B型流感病毒核酸疫苗和CpG基序免疫增强作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文介绍了B型流感病毒DNA疫苗以及CpG基序作为佐剂对其免疫增强效应的研究。
     血凝素(Hemagglutinin,HA)和神经氨酸酶(neuraminidase,NA)是B型流感病毒两种最重要的抗原蛋白,本文首先探讨了一次接种B型流感病毒(B/Ibaraki/2/85)DNA疫苗对BALB/c小鼠的免疫保护作用。分别采用不同剂量的HA DNA疫苗(100μg、50μg、10μg、5μg、1μg),NA DNA疫苗(50μg、10μg、5μg、1μg),以及HA和NA联合DNA疫苗(10μg、5μg、1μg),一次接种BALB/c小鼠。接种后四周,用致死量流感病毒(B/Ibaraki/2/85)攻击小鼠,病毒攻击后三天,取血清检测抗-HA和抗-NA抗体。同时测定小鼠肺部病毒含量,观察记录小鼠存活率和体重丢失情况。结果发现:100μg HA DNA疫苗,10μg NA DNA疫苗以及5μg联合DNA疫苗(HA+NA)接种的小鼠全部存活。结合小鼠肺部病毒含量和体重变化数据,得出以下结论:一次接种DNA疫苗可以为小鼠提供完全有效的保护,联合DNA疫苗免疫保护作用强于单一DNA疫苗,NA DNA疫苗免疫保护作用略强于HA DNA疫苗。
     为了探讨CpG基序作为免疫佐剂的效应,本研究构建了包含CpG基序的质粒:pcD3d(+CpG)HA和不包含CpG基序的质粒pcD3d(-)HA。并采用不同的剂量,不同的免疫次数(一次或两次),分别免疫BALB/c小鼠,初免后四周(或加强免疫后一周),用致死量流感病毒(B/Ibaraki/2/85)攻击小鼠,病毒攻击后三天,取血清检测抗-HA IgG抗体,并观察小鼠存活率和体重变化情况。结果显示,含CpG基序的DNA疫苗能够进一步提高抗体水平,改善小鼠病毒攻击后的临床体症。实验表明CpG基序能有效提高小鼠抗B型流感病毒攻击的能力。
In this study, various doses of HA DNA and NA DNA were inoculated alone or as a mixture into mice once by electroporation. Four weeks after immunization, the mice were challenged with a lethal dose of influenza B virus. The induced serum IgG antibody levels and the survival rates of mice were measured to evaluate the immunity efficacy of the DNA vaccines. The results showed that a single dose of 100μg HA DNA or 10μg NA DNA provided 100% protection in mice against the lethal challenge. Moreover, when the two plasmid DNAs were coinoculated into mice, a single dose of 5μg of tne two plasmids each provided 100% protection. These indicate that a single immunization of HA DNA, NA DNA or a mixture of HA DNA and NA DNA would be an efficient method in preventing influenza B virus infection.To investigate the immune response induced by one or two times of inoculation with influenza B virus HA DNA vaccine and the adjuvant effect of CpG motif, BALB/c mice were immunized i.m. by electroporation once or twice (at a 3- week interval ) with plasmid HA DNA at different doses. Four weeks after the first inoculation (or one week after the second inoculation), the mice were challenged with a lethal dose of influenza virus (B/Ibaraki/2/85). The experiments showed that: 1) mice immunized with a single dose of 100μg HA DNA all
引文
[1] 陈则对人类流感大流行的反思[J].实验动物科学与管理,2004,21 (2) :46-7.
    [2] Perue ML, Suarez DL, et al. Structural features of the avian influenza virus hemagglutinin that influence virulence [J]. Vet Micro-biology, 2000, 74 (1) : 77-86.
    [3] Yao Yongxiu, Louise J M, McCauley J W, et al. Sequences in Influenza A Virus PB_2 Protein that Determine Productive Infection for an Avian Influenza Virus in Mouse and Human Cell Lines [J]. J Virol, 2001, 75 (11) : 5410-15.
