用户名: 密码: 验证码:
Id-1与HBx在乙肝相关性肝癌成瘤过程中相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】原发性肝癌(hepatocellular carcinoma,HCC)是全球发病率第五位的常见恶性肿瘤。在亚洲和大洋洲国家,特别是中国大陆,肝癌发病的主要诱因是慢性乙型肝炎病毒(hepatitis B,HBV)感染。对肝癌的早期诊断是提高肝癌患者疗效和预后的关键。目前包括肝癌切除术和肝移植在内的外科手术疗法仍是治疗早期肝癌的首选。然而,只有不到30%的患者能够在早期被诊断出肝癌并接受合适的治疗,大多数进展期患者由于治疗不及时而无法获得较理想的预后。由于我国众多的乙肝病毒携带者是肝癌的危险人群,更要求我们在早期发现并预测肝癌方面进行的研究,以期获得更好的肝癌的肿瘤标记物和预测因子。
     乙肝病毒感染在肝癌的发病过程中起到了重要作用,在中国大陆,约80%以上的肝癌患者伴随着慢性乙肝病毒的感染。即便是HBV的隐匿性感染者,甚至是乙肝表面抗原(hepatitis B surface antigen,HBsAg)在体内已被廓清后的曾经感染者,其肝癌的发病风险仍高于普通人群。乙肝病毒可以整合入宿主基因组,并直接或间接的促进肝癌的发生。在这个过程中,乙肝病毒X蛋白(hepatitis B virus X protein,HBx protein)起到了重要的促进作用。HBx是由HBV-DNA中最短的开放读取框所编码的。它增强了HBV的转录,并激活了癌基因、细胞因子和生长因子等不同细胞的基因转录过程。HBx和其它多种因子如p53、DDB1、Caspase3和蛋白酶体亚单位等相互作用,促进细胞转化。在肝癌患者血清和肝癌组织中均可检测到高水平HBxAg和抗-HBx的表达。
     Id蛋白即分化抑制蛋白或DNA结合抑制蛋白(Inhibitor of Differentiation and/or DNA-binding Protein)。由于Id蛋白缺少DNA结合结构域,它与其它碱性螺旋-环-螺旋转录因子(bHLH)结合后可形成没有DNA结合能力的异二聚体,起到了负性调节作用。作为Id蛋白家族的一员,Id-1在细胞分化过程中起到了重要的作用,它在包括肝癌在内的多种人类肿瘤中高表达。不受控制的Id-1蛋白表达将促进肿瘤细胞增殖、分化抑制、并刺激肿瘤血管生成及诱发基因组失稳。Id-1表达水平往往和肿瘤的高侵袭性、去分化程度和较差的临床预后相关。高表达的Id-1可以介导肝癌细胞的增殖,并且可成为预测慢性肝炎肝硬化患者肝癌发生风险的指标。Id-1可能在肝癌形成过程中的发挥重要作用,而它与HBV之间的关系值得进一步深入研究。
     【目的】(1)检测Id-1和HBx蛋白在乙肝相关性肝癌组织中的表达情况。(2)分析乙肝相关性肝癌患者临床病理学特征与Id-1及HBx蛋白表达水平的相关性。(3)检测Id-1和HBx在肝癌细胞中的共定位情况。(4)检测HBx对肝癌细胞系中Id-1表达水平的影响。(5)构建人Id-1干扰慢病毒载体。(6)人Id-1干扰慢病毒载体对肝癌HepG2细胞的感染验证。
     【方法】(1)对获得的96例乙肝相关性肝癌标本进行免疫组化染色,并对Id-1和HBx蛋白的染色结果进行分级。(2)借助SPSS软件,统计学分析Id-1和HBx的蛋白表达水平与肝癌临床病理学特征间的相关性以及Id-1的表达强度和乙肝相关性肝癌患者预后之间的关系。(3)用激光共聚焦免疫荧光染色法研究Id-1和HBx在肝癌细胞中的共定位情况。(4)Realtime-PCR和Western Blot分别检测Id-1 mRNA和蛋白在肝癌细胞系HepG2、HepG2.2.15、SMMC7721、FHCC98和肝细胞系HL7702中的表达情况。(5)Realtime-PCR和Western Blot检测Id-1蛋白在转染入HBx的肝癌HepG2-X和转染空质粒的HepG2-PC细胞内的表达情况。(6)采用荧光素酶报告基因系统检测Id-1启动子序列在HepG2-X和HepG2-PC细胞内的表达情况。(7)筛选获得效率最高的Id-1 RNA干扰序列并构建人Id-1干扰慢病毒载体。(8)验证人Id-1干扰慢病毒载体对HepG2细胞中Id-1的沉默效果。
     【结果】(1)免疫组化染色发现,在96例乙肝相关性肝癌标本中,Id-1高表达率为64.6%,HBx的高表达率为74.0%。且Id-1的表达强度与HBx的表达强度正相关。(2)Id-1高表达水平与患者的血清高HBsAg水平、较差的肿瘤分化程度、门静脉侵犯、淋巴结转移及Child B/C级之间关系有统计学意义;Id-1高表达组的无瘤生存率和总生存率均较Id-1低表达组更差。(3)成对免疫组化染色和激光共聚焦免疫荧光染色发现Id-1和HBx在肝癌细胞中存在共定位现象,二者主要表达在细胞质和细胞核中。(4)经Realtime-PCR和Western Blot发现Id-1的mRNA和蛋白水平的表达强度在肝癌细胞系HepG2、HepG2.2.15、SMMC7721和FHCC98中均显著高于肝细胞系HL7702。(5)在肝癌HepG2-X中,Id-1的mRNA和蛋白表达强度均高于转染空质粒的HepG2-PC细胞。(6)报告基因检测发现在HepG2-X细胞中被激活的Id-1启动子的表达强度高于HepG2-PC细胞。(7)成功筛选并构建了人Id-1干扰慢病毒载体Id1-RNAi-LV,经鉴定病毒滴度为2.0×10E9 TU/mL;在HepG2细胞中,该载体对HepG2细胞中Id-1的mRNA和蛋白的表达均有明显抑制效果,抑制效率为61.2%。
