites with various properties because of different matrix of the nanocomposites, for instance, electroconductive nanocompistes based on BC, magnetic nanocomposites based on BC, antibacterial nanocompiste BC nanocompiste, and some BC based nanocomposites possess drug loading and releasing, all of those BC based nanocomposite revealed potential applications, especially for biomedical application. So far, there are three main methods for preparing BC based nanocomposites:the first one is prepared BC based nanocomposites used modified BC, for instance, BC was modified by organic acid to improve it hydrophobicity in order to ameliorate interface adhesion between BC and hydrophobic polymer for prepare BC based nanocomposites; the second prepared BC based nanocomposites was add matrix during BC cultivate process, for instance, add polyethylene oxide (PEO), polyethylene glycol (PEG), poly(vinyl alcohol)(PVA)during BC cultivate to prepare BC/PEO, BC/PEG, BC/PVA nanocomposites, respectively; the last one is prepared BC based nanocomposites by physical or chemical method, for instance, electron beam or γ-irradiation, or physically using thermal cycling, or chemical crosslinked with different chemical crosslinkers, there are various chemical crosslinkers such as glutaraldehyde, bis(sulfosuccinimidyl),suberate, D,L-glyceraldehyde, carbodiimide, epichlorohydrin and genipin have been used to cross-link BC based nanocomposites with gelatin, chitosan, pachyman and its derivatives and elastin in aqueous or organic solutions, respectively. At present, the more popular method for preparing BC based composite membrane is freezing and lyophilization and freezing-thaw method. These methods present typical physical cross-linking, have the advantages of no residual amounts of the toxic chemical cross-linking agents left, and the resulting BC based composites membrane demonstrated desirable properties. However, both of the reezing and lyophilization and the freezing-thaw method accompanies with high consumption of energy and time, and those methods required corresponding precision apparatuses to control the rate of heating and refrigerating. In addition, most of the BC based composites membranes were aquiferous, it is easy to swell, so the mechanical strength and toughness of these nanocomposites were expected to be improved. In addition, the chemical crosslinked BC based nanocomposite in aqueous or organic solutions. However, BC nanocomposites prepared by chemical crosslinking in inorganic salt solutions are not investigated yet, and effects of the chemical crosslinkers on properties of the BC/PVA nanocomposite hydrogels were not investigated when the crosslinking degree was approximate. Therefore, it is necessary to explore an economic way to get BC based composites with promising properties, and expand its applications.
     BC/PVA nanocomposite hydrogels using BC as the reinforcement and PVA as the matrix materials were formed in coagulating bath of the sodium chloride and cross-linked with formaldehyde. The ATR-FTIR spectrum, ESR, mechanical, and thermal properties of the PVA and BC/PVA nanocomposite hydrogel revealed that chemical cross-linking between PVA and formaldehyde, BC and formaldehyde were achieved, respectively, and BC was conducive to the chemical cross-linking, too. The ESR of the BC/PVA nanocomposite hydrogels were decreased after chemical cross-linking, and decreased with the BC content at room temperature. It was found that the mechanical properties of the nanocomposite hydrogels were apparently affected by chemical cross-linking and the content of BC. Tensile strength and the Young's modulus of the nanocomposite hydrogels were increased because of chemical cross-linking and with BC content, and the elongation at break was decreased. In addition, our result demonstrated that not only the PVA hydrogels but also the BC/PVA nanocomposite hydrogels, the thermal stability were remarkably enhanced because of chemical cross-linking. Briefly, the BC/PVA nanocomposite hydrogels, prepared by chemical cross-linking, exhibited promising mechanical properties and desirable thermal stability, so the BC/PVA nanocomposite hydrogels described in this study provides information for further development and optimization of a variety of nanofiber-polymer matrix composite hydrogels.
     BC/PVA nanocomposite hydrogels using BC as the reinforcement and PVA as the matrix materials were formed in coagulating bath of sodium chloride and cross-linked with aldehyde crosslinkers. The ATR-FTIR spectrum, ESR, mechanical, and thermal properties of BC/PVA nanocomposite hydrogel revealed that chemical cross-linking between BC/PVA and aldehyde were achieved, respectively, and BC was conducive to the chemical crosslinking, too. The crosslinking degree could be controlled by crosslinking time. It was found that the crosslinkers affect some properties of the nanocomposite hydrogels. When the crosslinking degree at approximately level, all of the ESR of the nanocomposite hydrogels was increased with temperature. The ESR of the glyoxal and glutaraldehyde cross-linked BC/PVA nanocomposite hydrogels were lower than formaldehyde and acetaldehyde cross-linked hydrogels, especially at high temperature area. It was found that the mechanical properties of the nanocomposite hydrogels were apparently influenced by crosslinkers and the content of BC. The tensile strength and Young's modulus of the glyoxal and glutaraldehyde cross-linked BC/PVA nanocomposite hydrogels were higher than formaldehyde and acetaldehyde cross-linked hydrogels. In addition, our result demonstrated that the thermal stability of the BC/PVA nanocomposite hydrogels was remarkably enhanced after chemical cross-linking. However, the crosslinkers had slight effect on the thermal stability of the hydrogels. Meanwhile, the crystallinity degree of the nanocomposite hydrogel was hardly influened by the crosslinkers.
     The porous sponge-like or wrinkle sponge-like structure BC/PVA composites were prepared in coagulating bath and cross-linked with aldehyde crosslinkers. The ATR-FTIR spectroscopy and ESR tests revealed that chemical crosslinking between BC/PVA composite and glyoxal were achieved. The results of in vitro drug load and release studies revealed the porous BC/PVA composites are promising candidates as controlled drug-delivery systems.
     The porous sponge-like or wrinkle sponge-like structure sodium carboxymethylcellulose (BC/CMC-Na) and BC/xanthan gum (BC/XG) composites, using BC as scaffold, CMC-Na or XG as martin, were prepared in coagulating bath and cross-linked with glyoxal, respectively. The ATR-FTIR spectroscopy and ESR tests revealed that chemical crosslinking between BC/CMC-Na or BC/XG composite and glyoxal were achieved, respectively. In addition, It was demonstrated that the thermal stability of the BC/CMC-Na or BC/XG composite was enhanced after chemical cross-linking. Meanwhile, the crystallinity degree of the BC/CMC-Na or BC/XG composite was hardly influened by the chemical crosslinking. The results of in vitro drug load and release studies revealed the porous BC/CMC-Na and BC/XG composites are promising candidates as controlled drug-delivery systems.
引文
[1]Granja P L, Barbosa M A, Pouysegu L, De Jeso B, Rouais F and Baquey C Cellulose phosphates as biomaterials. Mineralization of chemically modified regeneratged cellulose hydrogels[J]. Journal of Material Science,2001,36:2163.
    [2]Iguchi M, Yamanaka S, Budhiono, Bacterial cellulose-a masterpiece of nature's arts[J]. Journal of Material Science,2000,35:261.
    [3]Svensson A, Nicklasson E, Harrah T. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage[J]. Biomaterials,2005,26:419.
    [4]Klemm D, Schumann D, Udhardt U, et al. Bacterial synthesized cellulose artificial blood vessels for microsurgery[J]. Progress in Polymer Science,2001,26(9): 1561-1603;
    [5]Brown A J. On an acetic ferment which forms cellulose[J]. Journal of Chemical Society,1886,49:172-186;
    [6]Colvin J R, Leppard G G, The biosynthesis of cellulose by acetobacter xylinum [J]. Canadian Journal of Microbiology,1977,23(6):701-709.