    [4] MOUNTS AW, KWON GH, IZURIETA HS, et al. Case control study of risk factors for avian influenza A(H5N1)disease Hong Kong, 1997 [J]. J Infect D, 1999, 180 (2) : 505-8.
    [5] 屠宇平.美国流感流行[J].疾病检测,2004,19:157-8.
    [6] Kim HW, Brandt CD, Arrobio JO, et al. Chanock RM, Parrott RH. Influenza A and B virus infection in infants and young children during the years 1957~1976 [J]. Am J Epidemiol, 1979, 109: 464~79.
    [7] 李玉琴.儿童感染流感病毒的症状 [J].中华实验与临床病毒学杂志,1995,(5):381-4.
    [8] Hu JJ, Kao CL, Lee PI, Clinical features of influenza A and B in children and association with myositis [J]. J Microbiol Immunol Infect. 2004, 37 (2) : 95-8
    [9] Lu KC, Chen PY, Huang FL, et al Influenza B virus associated pneumonia: report of one case [J]. Acta Paediatr Taiwan. 2004, 45 (4) : 242-5.
    [10] Arostegi Kareaga N, Montes M, Clinical characteristics of children hospitalized for influenza virus infection [J]. An Pediatr (Barc), 2005, 62 (1) : 5-12.
    [11] Brydon EW, Smith H, Sweet C. Influenza A virus-induced apoptosis in bronchiolar epithelial (NCI-H292) cells limits pro-inflammatory cytokine release [J]. J Gen Virol, 2003, 84 (Pt 9) : 2389-400.
    [12] Agyeman P, Duppenthaler A, Heininger U, et al. Influenza-associated myositis in children [J]. Infection, 2004, 32 (4) : 199-203.
    [13] 陈继明.乙型流行性感冒病毒两大谱系的起源及其演变特征[J].病毒学报,2001,17:322-7.
    [14] Hall CE, Cooney MK, Fox J P. The Seattle virus watch. Ⅳ. Comparative epiderniologic observations of infections with influenza A and B viruses, 1965~1969, in families with Young children [J]. Am J Epidemiol, 1973, 98: 365-80.
    [15] 侯云德,分子病毒学,人民卫生出版社,1989:313-29
    [16] OSTERHAUS A D, RIMMEL ZWAAN G F, MART INA B E, et al Influenza B virus in seals [J]. Science, 2000, 288 (5468) : 1051-3.
    [17] Ohishi K, Ninomiya A, Kida H, et al. Serological evidence of transmission of human influenza A and B viruses to Caspian seals (Phoca caspica) [J]. Microbiol Immunol, 2002, 46 (9) : 639-44.
    [18] 李文,王少军,傅继华,严敏.流感病毒国际代表株B/山东/07/97的抗原特点分析[J].预防医学文献信息,2001,7(1):10-13.
    [19] 张烨,温乐英,王敏.2001年中国新分离维多利亚系乙型流感病毒的抗原性及基因特性分析[J].中华实验和临床病毒学杂志,2003,17:15-19.
    [20] Kanegae Y, Sugita S, Endo A, et al. Evolutionary pattern of the haemagglutinin gene of influenza B viruses isolated in Japan: cocirculating lineage in the same epidemic season [J]. J Virol, 1990, 64: 2860-5.
    [21] Shaw MW, Xu X, Li Y, et al. Reappearance and global spread of variants of influenza B/Victoria/2/87 lineage viruses in the 2000-2001 and 2001-2002 seasons [J]. Virology. 2002, 303 (1) : 1-8.
    [22] Mc Cullers J A, Wang G C, He S. Q, et al. Reassortment and insertion deletion are strategies for the evolution of influenza B viruses in nature [J]. J Virol, 1999, 73: 7343-8.
    [23] 陈继明,郭元吉,郭俊峰.1999年~2000年我国乙型流感病毒HA_1基因演变特征 [J].中华实验与临床病毒学杂志,2002,16(3):278-81.
