核酸疫苗免疫机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA疫苗又称核酸疫苗、基因疫苗,是近年来随着基因治疗技术的发展而产生的一种新型疫苗。由于DNA疫苗本身既有类似减毒活疫苗的优点,又有灭活疫苗或亚单位疫苗的安全性,不仅具有预防疾病的作用,同时还具有治疗疾病的作用。所以治疗性核酸疫苗成为近些年研究的重点,并迅速地从治疗传染性疾病的研究扩展到非传染性疾病的研究。感染疾病预防性和肿瘤治疗性DNA疫苗的研究发展很快,而且有相当数量的临床实验正在进行。尽管DNA疫苗得到了快速而广泛的发展,但其总的免疫效果还不尽如人意。有的DNA疫苗在小动物实验中免疫效果很好,在大动物实验中效果欠佳;有的DNA疫苗在动物实验中能起到很好的免疫保护作用,但在临床试验中却不能保护受试者抵抗病原体的攻击。为了能解决DNA疫苗应用中的这些问题,新的用于增强DNA疫苗的研究策略层出不穷,但任何策略都是建立在对疫苗作用机制深刻认识的基础上,而关于DNA疫苗的免疫机制目前尚不十分清楚。为了深入研究DNA疫苗的免疫机制,我们选择了两种疾病展开研究,一种是阿尔茨海默氏病(AD),另一种是乙肝病毒(HBV)相关的原发性肝细胞癌(HCC)。
     阿尔茨海默病(Alzheimer's disease,AD)是一种神经元退行性变疾病,是引起老年期痴呆最主要的原因。众所周知β淀粉样蛋白(Aβ)在脑内沉积形成的老年斑(senile plaque,SP)是引起AD发病最主要的因素,减少Aβ淀粉样蛋白沉积的形成,是预防和治疗AD的一种新措施。继Schenk等人成功的用Aβ疫苗对PDAPP小鼠进行免疫治疗之后,一些动物实验均发现该疫苗可以诱导产生有效治疗浓度的抗Aβ抗体,使Aβ沉淀减少,并改善动物的认知行为学表现。但在临床Ⅱ期试验中出现了中枢神经系统炎症反应和卒中,这些不良反应促使人们对Aβ疫苗的应用和机制更深入地去研究。也使我们研制具有Aβ免疫原性而又不具有其毒副作用的AβDNA疫苗势在必行。我们前期工作中采用Aβ表位疫苗和Aβ全长DNA疫苗免疫小鼠,不与任何佐剂联用时,Aβ全长DNA疫苗与其中一组Aβ表位疫苗能诱发有效的体液免疫,但抗体滴度不理想。考虑到DNA疫苗所诱导的免疫反应强度与基因表达效率(即每个被转染的细胞内抗原基因的表达量)呈正相关,可以尝试通过改变胞内定位,使之分泌到胞外来改变目的蛋白的免疫原性。本实验选用了TPA信号肽序列与Aβ_(42)融合表达,体内实验证明,含有TPA信号肽序列与Aβ_(42)融合基因的DNA疫苗组所诱发的特异性抗Aβ抗体滴度高于仅含Aβ_(42)全长基因DNA疫苗组。在细胞内表达Aβ/GFP和TPA-Aβ/GFP融合蛋白,发现TPA-Aβ在细胞质和胞核中均匀表达并于72h少量集中分布于细胞膜上,提示我们目的蛋白正处于分泌表达状态。进一步实验证实了在融合基因TPA-Aβ/GFP转染细胞的培养上清液中发现存在目的蛋白。上述实验结果提示我们,利用TPA信号肽成功地将Aβ引导穿过细胞膜,达到分泌表达,从而增强抗原递呈细胞的摄取,提高机体免疫系统免疫活性,产生较高滴度的抗体水平。为我们下一步改造Aβ表位疫苗,使之具有更强的免疫原性,诱导机体产生更强的体液免疫,进一步探讨利用DNA疫苗主动免疫清除老年斑的作用机制奠定了基础。
     乙型肝炎病毒(hepatitis B virus,HBV)感染和原发性肝细胞癌(hepatocellularcarcinoma,HCC)相关率高达80%,HBV感染者发生HCC的危险性是无感染者的200余倍。HBV是HCC的重要诱因这一结论已被科学界广泛接受,但其具体机制尚不明确。近年来,随着对HBx生物学功能研究的深入,人们发现HBx在此过程中发挥了重要作用。X基因是HBV基因组最小的开放读码框,它编码的X蛋白含154个氨基酸,分子量约为16.5 kD。HBx是一种多功能的病毒调节因子,大量研究资料显示HBx参与基因转录,DNA修复,活化多种信号传导通路。这些效应以及它们在细胞凋亡和增殖中综合作用的结果,可以初步解释HBV导致HCC的机制。但HBx促癌变的确切机制至今尚未阐明,可能通过多种途径起作用,十分复杂,一些研究结果又互相矛盾,因此,有必要对其分子机制进行深入研究,在此基础上才有可能构建相应的治疗性DNA疫苗防治这种与病毒相关的肿瘤。X蛋白不能同双链DNA直接结合,而是通过细胞内蛋白间的相互作用启动一系列磷酸化和去磷酸化过程,从而上调众多基因的表达。为了寻找并鉴定X蛋白直接或间接作用的蛋白,进一步阐明其机理,本实验以成人肝癌细胞HepG2为研究对象,将重组质粒pEGFP-N1-X瞬时转染入细胞中,利用蛋白质组学的核心技术寻找并鉴定了实验组和对照组的8个差异表达蛋白。其中,上调表达的蛋白STRAP、nm23-H1和下调表达蛋白PIMT与PI3K信号通路相关。通过我们进一步的实验发现HBx下调PIMT表达是通过上调STRAP、nm23-H1激活PI3K信号通路实现的。这些结果为我们进一步了解受HBx影响的纷繁复杂的信号通路网络提供一定的帮助,而HBx介导的PIMT低水平表达将为阐明HCC发生发展分子机制提供线索,并为进一步治疗HCC提供靶点。
Deoxyribonucleic acid vaccine(DNA vaccine),which is also named nucleic acid vaccine or gene vaccine,is a novel vaccine developing with gene therapy technology in recent years.DNA vaccine not only has advantages of live attenuated vaccine,but also has safety of inactivated vaccine or subunit vaccine,and has both preventive effection and therapeutic effection.Therefore,DNA vaccine for therapy is the key point of research in recent years,and rapidly expands from the treatment of communicable disease to the treatment of the non-communicable disease.Recently,DNA vaccines have entered into a variety of human clinical trials for vaccines against various infectious diseases and for therapies against cancer.Despite their rapid and widespread development,however,the disappointing potency of the DNA vaccines in humans underscores the challenges encountered in the efforts to translate efficacy in preclinical models into clinical realities. In order to improve the efficacy of DNA vaccines,a lot of novel strategies have been performed.The definition of molecular mechanism of DNA vaccine must lead to gain more effective DNA vaccine approaches.However,the mechanisms of immune responses for DNA vaccines are still not entirely understood.In order to improve understanding of the immune response mechanisms,two diseases,Alzheimer's disease and HBV-related hepatocellular carcinoma,suggesting the development of DNA vaccine may be possible, are investigated in present study.