    [7]Shibazaki H., Kuga S, Fumihiko O, et al. Bacterial cellulose membrane as separation medium[J] Journal of Applied Polymer Science,2003,50(6):965-969.
    [8]Watanabe K., Yamanka S.. Effects of Oxygen tension in the gaseous phase on Production and physical properties of Bacterial cellulose formed under static culture conditions [J]. Bioscience Biotechnology Biochemistry,1995, 59(1):65-68.
    [9]Yamanaka S., Watanabe K., Kitamura N.. The structure and mechanical properties of sheets prepared from bacterial cellulose [J].Journal of Material Science,1989,24 (9):3141-3145.
    [10]Embuscado M., Marks J., Miller J.. Bacterial cellulose I, Factors affecting the production of Acetobacter xylinum[J].Food Hydrocolloids,1994,8(5):407-418.
    [11]Geyer U., Heinze T., Stei A, et al. Formation, derivatization and applications of bacterial cellulose[J].International Journal of Biological Macromolecules, 1994,16(6):343-347.
    [12]Okiyama A., Shirae H., Kano H., et al. Bacterial cellulose I, Two-stage fermentation process for cellulose production by Acetobacter aceti [J].Food Hydrocolloids,1992,6 (5):471-477.
    [13]Valla S, Kiosbakken J, Cellulose-negative mutants of Acetobacter xylinum [J] Journal of General Microbiology,1982,128:1401-1408
    [14]Shirai A, Takahashi M, Kaneko H, et al. Biosynthesis of a novel polysaccharide by Acetobacter xylinum [J]. International Journal of Biological Macromolecules, 1994,15(6):297-300;
    [15]Pikul W, Sanae K, Khemmarat B, et al. Characterization of cellulose membrane produced by Acetobacter Xylinum [J]. Membrane Science & Technology, 2002, (24):855-862;
    [16]Sherif M A S Keshkl, Taha M A Razek, et al. Bacterial cellulose production form beet molasses[J]. African Journal of Biotechnology,2006,5(17):1519-1523.
    [17]Thompson D N, Hamilton M A. Production of bacterial celloluse from alternate feedstock[J]. Applied Biochemistry and Biotechnology,2001,91-93(3):503-513.
    [18]Yamanaka S, Watanabe K, Kitamura, et al. The structure and mechanical properties of sheets prepared preparaed from bacterial cellulose [J]. Journal of Materials Science,1989,24(9):3141-3145.
    [19]Krystynowicz A, Cazaja W, Pomorski, et al. The evaluation of usefulness of microbial cellulose as wound dressing material [M] 14th Forum for Applied Biotechn, Gent, Belguim, proceedings Part I.2000,213-220.
    [20]Yamaoto H, Fumitaka H. CPMAS carbon-13 NMR analysis of the crystal transformation induced for valonia cellulose by annealing at high temperatures [J]. Macromolecules,1993,26(6):1313-1317.
    [21]Helenius G, Backdahl H, Bodin A, et al. In vivo biocompatibility of bacterial cellulose [J]. Biomedical Materials Research Part A,2006,76A (2):431-438.
    [22]Svensson A, Nicklasson E, Harrah T, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage [J]. Biomaterials,2005,26:419-431.
    [23]Czaja W, Krystynowicz A, Bietlecki S, et al. Microbial cellulose-the natural power to heal wounds [J]. Biomaterials,2006,27:145-151.
    [24]Bodin A, Backdahl H, Risberg S, et al. Nano cellulose as a scaffold for tissue engineered blood vessels [J]. Tissue Engineering,2007,13(4):885-885.
    [25]Tajima K, Fujiwara M, Takai M. et al. Synthesis of bacterial cellulose composite by Acetobacter xylinim I. Its mechanical strength and biodegradability [J]. Mokuzai Gakkaishi,1995, (41):749-757.
    [26]刘四新.椰子纳塔(nata)产生菌的筛选与发酵条件研究[D].海南:华南热带农业大学,1997.
    [27]Vandamme E J, Baets S D. Improved production of bacterial cellulose and its application potential [J]. Polymer Degradation and Stability,1998,59(1-3):93-99.
    [28]Fontana J D, Desouza A M, Fontana C K, et al. Acetobacter cellulose pellicle as a temporary skin substitute. Application of Biochemistry and Biotechnology,1990, 25:253
    [29]Czaja W, Kawecki M, Krystynowicz A, et al. Application of bacterial cellulose in treatment of second and third degree burns. In Abstracts of Papers,227th ACS National Meeting, Anahein, CA, United States,2004. Washington, DC:American Chemical Society.2004,150.
    [30]Legeza V L, Galenko-yaroshevkii V P, Zinov E V, et al. Effect of new wound dressings on healing of thermal burns of the skin in acute radiation disease[J]. Bulletin of Experimental Biology and Medicine,2004,138(3):311-315.
    [31]Geyer U, March S, Schmaceder H P. Formation derivation and application of bacterial cellulose [J]. Macromolecular,1994,16:343:347.
    [32]赵梓年,王红.聚乳酸/细菌纤维素复合材料制备研究硼[J].塑料工业,2008,36(12):11—13.
    [33]Kim Y, Jung R, Kim H S,et al. Transparent nanocomposites prepared by incorporating microbial nanofibres into poly(L-lactic acid) [J]. Current Applied Physics,2009,9:69-71.
    [34]Sukyai P, Sriroth K, Lee B H, Kim H J. The effect of bacterial cellulose on the mechanical and thermal expansion properties of kenaf/polylactic acid composites [J]. Applied Mechanics and Materials,2012,117-119:1343-1351.
    [35]Quero F, Nogi M, Yano H, Abdulsalami K, Holmes S M, Sakakini B H, Eichhorn S J. Optimization of the mechanical performance of bacterial cellulose/poly(L-lactic) acid composite [J]. ACS Applied Materials and Interface 2010,1,321-330.
    [36]Lee K Y, Tang M, Williams C K. Carbohydrate derived copoly(lactic) as the compatibilizer for bacterial cellulose reinforced polylactide nanocomposites [J]. Composites Science and Technology,2012,72(14):1646-1650.
    [37]Park W P, Kang M S, Kim H S, et al. Electrospinning of polyethylene oxide)with bacterial cellulose whiskers[J]. Macromol Symp,2007: 249-250,289-294.
    [38]Brown E E, Laborie M P G. Bioengineering bacterial cellulose, poly(ethylene oxide) nanacomposites [J]. Biomacromolecules,2007,8(10):3074-3081
    [39]Millon L E, Guhados G, Wan W K, et al. Polyvinyl alcohol-bacterial cellulose nanocomposite for biomedical application[J]. Journal of Biomedical Materials Research Part B:Applied Biematerials,2008:444-452.
    [40]赵梓年,刘家祺,朱会霞,贾士儒.细菌纤维素/聚乙烯醇双网络复合水凝胶 的制备与性能研究[J].纳米加工工艺,2010,7(2):40-44;
    [41]Leonardo E. Millon, Christine J. Oates, Wankei Wan. Compression Properties of Polyvinyl Alcohol-Bacterial Cellulose Nanocomposite [J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2009,90 B:922-929;
    [42]Jiehua Wang, Chuan Gao, Yansen Zhang, Yizao Wan. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial [J]. Materials Science and Engineering C.2010,30:214-218;
    [43]Gea S, Bilotti E, Reynolds C T, Soykeabkeaw N, Peijs T. Bacterial cellulose-poly (vinyl alcohol) nanocomposites prepared by an in-situ process[J].Material Letters,2010,64:901-904.