     【结论】(1)乙肝相关性肝癌标本中,Id-1和HBx均有表达,并且二者存在共定位现象。(2)Id-1蛋白的表达水平与乙肝相关性肝癌患者血清HBsAg水平、肿瘤分化程度、门静脉侵犯、淋巴结转移及Child分级等肿瘤恶性表型相关;Id-1高表达组患者有较差的预后。(3)Id-1在多种肝癌细胞系中均有表达,且其表达强度高于正常肝细胞系。(4)被转染入HepG2细胞中HBx,可提高Id-1启动子活性并使Id-1在mRNA及蛋白水平表达升高。(5)成功构建了Id-1干扰慢病毒载体Id1-RNAi-LV,并对肝癌HepG2细胞系中的Id-1基因有mRNA和蛋白水平的沉默效果。(6)综上Id-1可以作为乙肝相关性肝癌患者一个有用的预后指标。乙肝相关性肝癌标本中高表达的Id-1至少部分的受HBx表达所影响。构建成功的人Id-1干扰慢病毒载体可用于对Id-1参与肝癌机制的进一步研究,并可能成为新的治疗肝癌的分子靶向。
【Background】Hepatocellular carcinoma (HCC) is one of the most common malignant tumors world wide. In Asia-Pacific countries, especially in China, the main cause of HCC is chronic hepatitis B virus (HBV) infection. Early diagnosis is critical for better treatments and improved clinical outcomes. Patients with early-stage HCC can be treated using curative treatments, such as resection or liver transplantation. Nowadays, no more than 30% of HCC patients can be early diagnosed and received appropriate treatment. More patients with advanced HCC have much worse outcomes because of the delayed treatment. So, more studies focused on whether there are novel biomarkers that predict the risk of tumorigenesis and the survival time for large groups of HBV-infected patients are needed.
     HBV plays an important role in HCC carcinogenesis. In China mainland, over 80% HCC patients are accompanied with chronic HBV infection. Moreover, the lifetime risk of HCC has been shown to be increased even in patients with occult HBV infection and after hepatitis B surface antigen (HBsAg) clearance. HBV could be integrated into the host genome to promote the carcinogenesis process by either directly or indirectly pathways. Hepatitis B virus X protein (HBx), one of the HBV-encoded proteins, accounts for the oncogenic properties of HBV in liver cells. In the pathogenesis of HBV-associated HCC cells, HBx may play a critical role by inducing progressive changes and facilitating the development of carcinoma. HBx could regulate different signaling pathways through interaction with a variety of proteins, such as the p53, DDB1, Caspase3 and proteasome subunit. HBxAg and anti-HBx are both over-expressed in the serum of HCC patients and tumor tissues.