     Alzheimer disease(AD) is a neurodegenerative disorder characterized neuropathologically by neuritic plaques-amyloid deposits,neurofibrillary tangles,and selective neuronal loss.The various mouse models and clinical trial results demonstrated that the progressive deposition of Aβhad a central role in AD pathogenesis.Accordingly, Aβhas become a therapeutic target for the prevention and treatment of AD.In 1999, Schenk et al reported that vaccination of an amyloid precursor protein(APP) transgenic mouse model of AD with Aβpeptide resulted in a significant reduction in cerebral Aβdeposits.But this peptide vaccine was complicated by meningoencephalitis among 6%of subjects in phaseⅡa trial.Therefore,the advanced development of AβDNA vaccine having immunogenicity and no toxic,adverse effects is important strategy for AD immunotherapy.In previous study,we have constructed DNA vaccines containing Aβepitope sequences or full-length Aβgene.Although one of Aβepitope encoding plasmid and Aβfull-length encoding plasmid elicited higher Aβ-specific antibody titers than others, the humoral immune responses were not enough satisfied without any adjuvant.According to the positive correlation between antigenic expression levels and the extent of immune activation for DNA vaccine,the immunogenicity of gene would be enhanced by alteration of cellular location and leading product of gene to increased secretion.In the present study, to elevate the immunogenicity of Aβ,the tissue plasminogen activator signal sequence was fused to Aβgene.The results showed that humoral responses were enhanced in mice inoculated with DNA constructs expressing TPA-fused Aβantigen relative to those in mice that had been immunized with AβDNA vaccine.To investigate whether the enhanced immune activation of TPA-fused antigens compared to native protein is the result of increased secretion of protein,pEGFP-N1-Aβand pEGFP-N1-TPA-Aβwere transfected into 293T cells.The fluorescence of TPA-Aβ/EGFP was observed in both the nucleus and cytosol and a few was located at cell membrane at 72h after transfection.This result suggested that TPA- fused protein was secreting from intracellular into extracellular. Western blot analysis confirmed the results by detection of Aβ/EGFP from the cultured supernatant of 293-T-pEGFP-TPA-Aβcells.All of results of experiments in vitro or in vivo demonstrated the targeting antigen was successfully secreted into extracellular conducted by TPA signal sequence.Therefore,we concluded that TPA-fused Aβprotein in host cells should lead to increased secretion of this protein with elevated uptake by antigen-presenting cells,and thus,a more generalized activation of the immune system and the higher levels of specific antibody.In summary,this study provides a clue to apply TPA signal sequence in Aβepitope DNA vaccine and is in favor of elucidating the underlying mechanism of senile plaques clearance by DNA vaccine active immunotherapy in the future research.
     Chronic HBV infection is closely associated with the incidence of hepatocellular carcinoma.Among the four proteins that originate from the HBV genome,HBx has been reported to be associated with hepatocellular carcinogenesis.The molecular mechanisms of HBx in hepatocellular carcinoma(HCC) are not well understood,since the initiation and propagation of most tumors is a multistep process,and HBx has multiple effects on cellular transcription and the cytoplasmic modulation of signal transfection pathways.Further elucidation of the molecular events that lead to HCC holds promise for improved tumor prevention,and more effective therapies,involving DNA vaccine.HBx does not directly bind DNA but functions via protein-protein interaction.To reveal and identify proteins, interacting with HBx directly or indirectly,which are associated with HCC,the proteomic approach was applied.Eight spots were identified as SEC13L1,PA28a,STRAP,Nm23-H1, APRT,NDUFS3,PIMT and RXRbeta proteins.Among these proteins,one down-regulated pr-otein(PIMT),and two up-regulated proteins(STRAP and nm23-H1),were associated with the PI3K signaling pathway.Furthermore,our experiments showed that PIMT down-regulation by HBx was mediated by the up-regulation of STRAP and nm23-H1, which activated the PI3K/Akt signaling cascade.The altered expression of these proteins could provide more information about very complicated signaling molecular networks activated by HBx protein,and HBx-mediated PIMT down-regulation may provide clues to elucidate the molecular mechanisms of the development and progression of HCC and a target for therapy of HCC.
引文
[1] J. Hardy, D.J. Selkoe, The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 297 (2002) 353-356.
    