    [44]Jipa M I, Dorbe L, Stroescu M, Anicuta S G, Jinga S, Dorbe T. Preparation and characterization of bacterial cellulose-poly(vinyl alcohol) films with antimicrobial properties [J]. Material Letters,2012,66:125-127.
    [45]Qiu KY, Netravali A N. Bacterial cellulose-based membrane-like biodegradable composites using cross-linked and noncross-linked polyvinyl alcohol [J]. Journal of Material Science.2012, DOI 10.1007/sl 0853-012-6517-9.
    [46]朱会霞,贾世儒,沈惠玲,杨洪江,贾原媛,张桂才.PVA对生物合成细菌纤维素拉伸性能的影响[J].高校化学工程学报.2011,25(5):822-826.
    [47]蒋挺大.胶原与胶原蛋白[J].北京:化学工业出版社,2006:186-221.
    [48]Wiegand C, Elsner P, Hipler U-C, Klemm D, Protease and ROS actives influenced by a composite of bacterial cellulose and collagen type I in vitro [J]. Cellulose,2006,13:689-696;
    [49]Luo H L, Xiong G Y, Huang Y, et al. Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds[J]. Materials Chemistry and Physics,2008,110:193-196.
    [50]王海宁.胶原/细菌纤维素复合材料的制备及性能研究[D].天津大学,2007.
    [51]Sybele S, Lucas N T, Paulo T O, et al. Bacterial cellulose-collagen nanocomposite for bone tissue engineering [J]. Journal of Materials Chemistry. 2012,22:22102-22112.
    [52]刘继光,刘翯翀,李慕勤等.胶原/细菌纤维素复合材料的细胞相容性评价[J].中国体视学与图像分析,2012,17(2):138-142.
    [53]Phisalaphong M, Suwanmajo T, et al. Synthesis and characterization of bacterial cellulose/alginate blend membranes. Journal of Applied Polymer Science,2008,107:3419-3424.
    [54]Nakayama A, Kakugo A, et al. High mechanical strength double-network hydrogel with bacterial cellulose[J]. Advanced Functional Materials.2004, 14(11):1124-1128.
    [55]Yan Hu, Xiaoju Zhou, Yong LU, et al. Novel biodegradable hydrogels based on pachyman and its derivatives for drug delivery[J]. International Journal of Pharmaceutics,2009,371:89-98.
    [56]蔡志江,侯成伟.细菌纤维素/壳聚糖复合多孔支架材料的制备与表征[J].高分子材料科学与工程,2012,28(6):121-124.
    [57]Jaehwan K, Cai Z J, Hyun S L, et al. Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application[J]. Journal of Polymer Research,2011,18:139-144.
    [58]朱清梅,冯玉红,林强,吴敏.细菌纤维素/透明质酸复合材料的生物合成及表征[J].纤维素科学与技术,2010,18(3):1-6.
    [59]Sannino A, Pappada S, Madaghiele M, et al. Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide[J]. Polymer,2005,46: 11206-11212.
    [60]Pommet M, Juntaro J, Heng J Y. et al. Surface modification of natural fibers using bacteria:depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites[J]. Biomacromolecules,2008, 9(6),1643-1651.
    [61]Findl W, Keckes J, et al. Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose [J]. Composite Science and Technology,2004,64:2407-2413.
    [62]Yano H, Sugiyama J, et al. Optically transparent composites reinforced with networks of bacterial nanofibers. Advanced Materials,2005,17(2):153-155.
    [63]Nogi M, Handa K, Nakagaito A N, et al. Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix[J]. Applied Physics Letters,2005,87:24-31.
    [64]Mohd C, Naveed A, Nadia H, et al. Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery [J].Carbohydrate Polymers,2012,88:465-473.
    [65]Legnani C, Vilani C, Calil V L, et al. Bacterial cellulose membrane as flexible substrate for organic light emitting devices[J]. Thin Solid Films 2008,517: 1016-1020.
    [66]Luiz C S M, Ana L C, Philippe, C O, et al, Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose[J]. Materials Letters. 2009,63:797-799.
    [67]Hernane S B, Celina B, Thais R, et al. Self-supported silver nanoparticles containing bacterial cellulose membranes[J]. Materials Science and Engineering C 2008,28:515-518.
    [68]陈文彬,张秀菊,林志丹.银负载细菌纤维素纳米复合材料的制备及抗菌性能研究[J].材料导报B,2011,25(7):6-10.
    [69]孙东平,杨加志,李峻,等.载银细菌纤维素抗菌敷料的制备及其抗菌性能的研究[J].生物医学工程学杂志,2009,26(5):1034-1038.
    [70]张秀菊,陈文彬,林志丹.二氧化钛负载细菌纤维素纳米复合材料的抗菌性及细胞相容性的研究[J].化学世界,2011,11:641-644.
    [71]张秀菊,陈文彬,林志丹,等.细菌纤维素负载TiO2复合材料的制备及其在印染废水处理方面的应用[J].化工新型材料,2010,38(10):100-103.
    [72]Wan Y Z, Hong L, Jia S R, et al. Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites[J]. Composites Science and Technology,2006,66:1825-1832.
    [73]Cristian J. G, Fernando G T, Clara M G, et al. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications[J]. Acta Biomaterialia, 2009,5:1605-1615.
    [74]Kristen A Z, Jill M L,Kevin T S, et al. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications[J]. Materials Science and Engineering C,2011,31(1):43-49.
    [75]郑琪,奚延斐,陈艳梅,等.纳米羟基磷灰石/细菌纤维素复合材料及其降解物的细胞相容性评价[J].中国组织工程研究与临床康复,2010,14(3):405-409.
    [76]王玉林,张胜男,米耀荣,等.羟基磷灰石/细菌纤维素纳米复合材料的制备与热力学性能表征[J].纳米技术与精密工程,2009,7(2):95-101.
    [77]Shoichiro Y, Hideaki M, Megumi N, et al. Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles[J]. Cellulose,2008,15:111-120.
    [78]曾威,王俊影,董琳,等.基于细菌纤维素模板制备二氧化硅纳米管[J].天津科技大学学报,2011,26(1):31-35.
    [79]Sun D P, Yang J Z, Li J, et al. Novel Pd-Cu/bacterial cellulose nanofibers: Preparation and excellent performance in catalytic denitrification [J]. Applied Surface Science 2010,256:2241-2244.
    [80]Li X, Chen S Y, Hu W L. In site synthesis of CdS nanoparticles on bacterial cellulose nanofibers[J]. Carbohydrate Polymer 2009,76:509-512.
    [81]Yang J, Yu J, Fan J, et al. Biotemplated preparation of CdS nanoparticles /bacterial cellulose hybrid nanofibers for photocatalysis application[J]. Journal of Hazardous Materials,2011,189(1-2):377-383.
    [82]Patel U D, Suresh S. Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactor. Journal of Colloid Interface Science,2008,319:462-469.
    [83]Gustavo F P, Hernane S B, Younes M, et al. Bacterial celluloseelaponite clay nanocomposites[J]. Polymer,2011,52(1):157-163.