     Id proteins (Inhibitor of Differentiation and/or DNA-binding Protein) lack a basic domain and serve to inhibit the DNA binding of basic helix-loop-helix (bHLH) transcription factors by heterodimerization with bHLH proteins. As a member of the Id protein family, Id-1 plays a negative role in cell differentiation. The Id-1 gene has been shown to be highly expressed in a variety of primary human tumors including HCC. There is increasing evidence showing that deregulated Id-1 expression may contribute to various properties of tumor cells, including induction of aberrant cell proliferation, inhibition of differentiation, stimulation of angiogenesis and induction of genomic instability. Furthermore, the Id-1 expression level is often found to be correlated with malignant tumor phenotype, dedifferentiation and poor clinical outcomes of patients. Over-expressed Id-1 could induce proliferation of HCC cells and it may serve as a useful marker for determining HCC risk in patients with cirrhosis. So it is meaningful to further elucidate the role of Id-1 in HBV-related HCC.
     【Objectives】(1) To detect the expression of Id-1 and HBx in HBV-related HCC tissue samples. (2) To analyzed the correlation between Id-1 and HBx expression levels and clinicopathological features of patients. (3) To detect whether Id-1 and HBx are co-localized in HCC cells. (4) To investigate the effect of HBx on Id-1 expression in HCC cell line. (5) To construct the lentiviral vector with Id-1 siRNA. (6) To measure the silent efficiency of lentiviral vector with Id-1 siRNA after infecting the HepG2 cells.
     【Methods】(1) Tumor tissue samples obtained from a total of 96 HCC patients. The expression of Id-1 and HBx proteins of these samples are detected by immunohistochemical (IHC) staining and evaluated by two independent pathologists. (2) The corrections between the clinical pathological parameters and the IHC scores for Id-1 or HBx and the prognostic significance were statistical analysesed by SPSS software. (3) Immunofluorescent staining was used to detect the colocalization of Id-1 and HBx proteins in HCC cells. (4) The mRNA and protein expression of Id-1 in HCC cell lines (HepG2, HepG2.2.15, SMMC7721 and FHCC98) and hepatic cell line (HL7702) are detected and compared by Realtime-PCR and Western Blot. (5) The mRNA and protein expression of Id-1 in HepG2-X (stably transfected with HBx) and HepG2-PC (transfect with empty vector) are detected by Realtime-PCR and Western Blot. (6) Luciferase reporter gene vector with Id-1 promoter was used to investigate whether epitopic expression of HBx could stimulate higher luciferase activity of Id-1 promoters in HepG2-X cells. (7) Construct the lentiviral vector with Id-1 siRNA using the most effective Id-1 RNA interference sequence. (8) Measure the silent efficiency of lentiviral vector with Id-1 siRNA after infecting the HepG2 cells by Realtime-PCR and Western Blot.
     【Results】(1) Over-expression of Id-1 and HBx were found in 64.6% and 74.0% of HBV-related HCC specimens, respectively. The expression of Id-1 was positively correlated to that of HBx. (2) Over-expression of Id-1 was correlated with the histological grade, portal vein invasion, lymph node metastasis, HBsAg and Child-Pugh classification. Patients with Id-1 overexpression had both shorter disease-free and overall survival times. (3) Colocalization of Id-1 and HBx was found by paired IHC and confocal study. They were both expressed in the cytoplasm and/or the nucleolus in HCC cells. (4) The expression of Id-1 mRNA and protein were both higher in HCC cell lines (HepG2, HepG2.2.15, SMMC7721 and FHCC98) than they were in hepatic cell line (HL7702) by Realtime-PCR and Western Blot. (5) HepG2-X showed a significantly higher Id-1 expression compared to HepG2-PC cells transfected with empty pcNDA3.1 plasmids, suggesting that HBx may up-regulate Id-1 in HCC cells as shown by real-time PCR and western blot. (6) Epitopic expression of HBx could stimulate higher luciferase activity of Id-1 promoters in HepG2-X cells by luciferase reporter gene system. (7) We successfully constructed the lentiviral vector with Id-1 siRNA named Id-1-RNAi-LV. The virus titer is 2.0×10E9 TU/mL. Id-1 mRNA and protein expression were significantly down-regulated after infected by Id-1-RNAi-LV in HepG2 cells. The silent ratio is 61.2%.