    [24] Berton MT, Webster RG. . The antigenic structure of the influenza B virus hemagglutinin: operational and topological mapping with monoclonal antibodies [J]. Virology, 1985, 143 (2) : 583-94.
    [25] Krystal M, Elliott R, Benz E W, et al Evolution of influenza A and B viruses: conservation of structural features in the hemagglutinin genes [J]. Proc Natl Acad Sci USA, 1982, 79: 4800-4.
    [26] Rota PA, Hemphill M L, Whistler, et al. Antigenic and genetic characterization of the haemagglutininsof recent
    ??cocirculating strains of influenza B virus [J]. J. Gen. Virol, 1992, 73:2737-42.
    [27] Jin H, Leser GP, Zhang J, et al Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape [J]. EMBO J, 1997, 16(6): 1236-47.
    [28] A S Gambaryan, AB Tuzikov, VE Piskarev, et al. Specification of receptor- binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human HI and H3 influenza A and influenza B viruses share a common high binding affinity for 6'-sialyl(N-acetyllactosamine) [J]. Virology, 1997, 232: 345-50
    [29] Deroo T, Jou WM, Fiers W. Recombinant neuraminidase vaccine protects against lethal influenza [J]. Vaccine, 1996, 14(6): 561-69.
    [30] Masato Hattal, Yoshihiro Kawaoka. The NB Protein of Influenza B Virus Is Not Necessary for Virus Replication In Vitro [J]. J Virol, 2003, 77(10): 6050-4.
    [31] Brassard DL, Leser GP, Lamb RA. Influenza B virus NB glycoprotein is a component of the virion [J]. Virology, 1996, 220(2):350-60.
    [32] Masaki Imai,1 Shinji Watanabe,2, et al. Influenza B Virus BM2 Protein Is a Crucial Component for Incorporation of Viral Ribonucleoprotein Complex into Virions during Virus Assembly [J]. J Virol. 2004, 78(20): 1 1 007-0 1 5.
    [33] . Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein [J].
     EMBO J, 2001, 20 (3) : 362-71.
    [34] Centers for Disease Control and Prevention. Prevention and control of influenza: Recommendations of the Advisory Committee on Immunization Practices (ACIP). [J]. Morbidity and Mortality Weekly Report, 1999, 48: 1-28.
    [35] VAlymova S, Kodihalli E A, A Govorkova, et al. Immunogenicity and Protective Efficacy in Mice of Influenza B Virus Vaccines Grown in Mammalian Cells or Embryonated Chicken Eggs [J]. J Virol, 1998, 72 (5) : 4472-7.
    [36] 戚凤春,盛军流感疫苗研究进展[J].中国生物制品学杂志,2004,7 (3):190-2.
    [37] Wolff JA, Dowty ME, Jiao S, et al. Expression of naked plasmids by cultured myotubes and entry of plasmids into T tubules and caveolae of mammalian skeletal muscle [J]. J Cell Sci, 1992, 103: 1249-59,
    [38] Williams RS, Johnston SA, Riedy M, et al. Introduction of foreign genes into tissues of living mice by DNA-coated micro-projectiles [J]. Proc Natl Acad Sci U S A, 1991, 88 (7) : 2726-30.
    [39] Tang DC, DeVit M, Johnston SA, et al. Genetic immunization is a simple method for eliciting an immune response [J]. Nature, 1992, 356 (6365) : 152-4.
    [40] Umer J B, Donelly J J, Parker S E, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein [J]. Science, 1993, 259 (5102) : 1745-49.
    [41] Pachuk CJ, Meeallusd E. DNA vaccine challenge in delivery [J]. Curr OpinMol Her, 2000, 2 (2) : 188-98.
    [42] Ada G, Ramshaw. DNA vaccination [J]. Expert Opin Emerg Drugs, 2003, 8 (1) : 27-35.