    [84]鲁敏,关晓辉,魏德洲.细菌纤维素负载纳米Fe3O4的制备及其吸附Cd2+的研究[J].安全与环境学报,2011,11(5):22-25.
    [85]Sourty E, Ryan D H, Marchessault R H. Characterization of magnetic membranes based o n bacterial and man-made cellulose [J]. Cellulose,1998,5(1): 5-17.
    [86]Sureshkumar M, Siswanto D Y, Lee C K. Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles[J]. Journal of Materials Chemistry,2010,20(33):6948-6955.
    [87]Olsson R T, AziziSamir M A S, Salazar-Alvarez G, et al. Making flexible magnetic aerogel and stiff magnetic nanopaper using cellulose nanofibrils as templates [J]. Nature Nanotechnology,2010,5(155):584-588.
    [88]Vitta S, Drillon M, Derory A. Magnetically responsive bacterial cellulose: Synthesis and magnetic studies [J]. Journal of Applied Physics,2010,108(5): 53905.
    [89]Okura S, Ogawa R. Preparation of bacterial cellulose containing N-acetylglucosamine residues[J]. Carbohydrate Polymers,1992,19:171-178.
    [90]Seifert M, Hesse S, Kabrelian V, et al. Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium [J]. Journal of Polymer Science Part A:Polymer Chemistry.2004,42(3):463-470.
    [91]Kim D Y, Nishiyama Y> Kuga S. Surface acetylation of bacterial cellulose [J]. Cellulose,2002,9(3):361-367;
    [92]Wang Y, Luo Q, Peng B, et al. A novel thermotropic liquid crystalline-benzoylated bacterial cellulose[J]. Carbohydrate Polymers,2008,74(4):875-879
    [93]SchlufiterK, Schmauder H P, Dorn S, et al. Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3, methylimidazolium chloride[J]. Macromolecular Rapid Communications,2006, 27(19):1670-1676.
    [94]Tokoh C, TakabeK J, Fujita M. Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose,2002,9(1):65-74;
    [95]Tokoh C, Takabe K, Fujita M, et al. Cellulose synthesized by Acetobacter xylinum in the presence of aeetyl glucomannan[J]. Cellulose,1998,5(4): 249-261
    [96]Browne E, Laborie M P G. Bioengineering bacterial cellulose/poly(ethylene oxide) nanoomposites[J]. Biomacromolecules,2008,9(12):3427-3428.
    [97]Serafica G, Mormino R, Bungay H. Inclusion of solid particles in bacterial cellulose[J]. Applied Microbiology and Biotechnology,2002,58(6):756-760
    [98]Yang Z, Chen S, Wang H, et al. Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture[J]. Carbohydrate Polymers,2008,74(3): 659-665
    [99]Nakagaito A N, Iwamoto S, Yano J. Bacterial cellulose:the ultimate nano-scalar cellulose morphology for the production of higll-strength composites[J].Applied Physics A:Materials Science & Processing,2005,80(1):93-97.
    [100]Yoon S H, Jinh J, Kook M C, et al. Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules,2006,7(4):1280-1284.
    [101]Liu S Q, Ee P L R, Ke C Y. et al Biodegradable poly(ethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery. Biomaterials,2009,30(8):1453-1461.
    [102]Welsh E R, Tirrell D A. Engineering the extracellular matrix:A novel approach to polymeric biomaterials. Ⅰ. Control of the physical properties of artificial protein matrices designed to support adhesion of vascular endothelial cells. Biomacromolecules,2000, 1(1):23-30.
    [103]Zhang Y Z, Venugopal J, Huang Z M et al. Crosslinking of the electrospun gelatin nanofibers, Polymer,2006,47(8):2911-2917.
    [104]McMillan R A, Conticello V P. Synthesis and characterization of elastin-mimetic protein gels for use in biomedical applications. Macromolecules 2000, 33(13):4809-4821.
    [105]Mithieux S M, Rasko J E J, Weiss A S. Synthetic elastin hydrogels derived from massive elastic assembilies of self-organized human protein monomers. Biomaterials,2004,25(20):4921-4927.
    [106]Muzzarelli R A A. Carboxymethylated chitins and chitosans. Carbohydrate 1988, Polymers 8(1):1-21.
    [107]Kosmala J D, Henthorn D B, Brannon-Peppas L. Preparation of interpenetrating networks of gelatin and dextran as degradable biomaterials. Biomaterials,2000, 21(20):2019-2123.
    [108]Hu Y, Zhou X J, Lu Y et al. Novel biodegradable hydrogels based on pachyman and its derivatives for drug delivery. International Journal of Pharmaceut,2009, 371(1-2):89-98.
    [109]Bigi A, Cojazzi G, Panzavolta S et al. Stabilization of gelatin films by crosslinking with genipin. Biomaterials,2002,23(24):4827-4832.
    [1]Kelly C M, Demerlis C C, Schoneker D R, Borzelleca J F. Subchronic toxicity study in rats and geno toxicity tests with polyvinyl alcohol [J]. Food and Chemical Toxicology,2003,41,719-727.
    [2]Lee J A, Kim M N. Isolation of new and potent poly(vinyl alcohol)-degrading strains and their degradation activity[J]. Polymer Degradation Stability,2003, 81(2):303-308.
    [3]Uhlich, Thomas, Ulbricht, Mathias, et al. ESR studies of chemically modified and photocrosslinked poly(vinyl alcohol) gels[J]. Journal of Applied Polymer Science,1995,58(9):1567-1576.
    [4]Rafat M, Rotenstein L S, You J O, Auguste D T, Dual functionalized PVA hydrogels that adhere endothelial cells synergistically[J]. Biomaterials,2012, 33(15):3880-3886.
    [5]Alves M H, Young C J, Bozzetto K, et al. Degradable click poly(vinyl alcohol) hydrogels:Characterization of degradation and cellular compatibility [J]. Biomedical Materials,2012,7(2):024106.
    [6]Artyukhov A A, Shtilman M I, Kuskov A N, Pashkova L I, et al. Polyvinyl alcohol cross-linked macroporous polymeric hydrogels:Structure formation and regularity investigation [J]. Journal of Non-Crystalline Solids,2011,357(2): 700-706.
    [7]Zhang L, Zhao J, Zhu J, He C, et al. Anisotropic tough poly(vinyl alcohol) hydrogels[J]. Soft Matter,2012,8(40):10439-10447.
    [8]Paradossi G, Cavalieri F, Chiessi E, Spagnoli C, et al. Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications[J]. Journal of Materials Science:Materials in Medicine,2003,14(8):687-691.
    [9]Hassan C M, Peppas N A. Structure and applications of PVA hydrogels produced by conventional crosslinking or by freezing/thawing methods[J]. Advances in Polymer Science,2000,153:37-65.
    [10]Cascone M G, Laus M, Ricci D, Sbarbati D G R. Evaluation of poly(vinyl alcohol) hydrogels as a component of hybrid artificial tissues[J]. Journal of Materials Science:Materials in Medicine,1995,6(2),71-75.
    [11]Yamada T, Karilkomi M, Kimura, T. Preparation of pH-responsive polyvinyl alcohol hydrogels and their drug-releasing behavior[J]. Kobunshi Ronbunshu, 2012,69(9):539-542.
    [12]Inoue A, Miyata T, Uragami T. Preparation of DNA-immobilized PVA membranes for optical resolution of amino acid and their permselectivity[J]. Polymer Preprints, Japan,2005,54(2):4086.