    [2] D. Schenk, R. Barbour, W. Dunn, et al., Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 400 (1999) 173-177.
    
    [3] F. Bard, C. Cannon, R. Barbour, et al., Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease.N- at. Med. 6 (2000) 916-919.
    
    [4] H.L. Weiner, C.A. Lemere, R. Maron, et al., Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease. Ann. Neurol. 48 (2000) 567-579.
    
    [5] E.M. Sigurdsson, H. Scholtzova, P.D. Mehta, B. Frangione, T. Wisniewski, Immunization with a nontoxic/nonfibrillar amyloid-beta homologous peptide reduces Alzheimer's disease-associated pathology in transgenic mice. Am. J. Pathol.159 (2001) 439-447.
    
    [6] C. Janus, J. Pearson, J. McLaurin, et al., A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature, 408 (2000) 979-982.
    
    [7] D. Morgan, D.M. Diamond, P.E. Gottschall, et al., A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature, 408 (2000) 982-985.
    
    [8] J.C. Dodart, K.R. Bales, K.S. Gannon, et al., Immunization reverses memory deficits without reduceing brain A8 burden in Alzheimer's disease model. Nat. Neurosci. 5 (2002) 452-457.
    
    [9] R.B. DeMattos, K.B. Bales, D.J. Cummins, et al., Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA. 98 (2001) 8850-8855.
    
    [10] J. McLaurin, R. Cecal, M.E. Kierstead, et al., Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4-10 and inhibit cytotoxicity and fibrillogenesis. Nat. Med. 8 (2002) 1263-1269.
    
    [11] D. Frenkel, I. Dewacher, F. Van Leuven, et al., Reduction of beta-amyloid plaques in brain of transgenic mouse model of Alzheimer's disease by EFRH-phage immunization. Vaccine, 21 (2003) 1060.
    
    [12] R.C. Dodel, H. Hampel, Y. Du, Immunotherapy for Alzheimer's disease. Lancet Neuro. 2 (2003) 215-220.
    
    [13] D. Schenk, Amyloid-beta immunotherapy for Alzheimer's disease: the end of the beginning. Nat. R ev. Neurosci. 3 (2002) 824-828.
    
    [14] K. Senior, Dosing in phase II trial of Alzheimer's vaccine suspended. Lancet Neurol. 1 (2002) 3.
    [15] J.M. Orgogozo, S. Gilman, J.F. Dartigues, et al., Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology, 61 (2003) 46-54.
    
    [16] M. Maier, T.J. Seabrook, CA. Lemere, Modulation of the humoral and cellular immune response in Abeta immunotherapy by the adjuvants monophosphoryl lipid A (MPL), cholera toxin B subunit (CTB) and E. coli enterotoxin LT(R192G). Vaccine, 23 (2005) 5149-5159.
    
    [17] H.D. Kim, K. Tahara, J.A. Maxwell, et al., Nasal inoculation of an adenovirus vector encoding 11 tandem repeats of Abetal-6 upregulates IL-10 expression and reduces amyloid load in a Mo/Hu APPswe PSldE9 mouse model of Alzheimer's disease. J Gene Med. 9 (2007) 88-98.
    
    [18] S. Sasaki, F. Takeshita, K.Q. Xin, et al., Adjuvant formulations and delivery systems for DNA vaccines. Methods, 31 (2003) 243-254.
    
    [19] T.L Stevens, A. Bossic, V.M. Sanders, et al., Regulation of antibody isotypic secretion by subsets of antigen-specific helper T cells. Nature, 334 (1988) 255-258.
    
    [20] B.A. Yankner, L.R. Dawes, S. Fisher, et al., Neurotoxicitv of a fragment of the amyloid precursor associated with Alzheimer's disease. Science, 245 (1989) 417-420.
    
    [21] Y. He, S.H. Sun, R.W. Chen, et al., Effects of epitopes combination and adjuvants on immune responses to anti-alzheimer disease DNA vaccines in mice. Alzheimer Dis. Assoc. Disord. 19 (2005) 171-177.
    
    [22] Z. Li, A. Howard, C. Kelley, G. Delogu, F. Collins, S. Morris, Immunogenicity of DNA vaccines expressing tuberculosis proteins fused to tissue plasminogen activator signal sequences. Infect. Immun. 67 (1999) 4780-4786.
    
    [23] G. Delogu, A. Li, C. Repique, F. Collins, S.L. Morris, DNA vaccine combinations expressing either tissue plasminogen activator signal sequence fusion proteins or ubiquitin-conjugated antigens induce sustained protective immunity in a mouse model of pulmonary tuberculosis. Infect. Immun. 70 (2002) 292-302.
    [1] Tabor E , Gerely RJ , Voegel CL , et al . Hepatitis B virus infection and primary hepatocellular carcinoma. J Natl Cancer Inst 1977;58 (5):1197.
    
    [2] Su Q , Schoder CH , Hofmann WJ, et al. Expression of hepatitis B virus X protein in HBV-infected human livers and hepatocellular carcinoma. Hepatology 1998;27 (4): 1109.
    
    [3] Nomura T , Lin Y, Dorjsuren D , et al. Human hepatitis B virus X protein isdetectable in nuclei of transfected cells , and is active for transactivation. Biochim Biophys Acta 1999; 1453 (3):330.
    
    [4] Hohne M , Schaefer S , Feilson MA, et al. Malignant transformation of immortalized transgenic hepatocytes after transfection with hepatitis B virus DNA. EMBO J 1990;9 (2):1137.
    
    [5] Koike K, Moriya K, lino S , et al. High-level of expression of hepatitis B virus HBx gene and hepatocarcinogenesis in transgenic mice. Hepatology 1994;19 (4):810.
    
    [6] Kim GM, Koike K, Saito I, et al. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature1991;351:317-320.
    
    [7] Haviv I, Matza Y, Shaul Y. pX, the HBV-encoded coactivator, suppresses the phenotypes of TBP and TAFⅡ250 mutants. Genes Dev 1998;12:1217-1226.
    
    [8] Diao J, Khine AA, Sarangi F, et al. X protein of hepatitis B virus inhibits FAS-mediated apoptosis and is associated with up-regulation of the SAPK/JNK pathway. J Biol Chem 2001;276:8328-8340.
    
    [9] Rahmani Z, Huh KW, Lasher R, et al. Hepatitis B virus X protein colocalize to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J virol 2000;74:2840-2846.
    
    [10] Barrett C, Alley J, Pulido JC, et al. Configuration of a scintillation proximity assay for the activity assessment of recombinant human adenine phosphoribosyltransferase. Assay Drug Dev Technol. 2006; 4(6):661-669.
    
    [11] Henkler F, Hoare J, Waseem N, et al. Intracellular localization of the hepatitis B virus HBx protein. J Gen Virol 2001;82(Pt 4):871-882.
    
    [12] Rathmani Z, Huh KW, Lasher R, Siddiqui A. Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J Virol 2000;74:2840-2846.
    