    [43] 陈则,方芳.A、B、C三型流感病毒病毒学、流行病学、临床特征和流感疫苗[J].生命科学研究,2000,4:189-96.
    [44] 黄文林 陈则 分子病毒学 人民卫生出版社,2001:283-5
    [45] Konishi E, Yamaoka M, Khin-Sane-Win, et al. Induction of protective immunity against Japanese encephalitis in mice by immunization with a plasmid encoding Japanese encephalitis virus pre-membrane and envelope genes [J]. J Virol, 1998, 72: 4925-30.
    [46] Bahloul C, Ahmed SB, B'chir BI, et al. Post-exposure therapy in mice against experimental rabies: a single injection of DNA vaccine is as effective as five injections of cell culture-derived vaccine [J]. Vaccine, 2003, 22: 177-84.
    [47] Lodmell DL, Parnell MJ, Weyhrich JT, et al. Canine rabies DNA vaccination: a single-dose intradermal injection into ear pinnae elicits elevated and persistent levels of neutralizing antibody [J]. Vaccine, 2003, 21: 3998-4002.
    [48] Chen Z, Kadowaki S, Hagiwara Y, et al. Protection against influenza B virus infection by immunization with DNA vaccines [J]. Vaccine, 2001, 19: 1446-55.
    [49] Aihara H, Miyazaki J. Gene transfer into muscle by electroporation in in vivo [J]. Nat Biotechnol, 1998, 16: 867-70.
    [50] Potier M, Mameli L, Belisle M, et al. Fluorometric assay of neuraminidase with a sodium 4-methylumbelliferyl-alpha-D-N-acetylneuraminate substrate [J]. Anal Biochem, 1979, 94: 287-96.
    [51] 卢圣栋主编.现代分子生物学技术,高等教育出版社,1993,243-541.
    [52] 俞树荣主编.微生物和微生物学检验,人民卫生出版社,1997:357-71.
    [53] 郭元吉,程小雯.流行性感冒病毒及其实验技术.中国三峡出版社,1997:21-106.
    [54] Bot A, Bot S, Bona C. Enhanced protection against influenza virus of mice immunized as newborns with a mixture of plasmids expressing hemagglutinin and nucleoprotein [J]. Vaccine, 1998, 16 (17) : 1675-82.
    [55] Bot A, Bot S, Garcia-Sastre A, et al. Protective cellular immunity against influenza virus induced by plasmid inoculation of newborn mice [J]. Dev Immunol, 1998, 5 (3) : 197-210.
    [56] Bot A, Antohi S, Bot S, et al. Induction of humoral and cellular immunity against influenza virus by immunization of newborn mice with a plasmid bearing a hemagglutinin gene [J]. Int Immunol, 1997, 9 (11) : 1641-50.
    [57] Chen Z, Yoshikawa T, Kadowaki S, et al. Protection and antibody responses in different strains of mouse immunized with plasmid DNAs encoding influenza virus haemagglutinin, neuraminidase and nucleoprotein [J]. J Gen Virol, 1999, 80: 2559-64.
    [58] Chen Z, Sahashi Y, Matsuo K, et al. Comparison of the ability of viral protein-expressing plasmid DNAs to protect against influenza [J]. Vaccine, 1998, 16 (16) : 1544-9.
    [59] [59] Chen Z, Kadowaki S, Hagiwara Y, et al. Cross-protection against a lethal influenza virus infection by DNA vaccine to neuraminidase [J]. Vaccine, 2000, 18(28): 3214-22.
    [60] Johansson BE, et al. Immunization with influenza A virus hemagglutinin and neuraminidase produced in recombinant baculovirus results in a balanced and broadened immune response superior to conventional vaccine [J]. Vaccine, 1999, 17: 2073-80.
    [61] Puzelli S, Frezza F, Fabiani C, et al. Changes in the hemagglutinins and neuraminidases of human influenza B viruses isolated in Italy during the 2001-02, 2002-03, and 2003-04 seasons[J]. J Med Virol, 2004, 74(4):629-40.