    [13]Georgieva N, Bryaskova R, Tzoneva. New Polyvinyl alcohol-based hybrid materials for biomedical application[J]. Matterials Letters,2012,88:19-22.
    [14]Thorat N D, Shinde K P, Pawar S H, Barick K C, et al. Polyvinyl alcohol:An efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application[J]. Dalton Transactions,2012,41(10):3060-3071.
    [15]Alves M H, Jensen B E B, Smith A A A, Zelikin A N. Poly(vinyl alcohol) physical hydrogels:New vista on a long serving biomaterial[J]. Macromolecular Bioscience,2011,11(10):1293-1313.
    [16]Shiomi T, Nishioka S, Tezuka Y, Imai K. Surface free energy of poly(vinyl alcohol) modified with alkyl groups[J]. Polymer,1985,26(3):429-432.
    [17]Moneva L I, Mladenow T. Study of gel formation in solutions of polyvinyl alcohol containing boric acid [J]. Colloid Journal of the USSR,1990,52(1): 132-135.
    [18]Mathew, Jainamma, Kodama, Makoto. Study of blood compatible polymers I. Modification of poly(vinyl alcohol). Polymer Journal,1992,24(1):31-41.
    [19]Yuzhong Z, Keda Z, Jiping X. Preferential sorption of modified PVA membrane in pervaporation[J]. Journal of Membrane Science,1993,80:297-308.
    [20]Li B, Cao X, Gu H, Jiang T. Preparation and properties of poly(vinyl alcohol) films modified by nanocrysatlline cellulose and citric acid[J]. Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering,2012, 28(8):178-182.
    [21]Suk H J, Lee D H, Ka J W, Kim J, et al. Modified polyvinyl alcohol layer with hydrophobic surface for the passivation of pentacene thin-film transistor[J]. Journal of Nanoscience and Nanothechnology,2012,12(4):3214-3218.
    [22]Zhang X, Jiang X, Zhang X, Ye D, et al. Modification of poly(vinyl alcohol) films by the addition of magnesium chloride hexahydrate[J]. Polymer Engineering and Science,2012,52(7):1565-1570.
    [23]Zhu G Q, Wang F G, Gao Q C, Liu Y Y. Poly(vinyl alcohol) membrane modified by polyurethane[J]. Polymer-Plastics Technology and Engineering,2012,51(4): 386-390.
    [24]Gaina C, Ursache O, Gaina V, Ionita D. Study on the chemical modification of poly(vinyl alcohol) with 4-maleimidophenyl isocyanate[J].Polymer-Plastics Technology and Engineering,2012,51(1):65-70.
    [25]Jin G, Yao Q Z, Dong L Q, Ma F. PEG-grafted PVA membrane and its blood compatibility[J]. Chemical Research in Chinese Universities,2011,27(6): 1078-1082.
    [26]Chirowodza H, Sanderson R D. Surface modification of poly(vinyl alcohol) fibers [J]. Macromolecular Materials and Engineering,2010,295(11):1009-1016.
    [27]Mujahid A, Afzal A, Ahmad M N, Farooq M U, et al. Structurally modified poly(vinyl alcohol) ionic composites as efficient humidity indicators[J]. Polymer Composites,2012,33(6):1018-1024.
    [28]Sui Z, Wei Y, Zhao X. Preparation of collagen/PVA composite fiber[J]. Advanced Materials Research,2011,331:61-64.
    [29]Yang S Y, Huang C Y. Plasma treatment for enhancing mechanical and thermal properties of biodegradable PVA/starch blends [J]. Journal of Applied Polymer Science,2008,109(4):2452-2459.
    [30]Kim D J, Park I S, Lee M H. Tensile strength of aqueous-based alumina tapes using a PVP-PVA-gelatin cobinder [J]. Ceramics International,2005,31(4), 577-581.
    [31]Granja P L, Barbosa M A, Pouysegu L, De Jeso B, Rouais F and Baquey C Cellulose phosphates as biomaterials. Mineralization of chemically modified regeneratged cellulose hydrogels[J]. Journal of Material Science,2001,36: 2163-2172.
    [32]Svensson A, Nicklasson E, Harrah T. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage [J]. Biomaterials,2005,26(4):419-431.
    [33]Shibazaki H., Kuga S, Fumihiko O, et al. Bacterial cellulose membrane as separation medium[J]. Journal of Applied Polymer Science,2003,50(6):965-969.
    [34]Watanabe K, Yamanka S. Effects of Oxygen tension in the gaseous phase on Production and physical properties of Bacterial cellulose formed under static culture conditions [J]. Bioscience Biotechnology Biochemistry,1995,59(1):65-68.
    [35]Helenius G, Backdahl H, Bodin A, et al. In vivo biocompatibility of bacterial cellulose [J]. Biomedical Materials Research Part A,2006,76A (2):431-438.
    [36]Svensson A, Nicklasson E, Harrah T, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage [J]. Biomaterials,2005,26:419-431.
    [37]Czaja W, Krystynowicz A, Bietlecki S, et al. Microbial cellulose-the natural power to heal wounds [J]. Biomaterials,2006,27:145-151.
    [38]Bodin A, Backdahl H, Risberg S, et al. Nano cellulose as a scaffold for tissue engineered blood vessels [J]. Tissue Engineering,2007,13(4):885-885.
    [39]Tajima K, Fujiwara M, Takai M. et al. Synthesis of bacterial cellulose composite by Acetobacter xylinim Ⅰ. Its mechanical strength and biodegradability [J]. Mokuzai Gakkaishi,1995, (41):749-757.
    [40]Eichhorn S J, Baillie C A, Zafeiropoulos N, Mwaikambo L Y. et al. Review current international research into cellulosic fibers and composites[J]. Journal of Materials Science 2001,36(9):2107-2131.
    [41]Guhados G, Wan W, Hutter J L. Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy [J]. Langmuir 2005,21 (14):6642-6646.
    [42]Madihally S V, Matthew H W T. Porous chitosan scaffolds for tissue engineering [J]. Biomaterials 1999,20(12):1133-1142.
    [43]Wang J H, Gao C, Zhang Y S, Wan Y Z. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial [J]. Materials Science and Engineering C 2010,30:214-218.
    [44]Millon L E, Wan W K. The Polyvinyl Alcohol-Bacterial Cellulose System As A New Nanocomposite for Biomedical Applications [J], Journal of Biomedicine Materials Research, Part B,2006,79:245-253.
    [45]张逸民,杜宝石.CR硫化胶结晶度的X衍射分峰计算法[J].橡胶工业,1998,45,524-527.
    [46]Millon L E, Oates, C J, Wan W K. Compression properties of polyvinyl alcohol-bacterial cellulose nanocomposite [J]. Journal of Biomedicine Materials Research Part B 2009,90(2):922-929.
    [47]上海第五印染厂.铜乙二胺法测定棉纤维的聚合度.测试方法与仪器[J],1976,6:28-32.
    [48]黄茂福.对铜乙二胺法测试棉纤维素聚合度一文的补充.测试方法与仪器[J],25-29.
    [49]Barthel S, Heinze T. Acylation and carbanilation of cellulose in ionic liquids. Green Chem.,2006,8,301-306.
    [50]李喆,颜志勇,陈仕艳,王华平.医用细菌纤维素的性能研究[J],生物医学工程学杂志,2012,29(1):164-169.