    [13] Takada S, Shirakata Y, Kaneniwa N, Koike K. Association of hepatitis B virus X protein with mitochondria causes mitochondrial aggregation at the nuclear periphery, leading to cell death. Oncogene 1999;18:6965-6973.
    
    [14] Lin XF, Zhao BX, Chen HZ, et al. RXRalpha acts as a carrier for TR3 nuclear export in a 9-cisretinoic acid-dependent manner in gastric cancer cells. J Cell Sci 2004;117(Pt 23):5609-5621.
    [15] Seong HA, Jung H, Choi HS, Kim KT, Ha H. Regulation of transforming growth factor-beta signaling and PDK1 kinase activity by physical interaction between PDK1 and serine-threonine kinase receptor associated protein. J Biol Chem 2005;280:42897-42908.
    
    [16] Steeg PS. Nm23 and breast cancer metastasis. Breast Cancer Res Treatment 1993; 25:175-182.
    
    [17] Leone A. Transfection of human nm23-H1 into the human MDA-MB-435 breast carcinoma cell lines effects on tumor metastatic potential. Colonization and enzymatic nefivily. Oncogene 1993;8:2325- 2333.
    
    [18] Lee HY, Lee H. Inhibitory activity of nm23-H1 on invision and colonization of human prostate carcinoma cells is not mediated by its NDP kinase activity. Cancer Lett 1999;145(1-2):93-99.
    
    [19] Boix L. Nm23-H1 exprssion and disease recurrence after surgical resection of small hepatocellular carcinoma. Gastroenterology 1994;107:488-491.
    
    [20] Zeng ZS, Hsu S, Zhang ZF, et al. High level of nm23H1 gene expression is associated with local colorectal cancer progression not with metastases. Br J Cancer 1994;70:1025-1030.
    
    [21] Lin L, Lee PH, Wu CM, et al. Significance of nm23 mRNA expression in human hepatocellular carcinoma. Anticancer Res 1998;18(1B):541-546.
    
    [22] Seong HA, Jung H, Ha H. NM23-H1 tumor suppressor physically interacts with serine-threonine kinase receptor-associated protein, a transforming growth fator-beta (TGF-beta) receptor-interacting protein, and negatively regulates TGF-beta sigaling. J Biol Chem 2007;282:12075-12096.
    
    [23] Lapointe M, Lanthier J, Moumdjian R, Regina A, Desrosiers RR. Expression and activity of 1-isoaspartyl methyltransferase decrease in stage progression of human astrocytic tumors. Brain Res Mol Br- ain Res 2005;135(1-2):93-103.
    
    [24] Lanthier J, Desrosiers RR. Proten L-isoaspartyl methyltransferase repairs abnormal aspartyl residues accumulated in vivo in type-I collagen and restores cell migration. Exp Cell Res 2004;293:96-105.
    
    [25] Huebscher KJ, Lee J, Rovelli G, Ludin B, Matus A, Stauffer D, Furst P. Protein isoaspartyl methylltransferase protects from Bax-induced apoptosis. Gene 1999;240:333-341.
    [1] Kim CM, Koike K, Saito I, Miyamura T, Jay G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 1991;351:317-320.
    
    [2] Maguire HF, Hoeffler JP, Siddiqui A. HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions. Science 1991; 252:842-844.
    
    [3] Kim J, Kim SH, Lee SU, Ha GH, Kang DG, Ha NY, et al. Proteome analysis of human liver tumor tissue by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of disease-related proteins. Electrophoresis 2002;23:4142-4156.
    
    [4] Lim SO, Park SJ, Kim W, Park SG, Kim HJ, Kim YI, et al. Proteome analysis of hepatocellular carcinoma. Res Commun 2002;291:1031-1037.
    
    [5] Yokoyama Y, Kuramitsu Y, Takashima M, Iizuka N, Toda T, Terai S, et al. Proteomic profiling of proteins decreased in hepatocellular carcinoma from patients infected with hepatitis C virus. Proteomics 2004;4:2111-2116.
    
    [6] Li C, Hong Y, Tan YX, Zhou H, Ai JH, Li SJ, et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotopecoded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics 2004;3:399-409.
    
    [7] Ding SJ, Li Y, Shao XX, Zhou H, Zeng R, Tang ZY, et al. Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics 2004; 4:982-994.
    
    [8] Lee YI, Kang-Park S, Do SI, Lee YI. The hepatitis B virus-X protein activates a phosphatidylinositol3-kinase-dependent survival signaling cascade. J Biol Chem 2001;276:16969-16977.
    
    [9] Lee YH, Yun Y. HBx protein of hepatitis B virus activates Jak1-STAT signaling. J Biol Chem 1998; 273:25510-25515.
    
    [10] Tarn C, Lee S, Hu Y, Ashendel C, Andrisani OM. Hepatitis B virus x protein differentially activates Ras-Raf-MAPK and JNK pathways in x-transforming versus non-transforming AML12 hepatocytes. J Biol Chem 2001;276:34671-34680.
    
    [11] Benn J, Schneider RJ. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. PNAS 1994;91:10350-10354.
    
    [12] Cha MY, Kim CM, Park YM, Ryu WS. Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology 2004;39:1683-1693.
    
    [13] Shih WL, Kuo ML, Chuang SE, Cheng AL, Doong SL. Hepatitis B virus X protein inhibits transforming growth factor-beta induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway. J Biol Chem 2000;275:25858-25864.
    
    [14] Chung TW, Lee YC, Kim CH. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. FASEB J 2004;18:1123-1125.
    
    [15] He Y, Yang F, Wang F, Song SX, Li DA, Guo YJ, et al. The upregulation of expressed proteins in HepG2 cells transfected by the recombinant plasmid containing HBx gene. Scand J Immunol. 2007; 65:249-256.
    
    [16] Farrar C, Houser CR, Clarke S. Activation of the PI3K/Akt signal transduction pathway and increased levels of insulin receptor in protein repair-deficient mice. Aging Cell. 2005;4:1-12.
    
    [17] Lanthier J, Desrosiers RR. Regulation of protein L-isoaspartyl methyltransferase by cell-matrix interactions: involvement of integrin alphavbeta3, PI 3-kinase, and the proteasome. Biochem Cell Biol 2006;84:684-694.
    