     【Conclusion】(1) Id-1 overexpression was correlated with HBx expression, they were both colocolized in HCC cells of HBV-related HCC patients. (2) High expression of Id-1 were correlated with malignant HCC tumor phenotype such as serum HBsAg, histological grade, lymph node metastasis, portal vein invasion, Child-Pugh classification and poor clinical outcomes in HBV-related HCC. (3) Id-1 expression was higher in HCC cell lines than hepatic cell line. (4) Epitopic expression of HBx could stimulate Id-1 promoter. (5) Lentiviral vector with Id-1 siRNA was successfully constructed and have significantly silent efficiency in HepG2 cells. (6)Thus, Id-1 may serve as a useful prognosis marker for HBV-related HCC patients, and Id-1 overexpression in HBV-related HCC may be partially attributed to the effect of HBx. The lentiviral vector with Id-1 siRNA can be used for further researches on the mechanism of Id-1 involved in hepatocellular carcinoma and may act as a noval molecular targeting therapy of HBV-related HCC.
引文
1. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. May 10 2006;24(14):2137-50.
    2. Kojiro M, Roskams T. Early hepatocellular carcinoma and dysplastic nodules. Semin Liver Dis. 2005;25(2):133-42.
    3. Hassan MM, Hwang LY, Hatten CJ, et al. Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus. Hepatology. Nov 2002;36(5):1206-13.
    4. Marrero JA, Fontana RJ, Fu S, Conjeevaram HS, Su GL, Lok AS. Alcohol, tobacco and obesity are synergistic risk factors for hepatocellular carcinoma. J Hepatol. Feb 2005;42(2):218-24.
    5. Arbuthnot P, Kew M. Hepatitis B virus and hepatocellular carcinoma. Int J Exp Pathol. Apr 2001;82(2):77-100.
    6. Murakami S. Hepatitis B virus X protein: structure, function and biology. Intervirology. 1999;42(2-3):81-99.
    7. Murakami S. Hepatitis B virus X protein: a multifunctional viral regulator. J Gastroenterol. Oct 2001;36(10):651-60.
    8. Chang MH, Chen CJ, Lai MS, et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N Engl J Med. Jun 26 1997;336(26):1855-9.
    9. Bruix J, Sherman M, Llovet JM, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol. Sep 2001;35(3):421-30.
    10. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. Nov 2005;42(5):1208-36.
    11. Hussain SM, Zondervan PE, JN IJ, Schalm SW, de Man RA, Krestin GP. Benign versus malignant hepatic nodules: MR imaging findings with pathologic correlation. Radiographics. Sep-Oct 2002;22(5):1023-36; discussion 37-9.
    12. Lencioni R, Cioni D, Della Pina C, Crocetti L, Bartolozzi C. Imaging diagnosis. Semin Liver Dis. 2005;25(2):162-70.
    13. Lencioni R, Della Pina C, Crocetti L, Bozzi E, Cioni D. Clinical management of focal liver lesions: the key role of real-time contrast-enhanced US. Eur Radiol. Dec 2007;17 Suppl 6:F73-9.
    14. Gaiani S, Celli N, Piscaglia F, et al. Usefulness of contrast-enhanced perfusional sonography in the assessment of hepatocellular carcinoma hypervascular at spiral computed tomography. J Hepatol. Sep 2004;41(3):421-6.
    15. Shimizu A, Ito K, Koike S, Fujita T, Shimizu K, Matsunaga N. Cirrhosis or chronic hepatitis: evaluation of small (    16. Libbrecht L, Bielen D, Verslype C, et al. Focal lesions in cirrhotic explant livers: pathological evaluation and accuracy of pretransplantation imaging examinations. Liver Transpl. Sep 2002;8(9):749-61.
    17. Yu JS, Cho ES, Kim KH, Chung WS, Park MS, Kim KW. Newly developed hepatocellular carcinoma (HCC) in chronic liver disease: MR imaging findings before the diagnosis of HCC. J Comput Assist Tomogr. Sep-Oct 2006;30(5):765-71.
    18. Giannelli G, Antonaci S. New frontiers in biomarkers for hepatocellular carcinoma. Dig Liver Dis. Nov 2006;38(11):854-9.
    19. Stigliano R, Marelli L, Yu D, Davies N, Patch D, Burroughs AK. Seeding following percutaneous diagnostic and therapeutic approaches for hepatocellular carcinoma. What is the risk and the outcome? Seeding risk for percutaneous approach of HCC. Cancer Treat Rev. Aug 2007;33(5):437-47.
    20. A new prognostic system for hepatocellular carcinoma: a retrospective study of 435 patients: the Cancer of the Liver Italian Program (CLIP) investigators. Hepatology. Sep 1998;28(3):751-5.
    21. Collette S, Bonnetain F, Paoletti X, et al. Prognosis of advanced hepatocellular carcinoma: comparison of three staging systems in two French clinical trials. Ann Oncol. Jun 2008;19(6):1117-26.