    [51]孙东平,杨加志.细菌纤维素功能材料及其工业应用.北京:科学出版社.2010.64.
    [52]Cao Y, Tan H M. Study on crystal structures of enzymehydrolyzed cellulosic materials by X-ray diffraction [J]. Enzyme Microb Technology,2005,36(2-3): 314-317
    [53]张洪玉,杨亮,陆大年.细菌纤维素基聚乙烯醇(BC/PVA)复合膜的制备及性能研究[J],印染助剂,2012,29(8):18-21.
    [54]Yang L, Zhang H Y, Yang Q, Lu D N. Bacterial cellulose-poly (vinyl alcohol) (BC/PVA) nanocomposite hydrogels prepared by chemical cross-linking [J]. Journal of Applied Polymer Science,2012,126(S1):E244-E250.
    [1]Rafat M, Rotenstein L S, You J O, Auguste D T, Dual functionalized PVA hydrogels that adhere endothelial cells synergistically[J]. Biomaterials,2012, 33(15):3880-3886.
    [2]Alves M H, Young C J, Bozzetto K, et al. Degradable click poly(vinyl alcohol) hydrogels:Characterization of degradation and cellular compatibility [J]. Biomedical Materials,2012,7(2):024106.
    [3]Artyukhov A A, Shtilman M I, Kuskov A N, Pashkova L I, et al. Polyvinyl alcohol cross-linked macroporous polymeric hydrogels:Structure formation and regularity inverstigation[J]. Journal of Non-Crystalline Solids,2011,357(2):700-706.
    [4]Zhang L, Zhao J, Zhu J, He C, et al. Anisotropic tough poly(vinyl alcohol) hydrogels[J]. Soft Matter,2012,8(40):10439-10447.
    [5]Helenius G, Backdahl H, Bodin A, et al. In vivo biocompatibility of bacterial cellulose [J]. Biomedical Materials Research Part A,2006,76A (2):431-438.
    [6]Svensson A, Nicklasson E, Harrah T, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage [J]. Biomaterials,2005,26:419-431.
    [7]Czaja W, Krystynowicz A, Bietlecki S, et al. Microbial cellulose-the natural power to heal wounds [J]. Biomaterials,2006,27:145-151.
    [8]Bodin A, Backdahl H, Risberg S, et al. Nano cellulose as a scaffold for tissue engineered blood vessels [J]. Tissue Engineering,2007,13(4):885-885.
    [9]Tajima K, Fujiwara M, Takai M. et al. Synthesis of bacterial cellulose composite by Acetobacter xylinim I. Its mechanical strength and biodegradability[J]. Mokuzai Gakkaishi,1995, (41):749-757.
    [10]Eichhorn S J; Baillie C A; Zafeiropoulos N et al. Current international research into cellulose fibres and composites [J]. Journal of Materials Science,2001, 36(9):2107-2131.
    [11]Guhados G.; Wan W; Hutter J L.Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy [J]. Langmuir 2005, 21(14):6642-6646.
    [12]Madihally S V; Matthew H W T. Porous chitosan scaffolds for tissue engineering [J]. Biomaterials,1999,20(12):1133-1142.
    [13]Liu S Q, Ee P L R, Ke C Y et al. Biodegradable polyethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery [J]. Biomaterials,2009,30(8):1453-1461.
    [14]Welsh E R, Tirrell D A. Engineering the extracellular matrix:A novel approach to polymeric biomaterials. I. Control of the physical properties of artificial protein matrices designed to support adhesion of vascular endothelial cells [J]. Biomacromolecules,2000, 1(1):23-30.
    [15]Zhang Y Z, Venugopal J, Huang Z M et al. Crosslinking of the electrospun gelatin nanofibers [J]. Polymer,2006,47(8):2911-2917.
    [16]McMillan R A, Conticello V P. Synthesis and characterization of elastin-mimetic protein gels for use in biomedical applications [J]. Macromolecules,2000,33(13): 4809-4821.
    [17]Mithieux S M, Rasko J E J, Weiss A S. Synthetic elastin hydrogels derived from massive elastic assembilies of self-organized human protein monomers [J]. Biomaterials,2004,25(20):4921-4927.
    [18]Muzzarelli R A A. Carboxymethylated chitins and chitosans [J]. Carbohydrate Polymers,1988,8(1):1-21.
    [19]Kosmala J D, Henthorn D B, Brannon-Peppas L.Preparation of interpenetrating networks of gelatin and dextran as degradable biomaterials [J]. Biomaterials, 2000,21(20):2019-2123.
    [20]Hu Y, Zhou X J, Lu Y et al. Novel biodegradable hydrogels based on pachyman and its derivatives for drug delivery [J]. International Journal of Pharmaceut 2009,371 (1-2):89-98.
    [21]Bigi A, Cojazzi G, Panzavolta S et al. Stabilization of gelatin films by crosslinking with genipin [J]. Biomaterials,2002,23(24):4827-4832.
    [22]Kwang-Je Kim, Soo-Bok Lee, Neung-Won Han. Effects of the Degree of Crosslinking on Properties of Poly (vinyl alcohol) Membranes [J]; Polymer Journal,1993,25(12):1295-1302.
    [1]Hu Y, Zhou X J, Lu Y, et al. Novel biodegradable hydrogels based on pachyman and its derivatives for drug delivery [J]. International Journal of Pharmaceutics, 2009,371:89-98.
    [2]Beneke C E, Viljien A M, Hamman J H. Polymeric plant-derived excipients in drug delivery[J]. Molecules,2009,14:2602-2620.
    [3]Chauhan G S, Chauhan S. Synthesis, characterization, and swelling studies of pH-and thermosensitive hydrogels for speciality applications[J]. Journal of Applied Polymer Science,2008,109:47-55.
    [4]Chiba M, Hanes J, Langer R. Degradation of porous poly(anhydride-coimide) microspheres and implication for controlled macromolecule delivery [J]. Biomaterials,1998,18:163-172.
    [5]Czaja W K, Young D J, Kawecki M, Brown R M. The future prospects of microbial cellulose in biomedical applications [J]. Biomacromolecules,2008,8: 1-12.
    [6]El-Naggar A W M, Abd Alla S G, Said H M. Temperature and pH responsive behavior of CMC/AAc hydrogels prepared by electron beam irradiation[J]. Material Chemistry and Physics,2006,95:158-163.
    [7]Gupta P, Vermani K, Garg S. Hydrogels:From controlled release to pH responsive drug delivery[J]. Drug Discovery Today,2002:7:569-579.
    [8]Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery [J]. Advanced Drug Delivery Reviews,2008,60:1638-1649.
    [9]Hennink W E, De Jong S J, Bos G W, et al.. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins[J]. International Journal of Pharmaceutics,2004,277: 99-104.
    [10]Malafaya P B, Silva G A, Reis R L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications[J]. Advanced Drug Delivery Reviews,2007,59:207-233.
    [11]Tatsuya O, Sachiko T, Kaoru O, Yoshinari B. Phosphorylated bacterial cellulose for adsorption of proteins [J]. Carbohydrate Polymers,2011,83:953-958.
    [12]Amin M C I M, Halib N, Ahmad I. Unique stimuli responsive characteristics of electron beam synthesized bacterial cellulose/acrylic acid composite[J]. Journal of Applied Polymer Science,2010,116:2920-2929.