    [18] Seong HA, Jung H, Choi HS, Kim KT, Ha H. Regulation of transforming growth factor-beta signaling and PDK1 kinase activity by physical interaction between PDK1 and serine-threonine kinase receptor-associated protein. J Biol Chem 2005;280:42897-42908.
    
    [19] Seong HA, Jung H, Ha H. NM23-H1 tumor suppressor physically interacts with serine-threonine kinase receptor-associated protein, a transforming growth factor-beta (TGF-beta) receptor-interactingprotein, and negatively regulates TGF-beta signaling. J Biol Chem 2007;282:12075-12096.
    
    [20] Reissner KJ, Aswad DW. Deamidation and isoaspartate formation in proteins: unwanted alterations or surreptitious signals? Cell Mol Life Sci 2003;60:1281-1295.
    
    [21] Clarke S. Aging as war between chemical and biochemical processes: protein methylation and the recognition of age-damaged proteins for repair. Ageing Res Rev 2003; 2: 263-285.
    
    [22] Shimizu T, Matsuoka Y, Shirasawa T. Biological significance of isoaspartate and its repair system. Biol Pharm Bull 2005;28:1590-1596.
    
    [23] Aswad DW, Paranandi MV, Schurter BT. Isoaspartate in peptides and protein: formation, significance, and analysis. J Pharm Biomed Anal 2000; 21:1129-1136.
    
    [24] Johnson BA, Langmack EL, Asward DW. Partial repair of deamidation-damaged calmodulin by protein carboxyl methyltransferase. J Biol Chem 1987;262:12283-12287.
    
    [25] Brennan TV, Anderson JW, Jia Z, Waygood EB, Clarke S. Repair of spontaneously deamidaded HPr phosphocarrier protein catalyzed by the L-isoaspartyl-(D-aspartate) O-methyltransferase. J Biol Chem 1994;269:24586-24595.
    
    [26] Lanthier J, Desrosiers RR. Proten L-isoaspartyl methyltransferase repairs abnormal aspartyl residues accumulated in vivo in type-I collagen and restores cell migration. Exp Cell Res 2004;293:96-105.
    
    [27] Kim E, Lowenson JD, MacLaren DC, Clarke S, Young SG, et al. Deficiency of a protein-repair enzyme results in the accumulation of altered proteins, retardation of growth, and fatal seizures in mice. Proc Natl Acad Sci USA. 1997; 94:6132-6137.
    
    [28] Yamamoto A, Takagi H, Kitamura D, Tatsuoka H, Nakano H, Kawano H, et al. Deficiency inprotein L-isoaspartyl methytransferase results in a fatal progressive epilepsy. J Neurosci 1998;18:2063-2074.
    
    [29] Lanthier J, Bouthillier A, Lapointe M, Demeule M, Beliveau R, Desrosiers RR. Down-regulation of protein L-isoaspartyl methyltransferase in human epileptic hippocampus contributes to generation of damaged tubulin. J Neurochem 2002;83:581-591.
    
    [30] Huebscher KJ, Lee J, Rovelli G, Ludin B, Matus A, Stauffer D, Furst P. Protein isoaspartyl methyltransferase protects from Bax-induced apoptosis. Gene 1999;240:333-341.
    
    [31] Kindrachuk J, Parent J, Davies GF, Dinsmore M, Attah-Poku S, Napper S. Overexpression of L-isoaspartate O-methyltransferase in Escherichiia coli increase heat shock survival by a mechanism independent of methyltransferase activity. J Biol Chem 2003;278:50880-50886.
    
    [32] Chavous DA, Jackson FR, O'Connor CM. Extension of the Drosophila lifespan by overexpression of a protein repair methyltransferase. Proc Natl Acad Sci U.S.A. 2001;98:14814-14818.
    
    [33] Lapointe M, Lanthier J, Moumdjian R, Regina A, Desrosiers RR. Expression and activity of l-isoaspartyl methyltransferase decrease in stage progression of human astrocytic tumors. Mol Brain Res 2005;135:93-103.
    
    [34] Wang Y, Cui F, Lv Y, Li C, Xu X, Deng C, et al. HBsAg and HBx Knocked Into the p21 Locus Causes Hepatocellular Carcinoma in Mice. Hepatology 2004; 39:318-324.
    
    [35] Murakami S. Hepatitis B virus X protein: a multifunctional viral regulator. J Gastroenterol 2001;36: 651-660.
    
    [36] Hu ZY, Zhang ZS, Doo E, Coux O, Goldberg AL, Liang TJ. Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex. J Virol 1999;73:7231-7240.
    
    [37] Cui F, Wang Y, Wang J, Wei K, Hu J, Liu F, et al. The up-regulation of proteasome subunits and lysosomal proteases in hepatocellular carcinomas of the HBx gene knockin transgenic mice. Proteomics 2006;6:498-504.
    
    [38] Waris G, Huh KW, Siddiqui A. Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kB via oxidative stress. Mol Cell Biol 2001;21:7721-7730.
    [39] Ingrosso D, D'Angelo S, di Carlo E, Perna AF, Zappia V, et al. Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress. Eur J Biochem 2000;267:4397-4405.
    
    [40] Ingrosso D, Cimmino A, D'Angelo S, Alfinito F, Zappia V, Galletti P. Protein methylation as a marker of aspartate damage in glucose-6-phosphate dehydrogenase-deficient erythrocytes: role of oxidative stress. Eur J Biochem 2002;269:2032- 2039.
    [1] Mahoney FJ. Update on diagnosis, management, and prevention of hepatitis B virus infection. Clin Microbiol Rev, 1999, 12: 351-366.
    
    [2] Parkin DM. The global burden of cancer. Semin Cancer Biol, 1998, 8: 219-235.
    
    [3]Stuver SO. Towards global control of liver cancer. Semin Cancer Biol, 1998, 8: 299-306.
    
    [4] Koike K, Moriya K, Lino S, et al. High-level expression of hepatitis B virus HBx gene and heaptocarcinogenesis in transgenic mice. Hepatology, 1994, 19: 810-819.
    