    [62] Martinez C, del Rio L, Portela A, et al. Evolution of the influenza virus neuraminidase gene during drift of the N2 subtype [J]. Virology, 1983, 130(2): 539-45.
    [63] Hideo G, Yoshihiro K. Role of plasminogen-binding neuraminidase in influenza pathogenicity [J]. Infernational Congress Series, 2001, 1219: 591-4.
    [64] Martinet W, Saelens X, Deroo T, et al. Contreras R, Min Jou W, Fiers W. Protection of mice against a lethal influenza challenge by immunization with yeast-derived recombinan influenza neuraminidase [J]. Eur J Biochem, 1997, 247(1):332-8.
    [65] Morris S, Kelley C, Howard A, et al. The immunogenicity of single and combination DNA vaccines against tuberculosis [J]. Vaccine, 2000, 18(20): 2155-63.
    [66] Shantha Kodihallia, Darwyn L, et al. Kobasa Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines [J]. vaccine, 2000, 18: 2592-9.
    [67] Johansson BE, Kilbourne ED, et al. Immunization with dissociated neuraminidase, matrix, and nucleoproteins from influenza A virus eliminates cognate help and antigenic competition [J]. Virology, 1996, 225(1): 136-44.
    [68] Kamath AT, Feng C G, Macdonald M, et al. Differential protective efficacy of DNA vaccines expressing secreted proteins of Mycobacterium tuberculosis [J]. Infect Immun, 1999, 67(4): 1702-7.
    [69] Chen Z, Matsuo K, Asanuma H, et al. Enhanced protection against a lethal influenza virus challenge by immunization with both hemagglutinin and neuraminidase-expressing DNAs [J]. Vaccine, 1999, 17(7-8): 653-9.
    [70] Hedstrom RC, Doolan DL, Wang R, et al. The development of a multivalent DNA vaccine for malaria [J]. Springer Semin Immunopathol, 1997, (2): 147-59.
    [71] Morello CS, Ye M, Spector DH. Development of a vaccine against murine cytomegalovirus (MCMV), consisting of plasmid DNA and formalin-inactivated MCMV, that provides long-term, complete protection against viral replication. [J] J Virol, 2002, 76(10): 4822-35.
    [72] Krieg AM, YiAK, Schorr J, et al. The role of CpG denucleotides in DNA vaccine [J]. Trends Microbiol, 1998, 6(1): 23-7.
    [73] Agrawal S, Kandimalla ER. Modulation of Toll-like
    ??Receptor 9 Responses through Synthetic Immunostimulatory Motifs of DNA [J]. Ann N Y Acad Sci, 2003, 1002:30-42.
    [74] ZK Ballas, WL Rasmussen, AM Krieg, et al. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA [J]. The Journal of Immunology, 157 (5): 1840-5.
    [75] Hemmi, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA [J]. Nature, 2000, 408: 740-5.
    [76] Ballas ZK, Rasmussen WL, Krieg AM, et al. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA [J]. J Immunol, 1996, 157: 1840-5.
    [77] Scheule RK. The role of CpG motifs in immunostimulation and gene therapy [J]. Adv Drug Deliv Rev, 2000, 44:119-34.
    [78] Lipford GB, Bauer M, Blank C, et al. CpG-containlng synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants [J]. Eur J Immunol, 1997, 27: 2340-44.
    [79] Brazolot Millan CL, Weeratna R, Krieg AM, et al. CpG DNA can induce strong Thl humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice [J]. Proc Natl Acad Sci USA, 1998, 95: 15553-8.
    [80] Kjima Y, Xin KQ, Ooki T, et al. Adjuvant effect of multi-CpG motifs on an HIV-1 DNA vaccine [J]. Vaccine, 2002, 20: 2857-65.
    [81] Yi AK, Chace JH, Cowdery JS, et al. IFN-gamma promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700