    [13]Mohd C I M A, Naveed A, Nadia H, Ishak A. Synthesis and characterization of therm-and-pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery[J]. Carbonhydrate Polymers,2012,88:465-473.
    [14]Said H M, Abd Alla S G, El-Naggar A W M. Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation[J]. Reactive & Functional Polymers,2004,61:397-404.
    [15]Rafat M, Rotenstein L S, You J O, Auguste D T, Dual functionalized PVA hydrogels that adhere endothelial cells synergistically[J]. Biomaterials,2012, 33(15):3880-3886.
    [16]Alves M H, Young C J, Bozzetto K, et al. Degradable click poly(vinyl alcohol) hydrogels:Characterization of degradation and cellular compatibility [J]. Biomedical Materials,2012,7(2):024106.
    [17]Artyukhov A A, Shtilman M I, Kuskov A N, Pashkova L I, et al. Polyvinyl alcohol cross-linked macroporous polymeric hydrogels:Structure formation and regularity inverstigation[J]. Journal of Non-Crystalline Solids,2011,357(2): 700-706.
    [18]Zhang L, Zhao J, Zhu J, He C, et al. Anisotropic tough poly(vinyl alcohol) hydrogels[J]. Soft Matter,2012,8(40):10439-10447.
    [19]Helenius G, Backdahl H, Bodin A, et al. In vivo biocompatibility of bacterial cellulose [J]. Biomedical Materials Research Part A,2006,76A (2):431-438.
    [20]Svensson A, Nicklasson E, Harrah T, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage [J]. Biomaterials,2005,26:419-431.
    [21]Czaja W, Krystynowicz A, Bietlecki S, et al. Microbial cellulose-the natural power to heal wounds [J]. Biomaterials,2006,27:145-151.
    [22]Bodin A, Backdahl H, Risberg S, et al. Nano cellulose as a scaffold for tissue engineered blood vessels [J]. Tissue Engineering,2007,13(4):885-885.
    [23]Tajima K, Fujiwara M, Takai M. et al. Synthesis of bacterial cellulose composite by Acetobacter xylinim I. Its mechanical strength and biodegradability[J]. Mokuzai Gakkaishi,1995, (41):749-757.
    [24]Eichhorn S J; Baillie C A; Zafeiropoulos N et al. Current international research into cellulose fibres and composites [J]. Journal of Materials Science,2001, 36(9):2107-2131.
    [25]Guhados G.; Wan W; Hutter J L.Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy [J]. Langmuir 2005, 21(14):6642-6646.
    [26]Madihally S V; Matthew H W T. Porous chitosan scaffolds for tissue engineering [J]. Biomaterials,1999,20(12):1133-1142.
    [27]Wang J H; Gao C; Zhang Y S et al (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial[J]. Materials Science Engineering C,2010,30:214-218.
    [28]Wang Y, Luo Q, Peng B, Pei C. A novel thermotropic liquid crystalline benzoylated bacterial cellulose[J]. Carbohydrate Polymers,2008,74:875-879.
    [29]Tatsuya O, Sachiko T, Kaoru O, Yoshinari B.. Phosphorylated bacterial cellulose for adsorption of proteins[J]. Carbohydrate Polymers,2011,83: 953-958.
    [30]Chen L Y, Tian Zh G, Du Y M. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices[J]. Biomaterials,2004,25:3725-3732.
    [31]El-Sherbiny I M. Enhanced pH-responsive carrier system based on alginate and chemically modified carboxymethyl chitosan for oral delivery of protein drugs: preparation and in vitro assessment [J]. Carbohydrate Polymers,2010,80: 1125-1136.
    [32]Lin Y H, Liang H F, Chung C K, Chen M, Sung H W. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs[J]. Biomaterials,2005,26:2105-2113.
    [33]Pawar S N, Edgar K J. Alginate derivatization:a review of chemistry, properties and applications[J]. Biomaterials,2012,33:3279-3305.
    [34]Peng H L, Xiong H, Li J H, Chen L X, Zhao Q. Methoxy poly (ethyl-eneglycol)-grafted-chitosan based microcapsules:synthesis, characterization and properties as a potential hydrophilic wall material for stabilization and controlled release of algal oil[J]. Journal of Food Engineering, 2010,101:113-119.
    [35]Zhang Y, Chen J, Zhang Y D, Pan Y, Zhao J, Ren L, et al. A novel PEGy-lation of chitosan nanoparticles for gene delivery[J]. Biotechnology and Applied Biochemistry,2007,46(4):197-204.
    [1]Wang Y, Luo Q, Peng B, Pei C. A novel thermotropic liquid crystalline benzoylated bacterial cellulose[J]. Carbohydrate Polymers,2008,74:875-879.
    [2]Tatsuya O, Sachiko T, Kaoru O, Yoshinari B.. Phosphorylated bacterial cellulose for adsorption of proteins[J]. Carbohydrate Polymers,2011,83:953-958.
    [3]Chen L Y, Tian Zh G., Du Y M. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices[J]. Biomaterials,2004,25:3725-3732.
    [4]El-Sherbiny I M. Enhanced pH-responsive carrier system based on alginate and chemically modified carboxymethyl chitosan for oral delivery of protein drugs: preparation and in vitro assessment[J]. Carbohydrate Polymers,2010,80: 1125-1136.
    [5]Lin Y H, Liang H F, Chung C K, Chen M, Sung H W. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs[J]. Biomaterials,2005,26:2105-2113.
    [6]Pawar S N, Edgar K J. Alginate derivatization:a review of chemistry, properties and applications[J]. Biomaterials,2012,33:3279-3305.
    [7]Peng H L, Xiong H, Li J H, Chen L X, Zhao Q. Methoxy poly (ethyl-eneglycol)-grafted-chitosan based microcapsules:synthesis, characterization and properties as a potential hydrophilic wall material for stabilization and controlled release of algal oil[J]. Journal of Food Engineering, 2010,101:113-119.
    [8]Zhang Y, Chen J, Zhang Y D, Pan Y, Zhao J, Ren L, et al. A novel PEGy-lation of chitosan nanoparticles for gene delivery [J]. Biotechnology and Applied Biochemistry,2007,46(4):197-204.
    [9]Hu Y, Zhou X J, Lu Y, et al. Novel biodegradable hydrogels based on pachyman and its derivatives for drug delivery [J]. International Journal of Pharmaceutics, 2009,371:89-98.
    [10]Beneke C E, Viljien A M, Hamman J H. Polymeric plant-derived excipients in drug delivery[J]. Molecules,2009,14:2602-2620.
    [11]Chauhan G S, Chauhan S. Synthesis, characterization, and swelling studies of pH-and thermosensitive hydrogels for speciality applications[J]. Journal of Applied Polymer Science,2008,109:47-55.
    [12]Chiba M, Hanes J, Langer R. Degradation of porous poly(anhydride-coimide) microspheres and implication for controlled macromolecule delivery[J]. Biomaterials,1998,18:163-172.
    [13]Czaja W K, Young D J, Kawecki M, Brown R M. The future prospects of microbial cellulose in biomedical applications[J]. Biomacromolecules,2008,8: 1-12.
    [14]El-Naggar A W M, Abd Alla S G, Said H M. Temperature and pH responsive behavior of CMC/AAc hydrogels prepared by electron beam irradiation[J]. Material Chemistry and Physics,2006,95:158-163.
    [15]Gupta P, Vermani K, Garg S. Hydrogels:From controlled release to pH responsive drug delivery[J]. Drug Discovery Today,2002:7:569-579.