    [5] Slagle BL, Lee TH, Median D, et al. Increased sensitivity to the hepatocarcinogen diethylnitrosamine in transgenic mice carrying the hepatitis B virus X gene. Mol Carcinog, 1996, 15: 261-269.
    
    [6] Terradillos O, Billet O, Renard CA, et al. The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice. Oncogene, 1997, 14: 395-404.
    
    [7] Hwang GY, LinCY, Huang LM, et al. Detection of the hepatitis B virus X protein (HBx) antigen and anti-HBx antibodies in cases of human hepatocellular carcinoma. J Clin Microb, 2003, 41: 5598- 5603.
    
    [8]Ganem D, Schneider RJ. The molecular biology of the hepatitis B virus. Fields Virol, 2001, 2(4):2923.
    
    [9] Henkler F, Hoare J, Waseem N, et al. Intracellular localization of the hepatitis B virus HBx protein. J Gen Viral. 2001, 82(4): 871.
    
    [10] Hohne M, Schaefer S, Seifer M, et al. Malignant transformation of immortalized transgenic hepatocytes after transfection with hepatitis B vinls DNA. Embo J, 1990, 9(4): 1137.
    
    [11] Kim KH, Seong BL. Pro-apoptotic function of HBV X protein is mediated by interaction with c-FLIP and enhancement of death-inducing signal. EmboJ, 2003, 22(9): 2104.
    
    [12] Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus. J Virol, 2004, 78(23): 12725.
    
    [13] Balsano C, Avantaggiati ML, Natoli G, et al. Full-length an d truncated versions of the hepatitis B virus (HBV) x protein (pX) transactivate the c-myc protooncogene at the transcriptional level. Biochem Biophys Res Commun, 1991, 176: 985-992.
    
    [14] Klein NP, Schneider RJ. Activation of Src family kinases by hepatitis B virus HBx protein andcoupled signaling to Ras. Mol Cell Biol, 1997, 17: 6427-6436.
    
    [15] Benn J, Schneider RJ. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. PNAS, 1994, 91: 10350-10354.
    
    [16] Farshid M, Nedjar S, Mitchell F, et al. Effect of hepatitis B virus X protein on the expression of retinoblastoma gene product. Acta Virol, 1997, 41: 125-129.
    
    [17] Shih WL, Kuo ML, Chuang SE, et al. Hepatitis B virus X protein activates a survival signaling by linking Src to phosphatidylinositol 3-kinase. J Biol Chem, 2003, 278: 31807-31813.
    
    [18] Danial NN, Pernis A, Rothman PB. Jak-STAT signaling induced by the v-abl oncogene. Science, 1995, 269: 1875-1877.
    
    [19]Cha MY, Kim CM, Park YM, et al. Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology, 2004, 39: 1683-1693.
    
    [20] Lara-Pezzi E, Roche S, Andrisani OM, et al. The hepatitis B virus HBx protein induces adherens junction disruption in a Src-dependent manner. Oncogene, 2001, 20: 3323-3331.
    
    [21] Wang XW, Forrester K, Yeh H, et al. Hepatitis B virus x protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. PNAS, 1994, 91: 2230-2234.
    
    [22] Lee SG, Rho HM. Transcriptional repression of the human p53 gene by hepatitis B viral x protein. Oncogene, 2000, 19: 468-471.
    
    [23] Elmore LW, Hancock AR, Chang SF, et al. Hepatitis B virus x protein and p53 tumor suppressor interactions in the modulation of apoptosis. PNAS, 1997, 94: 14707-14712.
    
    [24] Huo TI, Wang XW, Forgues M. et al. Hepatitis B virus X mutants derived from human hepatocellular carcinoma retain the ability to abrogate p53-induced apoptosis. Oncogene, 2001, 20: 3620-3628.
    
    [25] Wang XW, Vermeulen W, Coursen JD, et al. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev, 1996, 10: 1219-1232.
    
    [26] Chung TW, Lee YC, KO JH, et al. Hepatitis B virus x protein modulates the expression of PTEN by inhibiting the function of p53, a transcription activator in liver cells. Cancer Res, 2003, 63: 3453- 3458.
    
    [27] Ueda H, Ullrich SJ, Gangemi JD, et al. Functional inactivation but not structural mutation of p53 causes liver cancer. Nat Genet, 1995, 9: 41-47.
    
    [28] Wang XW, Gibson MK, Vermeulen W, et al. Abrogation of p53-induced apoptosis by the hepatitis B virus x gene. Cancer Res, 1995, 55: 6012-6016.
    
    [29] Lee YI, Kang-Park S, Do SI, et al. The hepatitis B virus-X protein activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem , 2001, 276: 16969-16977.
    
    [30] Lee YH, Yun Y. HBx protein of hepatitis B virus activates Jakl-STAT signaling. J Biol Chem, 1998, 273: 25510-25515.
    