    [16]Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery [J]. Advanced Drug Delivery Reviews,2008,60:1638-1649.
    [17]Hennink W E, De Jong S J, Bos G W, et al.. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins[J]. International Journal of Pharmaceutics,2004,277: 99-104.
    [18]Malafaya P B, Silva G A, Reis R L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications[J]. Advanced Drug Delivery Reviews,2007,59:207-233.
    [19]Tatsuya O, Sachiko T, Kaoru O, Yoshinari B. Phosphorylated bacterial cellulose for adsorption of proteins[J]. Carbohydrate Polymers,2011,83:953-958.
    [20]Helenius G, Backdahl H, Bodin A, et al. In vivo biocompatibility of bacterial cellulose [J]. Biomedical Materials Research Part A,2006,76A (2):431-438.
    [21]Svensson A, Nicklasson E, Harrah T, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage [J]. Biomaterials,2005,26:419-431.
    [22]Czaja W, Krystynowicz A, Bietlecki S, et al. Microbial cellulose-the natural power to heal wounds [J]. Biomaterials,2006,27:145-151.
    [23]Bodin A, Backdahl H, Risberg S, et al. Nano cellulose as a scaffold for tissue engineered blood vessels [J]. Tissue Engineering,2007,13(4):885-885.
    [24]Tajima K, Fujiwara M, Takai M. et al. Synthesis of bacterial cellulose composite by Acetobacter xylinim I. Its mechanical strength and biodegradability[J]. Mokuzai Gakkaishi,1995, (41):749-757.
    [25]Yang Q, Cheng G, Zhang Z. Synthesis of polyvinyl formal sponger for wound care dressing application [J]. Advanced Materials Research,2011,152-153: 1650-1659.
    [26]Chen Huihuang, Chen Lichen, Huang Huangchan, Lin Shihbin. In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus [J].Cellulose,2011,18:1573-1583.
    [27]Kerstin schlufter, Thomas heinze. Carboxymethylation of Bacterial Cellulose [J]. Macromol. Symp.2010,294-11,117-124.
    [28]Rike yudianti, Lucia indrarti. Effect of water soluble polymer on structure and mechanical properties of bacterial cellulose composite[J] Journal of Applied Polymer Science,2008,8(1):177-180.
    [29]Cao Y, Tan H M. Study on crystal structures of enzymehydrolyzed cellulosic materials by X-ray diffraction [J]. Enzyme Microb Technology,2005,36(2-3): 314-317
    [30]王碧,李建凤,邱艳.明胶-聚乙烯醇-羧甲基纤维素三元复合肥料缓释膜及其性能研究[J].皮革科学与工程,2011,21(5):18-24.
    [31]Wang Bi, Jia Dong Ying, Ruan Shang Quan, et al. Structure and properties of collagen-konjac glucommanna sodium alginate blend films[J]. Journal of Applied Polymer Science,2007,106(1):327-332.
    [1]Huo Xiaoping, Wang Fang, Deng Deng, Wang Lei. Effect of montmorillonite and acrylic acid on the superabsorbent polymer based on xanthan[J]. Advanced Materials Research,2012,554-556:200-203.
    [2]Filiz Altay, Sundaram Gunasekaran. Mechanical spectra and calorimetric evaluation of gelatine-xanthan gum systems with high levels of co-solutes in the glassy state[J]. Food Hydrocolloids,2013,30:531-540.
    [3]Altay F, Gunasekaran F. Rheological evaluation of gelatinexanthan gum system with high levels of co-solutes in the rubber-to-glass transition region[J].2012, 28:141-150.
    [4]Haiping Li, Renfu Chen, Xiaomei Lu, Wanguo Hou. Rheological properties of aqueous solution containing xanthan gum and cationic cellulose JR400[J]. Carbohydrate Polymers,2012,90:1330-1336.
    [5]Achi O K, Okolo N I. The chemical composition and some physical properties of a water-soluble gum from Prosopis africana seeds[J]. International Journal of Food Science & Technology,2004,39:431-436.
    [6]Argin-Soysal S, Kofinas P, Lo Y M. Effect of complexation conditions on xanthan-chitosan polyelectrolyte complex gels[J]. Food Hydrocolloids,2009,23, 202-209.
    [7]Chaisawang M, Suphantharika M. Effects of guar gum and xanthan gum additions on physical and rheological properties of cationic tapioca starch. Carbohydrate Polymers[J],2005,61:288-295.
    [8]Krstonosic V, Dokic L, Milanovic J. Micellar properties of OSA starch and interaction with xanthan gum in aqueous solution[J]. Food Hydrocolloids,2011, 25:361-367.
    [9]Li H, Hou W, Li X. Interaction between xanthan gum and cationic cellulose JR400 in aqueous solution[J]. Carbohydrate Polymers,2012:89,24-30.
    [10]Lii C Y, Liaw S C, Lai V M F, Tomasik P. Xanthan gum-gelatin complexes, European Polymer Journal[J],2002,38:1377-1381.
    [11]Shen D, Wan C, Gao S. Molecular weight effects on gelation and rheological properties of konjac glucomannan-xanthan mixtures[J]. Journal of Polymer Science Part B:Polymer Physics,2010,48:313-321.
    [12]Hu Y, Zhou X J, Lu Y, et al. Novel biodegradable hydrogels based on pachyman and its derivatives for drug delivery [J]. International Journal of Pharmaceutics, 2009,371:89-98.
    [13]Beneke C E, Viljien A M, Hamman J H. Polymeric plant-derived excipients in drug delivery [J]. Molecules,2009,14:2602-2620.
    [14]Chauhan G S, Chauhan S. Synthesis, characterization, and swelling studies of pH-and thermosensitive hydrogels for speciality applications[J]. Journal of Applied Polymer Science,2008,109:47-55.
    [15]Chiba M, Hanes J, Langer R. Degradation of porous poly(anhydride-coimide) microspheres and implication for controlled macromolecule delivery [J]. Biomaterials,1998,18:163-172.
    [16]Czaja W K, Young D J, Kawecki M, Brown R M. The future prospects of microbial cellulose in biomedical applications [J]. Biomacromolecules,2008,8: 1-12.
    [17]El-Naggar A W M, Abd Alla S G, Said H M. Temperature and pH responsive behavior of CMC/AAc hydrogels prepared by electron beam irradiation [J]. Material Chemistry and Physics,2006,95:158-163.
    [18]Gupta P, Vermani K, Garg S. Hydrogels:From controlled release to pH responsive drug delivery[J]. Drug Discovery Today,2002:7:569-579.
    [19]Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery [J]. Advanced Drug Delivery Reviews,2008,60:1638-1649.
    [20]Hennink W E, De Jong S J, Bos G W, et al.. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins[J]. International Journal of Pharmaceutics,2004,277: 99-104.
    [21]Malafaya P B, Silva G A, Reis R L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications[J] Advanced Drug Delivery Reviews,2007,59:207-233.
    [22]Tatsuya O, Sachiko T, Kaoru O, Yoshinari B. Phosphorylated bacterial cellulose for adsorption of proteins[J]. Carbohydrate Polymers,2011,83:953-958.
    [23]Cao Y, Tan H M. Study on crystal structures of enzymehydrolyzed cellulosic materials by X-ray diffraction [J]. Enzyme Microb Technology,2005,36(2-3): 314-317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700