    [31] Tarn C, Lee S, Hu Y, et al. Hepatitis B virus x protein differentially activates Ras-Raf-MAPK and JNK pathways in x-transforming versus non-transforming AML12 hepatocytes.J Biol Chem,2001,276:34671-34680.
    [32]Shih WL,Kuo ML,Chuang SE,et al.Hepatitis B virus x protein inhibits transforming growth factor-β-induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway.J Biol Chem,2000,275:25858-25864.
    [33]Sansal I,Sellers WR.The biology and clinical relevance of the PTEN tumor suppressor pathway.J Clin Onco,2004,22:2954-2963.
    [34]Oh JC,Jeong DL,Kim IK,et al.Activation of calcium signaling by hepatitis B virus-X protein in liver cells.Exp Mol Med,2003,35:301-309.
    [35]Chen BC,Wu WT,Ho FM,et al.Inhibition of interleukin-1 beta-induced NF-kappaB activation by calcium/calmodulin dependent protein kinase kinase occurs through Akt activation associated with interleukin-1 receptor-associated kinase phosphorylation and uncoupling of MyD88.J Biol Chem,2002,277:24169-24179.
    [36]Chung TW,Lee YC,Kim CH.Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathway:involvement of invasive potential.FASEBJ,2004,18:1123-1125.
    [37]Li J,Chen H,Tang MS,et al.PI-3K and Akt are mediators of AP-1 Induction by 5-MCDE in mouse epidermal CI41 cells.J Cell Biol,2004,165:77-86.
    [38]Benn J,Schneider RJ.Hepatitis B Virus HBx protein deregulates cell cycle checkpoint controls.PNAS,1995,92:11215-11219.
    [39]Yoo YG,Oh SH,Park ES,et al.Hepatitis B virus x protein enhances transcriptional activity of hypoxia-inducible factor-1a through activation of mitogen-activated protein kinase pathway.J Biol Chem,2003,278:39076-39084.
    [40]Scheid MP,Woodgett JR.PKB/Akt:functional insights from genetic models.Nat Rev Mol Cell Biol,2001,2:760-768.
    [41]Kennedy SG,Kandel ES,Cross TK,et al.Akt/protein kmase B inhibits cell death by preventing the release of cytochrome C from mitochondria.Mol Cell Biol,1999,19:5800-5810.
    [42]Fujita E,Jinbo A,Matuzaki H,et al.Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9.Biochem Biophs Res Commun,1999,264:550-555.
    [43]胡晓东,张吉翔.NF-κB信号转导通路对细胞周期的调控.细胞生物学杂志,2004,26:495-498.
    [44]Weil R,Sirma H,Giannini C,et al.Direct association and nuclear import of the hepatitis B virus x protein with the NF-κB inhibitor I-κB.Mol Cell Biol,1999,19:6345-6354.
    [45]Pan J,Duan LX,Sun BS,et al.Hepatitis B virus x protein protects against anti-Fas-mediated apoptosis in human liver cell by inducing NF-κB.J General Virol,2001,82:171-182.
    [46]Beg AA,Baltimore D.An essential role for NF-κB in preventing TNF-a-induced cell death.Science,1996,274:782-784.
    [47]Bellas RE,FitzGerald MJ,Fausto N,et al.Inhibition of NF-kappa B activity induces apoptosis in murine hepatocytes.Am J Pathol,1997,151:891-896.
    [48]Pan J,Clayton M,Feitelson MA.Hepatitis B virus X antigen promotes transforming growth factorl (TGF-β1) activity by up-regulation of TGF-β1 and down-regulation of a 2-macroglobulin.J Gen Virol,2004,85:275-282.
    [49]刘亮明,张吉翔.TGF-β与原发性肝细胞癌.国外医学.消化系疾病分册,2003,23:347-349.
    [50]Chan CF,Yau TO,Jin DY,et al.Evaluation of nuclear factor-kappa B,urokinase-type plasminogen activator,and HBx and their clinicopathological significance in hepatocellular carcinoma.Clin Cancer Res,2004,10(12 Pt1):4140-4149.
    [51]Lara-Pezzi E,Gomez-Gaviro MV,Galvez BG,et al.The hepatitis B virus x protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2expression.J Clin Invest,2002,110:1831-1838.
    [52]Werb Z.ECM and cell surface proteolysis:regulating cellular ecology.Cell,1997,91:439-442.
    [53]Lara-Pezzi E,Majano PL,Yanez-Mo M,et al.Effect of the hepatitis B virus HBx protein on integrin-mediated adhesion to and migration on extracellular matrix.J Hepatol,2001,34:409-415.
    [54]Lara-Pezzi E,Serrador JM,Montoyer MC,et al.The hepatitis B virus X protein(HBx) induces a migratory phenotype in a CD44-dependent manner:possible role of HBx in invasion and metastasis.Hepatology,2001,33:1270-1281.
    [55]Shintani Y,Yotsuganagi H,Moriya K,et al.Induction of apoptosis after switch-on of the hepatitis B virus x gene mediated by Cre/Lox P recombination system.General Virol,1999,80:3257-3265.
    [56]Kim H,Lee H,Yun Y.X-gene product of hepatitis B virus induces apoptosis in liver cell.Biol Chem,1998,273:381-385.
    [57]Kim KH,Seong BL.Pro-apoptosis function of HBV x protein is mediated by interation with c-FLIP and enhancement of death-inducing signal.EMBO J,2003,22:2104-2116.
    [58]Gao FG,Sun WS,Cao YL,et al.HBx-DNA probe preparation and its application in study of hepatocarcinogenesis.World J Gastroenterol,1998,4:320-322.
    [59]Tu H,Bonura C,Giannini C,et al.Biological impact of natural COOH-terminal deletions of he-atitis B virus x protein in hepatocellular carcinoma tissues.Cancer Res,2001,61:78003-78010.
    [60]Chisari FV,Klopchin K,Moriyama T,et al.Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell, 1989, 58: 1145-1156.
    
    [61]Tralhao JG, Roudier J, Morosan S, et al. Paracrine in vivo inhibitory effects of hepatitis B virus X protein (HBx) on liver cell proliferation: an alternative mechanism of HBx-related pathogenesis. PNAS, 2002, 99: 6991-6996.
    
    [62] Yoo YG, Lee MO. Hepatitis B virus X protein induces expression of Fas ligand gene through enhancing transcriptional activity of early growth response factor. J Biol Chem, 2004, 279: 36242-36249.
    
    [63] Hwang GY, Huang CJ, Lin CY, et al. Dominant mutations of hepatitis B virus variant in hepatoma accumulation in B-cell and T-cell epitopes of the HBx antigen. Virus Res, 2003, 92: 157-164.
    
    [64] Lee MO, Kang HJ, Cho H, et al. Hepatitis B virus X protein induced expression of the Nur77 gene. Biochem Biophys Res Commun, 2001, 288: 1162-1168.
    
    [65] Madden CR, Finegold MJ, Slaglel BL. Hepatitis B virus x protein acts as a tumor promoter in development of diethylnitrosamine-induced preneoplastic lesions. J Virol, 2001, 75: 3851-3858.
    
    [66] Madden CR, Finegold MJ, Slagle BL. Altered DNA mutation spectrum in aflatoxin B1-treated transgenic mice that express the hepatitis B virus X protein. J Virol, 2002, 76: 11770-11774.
    
    [67] Frost S, Ford JM, Taylor C, et al. Hepatitis B virus x protein inhibits p53-dependent DNA repair in primary mouse hepatocytes. J Biol Chem, 1998, 273: 33327-33332.
    
    [68] Wakasugi M, Kawashima A, Morioka H, et al. DDB accumulates at DNA damage sites immediately after uv irradiation and directly stimulates nucleotide excision repair. J Biol Chem, 2002,277: 1637-1640.
    
    [69] Leupin O, Bontron S, Strubin M. Hepatitis B virus x protein and simian virus 5V protein exhibit similar uv-DDB1 binding properties to mediate distinct activities. J Virol, 2003, 77: 6274-6283.
    
    [70] Marinoni JC, Roy R, Vermeulen W, et al. Cloning and characterization of p52, the fifth subunit of the core of the transcription/DNA repair factor TF II H. EMBOJ, 1997, 16: 1093-1102.
    
    [71] Jaitovich-Groisman I, Belimane N, Slagle BL, et al. Transcriptional regulation of the TF II H transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue. J Biol Chem, 2001, 276: 14124-14132.
    
    [72] Tao X, Shen D, Ren H, et al. Hepatitis B virus X protein activates expression of IGF-IR and VEGF in hepatocellular carcinoma cells. Zhonghua Ganzangbing Zazhi, 2000, 8: 161-163.
    
    [73] Hudson CC, Liu M, Chiang GG, et al. Regulation of hypoxiainducible factor 1 a expression and function by the mammalian target of rapamycin. Mol Cell Biol, 2002, 22: 7004-7014.
    
    [74] Liang XH, Stemler M, Will H, et al. Low incidence and high titers of antibodies to hepatitis B virus X-protein in sera of Chinese patients with hepatocellular carcinoma. J Med Virol, 1988, 25: 329-337.
    [75] Chun E, Lee J, Cheong HS, et al. Tumor eradiction by hepatitis B virus X antigen-specific CD8+ T cells in xenografted nude mice. J Immunol, 2003. 170: 1183-1190.
    
    [76] Kim YK. Junn E, Park I, et al. Repression of hepatitis B virus X gene expression by hammerhead ribozymes. Biochem Biophys Res Commun, 1999, 257: 759-765.
    
    [77] Weinberg M, Passman M, Kew M, et al. Hammerhead ribozyme-mediated inhibition of hepatitis B virus X gene expression in cultured cells. J Hepatol, 2000, 33: 142-151.
    
    [78] Hung L, Kumar V. Specific inhibition of gene expression and transaction functions of hepatitis B virus X protein and c-myc by small interfering RNAs. FEBS Lett, 2004, 560: :210-214.
    
    [79] Sievers TM. New antiproliferative immunosuppressive agents. J Pharm Pract, 2003,16:401-413.
    
    [80] Decker T, Hipp S, Ringshausen I, et al. Rapamycin-induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclinE, cyclinA and Survivin. Blood, 2003, 101:278-285.
    
    [81] Dutcher JP. Mammalian target of rapamycin inhibition. Clin Cancer Res, 2004, 10: 6382-6387.
    
    [82] Garber K. Rapamycin's resurrection:a new way to target the cancer cell cycle. J Natl Cancer Institute, 2001, 93: 1517-1519.
    
    [83] Guba M, Lohe F. Transplantation in cancer disease, and tumors in organ transplantationxurrent aspects and future prospects. MMW Fortschr Med, 2004, 146: 32-34.
    
    [84] Huang S, Bjornsti MA, Houghton PJ. Rapamycins:mechanism of action and cellular resistance. Cancer Biol Ther, 2003, 2: 222-232.
    
    [85] Raymond E, Alexandre J, Faivre S, et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol, 2004, 22: 2336-2347.
    
    [86] Atkins MB, HidagoM, StadlerWM, et al. Randomized phase II study of multiple dose levels of CCI -779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol, 2004, 22: 909-918.
    
    [87] Wang HP, Zhang L, Dandri M, et al. Antisense downregulation of N-mycl in Woodchuck hepatoma cells reverses the malignant phenotype. J Virol, 1998, 72: 2192-2198.
    
    [88] Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in enuroblastoma and other human cancers. Cell, 1997, 90: 809-819.
    
    [89] Wang CY, Cusack JC Jr, Liu R, et al. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med, 1999, 5: 412-417.
    
    [90] Yasui H, Adachi M, Imai K. Combination of tumor necrosis factor-alpha with sulindac augments its apoptotic potential and suppresses tumor growth of human carcinoma cells in nude mice. Cancer, 2003, 97: 1412-1420.
    
    [91] Futakuchi M, Ogawa K, Tamano S, et al. Suppression of metastasis by nuclear factor-kappaBinhibits in an in vivo lung metastasis model of chemically induced hepatocellular carcinoma. Cancer Sci, 2004, 95: 18-24.
    
    [92] Dhanalakshmi S, Singh RP, Agarwal C, et al. Silibinin inhibits constitutive and TNFalpha-induced activation of NF-kappaB and sensitizes human prostate carcinoma DU145 cells to TNFalpha-induced apoptosis. Oncogene, 2002, 21: 1759-1767.
    
    [93] Sailer R, Meier R, Brignoli R. The use of silymarin in the treatment of liver diseases. Drugs, 2001, 61: 2035-2063.
    
    [94] Singh RP, Sharma G, Dhanalakshmi S, et al. Suppression of advanced human prostate tumor growth in athymic mice by silibinin feeding is associated with reduced cell proliferation, increased apoptosis, and inhibition of an giogenesis. Cancer Epidemiol Biomarkers Prev, 2003, 12: 933-939.
    
    [95] Poon RT, Ng IO, Lau C, et al. Serum vascular endothelial growth factor predicts venous invasion in hepatocellular carcinoma: a prospective study. Ann Surg, 2001, 233: 227-235.
    
    [96] Warren RS, Yuan MR, Matli NA, et al. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest, 1995, 95: 1789-1797.
    
    [97] Millauer B, Shawver LK, Plate KH, et al. Glioblastoma growth inhibited in vivo by a dominant negative Flk-1 mutant. Nature, 1994, 367: 576-579.
    
    [98] Saleh MS, Stacker SA, Wilks AF. Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res, 1996, 56: 393-401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700