    22. Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis. 1999;19(3):329-38.
    23. Ishizawa T, Hasegawa K, Aoki T, et al. Neither multiple tumors nor portal hypertension are surgical contraindications for hepatocellular carcinoma. Gastroenterology. Jun 2008;134(7):1908-16.
    24. Brunello F, Veltri A, Carucci P, et al. Radiofrequency ablation versus ethanol injection for early hepatocellular carcinoma: A randomized controlled trial. Scand J Gastroenterol. 2008;43(6):727-35.
    25. Mazzaferro V, Battiston C, Perrone S, et al. Radiofrequency ablation of small hepatocellular carcinoma in cirrhotic patients awaiting liver transplantation: a prospective study. Ann Surg. Nov 2004;240(5):900-9.
    26. Mulier S, Ni Y, Jamart J, Ruers T, Marchal G, Michel L. Local recurrence after hepatic radiofrequency coagulation: multivariate meta-analysis and review of contributing factors. Ann Surg. Aug 2005;242(2):158-71.
    27. Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. Mar 14 1996;334(11):693-9.
    28. Mazzaferro V, Llovet JM, Miceli R, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol. Jan 2009;10(1):35-43.
    29. Llovet JM, Real MI, Montana X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. May 18 2002;359(9319):1734-9.
    30. Lo CM, Ngan H, Tso WK, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology. May 2002;35(5):1164-71.
    31. Lencioni R MK, Vogl T, et al. A randomised phase II trial of a drug eluting beads in the treatment of HCC by transcatheter arterial chemoembolisation(TACE). www.asco.org; GI Cancer Symposium 2009:abstract 116.
    32. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. Jul 24 2008;359(4):378-90.
    33. Nowak AK, Stockler MR, Chow PK, Findlay M. Use of tamoxifen in advanced-stage hepatocellular carcinoma. A systematic review. Cancer. Apr 1 2005;103(7):1408-14.
    34. Kulik LM, Carr BI, Mulcahy MF, et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology. Jan 2008;47(1):71-81.
    35. Seong J, Lee IJ, Shim SJ, et al. A multicenter retrospective cohort study of practice patterns and clinical outcome on radiotherapy for hepatocellular carcinoma in Korea. Liver Int. Feb 2009;29(2):147-52.
    36. Maaroos HI, Andreson H, Loivukene K, et al. The diagnostic value of endoscopy and Helicobacter pylori tests for peptic ulcer patients in late post-treatment setting. BMC Gastroenterol. Oct 26 2004;4:27.
    37. Parkin DM, Bray FI, Devesa SS. Cancer burden in the year 2000. Theglobal picture. Eur J Cancer. Oct 2001;37 Suppl 8:S4-66.
    38. Shibuya K, Mathers CD, Boschi-Pinto C, Lopez AD, Murray CJ. Global and regional estimates of cancer mortality and incidence by site: II. Results for the global burden of disease 2000. BMC Cancer. Dec 26 2002;2:37.
    39. Block TM, Mehta AS, Fimmel CJ, Jordan R. Molecular viral oncology of hepatocellular carcinoma. Oncogene. Aug 11 2003;22(33):5093-107.
    40. Yuen MF, Hou JL, Chutaputti A. Hepatocellular carcinoma in the Asia pacific region. J Gastroenterol Hepatol. Mar 2009;24(3):346-53.
    41. Ahn SH, Park YN, Park JY, et al. Long-term clinical and histological outcomes in patients with spontaneous hepatitis B surface antigen seroclearance. J Hepatol. Feb 2005;42(2):188-94.
    42. Pollicino T, Squadrito G, Cerenzia G, et al. Hepatitis B virus maintains its pro-oncogenic properties in the case of occult HBV infection. Gastroenterology. Jan 2004;126(1):102-10.
    43. Sun CA, Wu DM, Lin CC, et al. Incidence and cofactors of hepatitis C virus-related hepatocellular carcinoma: a prospective study of 12,008 men in Taiwan. Am J Epidemiol. Apr 15 2003;157(8):674-82.
    44. Sumi H, Yokosuka O, Seki N, et al. Influence of hepatitis B virus genotypes on the progression of chronic type B liver disease. Hepatology. Jan 2003;37(1):19-26.
    45. Westland C, Delaney Wt, Yang H, et al. Hepatitis B virus genotypes and virologic response in 694 patients in phase III studies of adefovir dipivoxil1. Gastroenterology. Jul 2003;125(1):107-16.
    46. Yotsuyanagi H, Hino K, Tomita E, Toyoda J, Yasuda K, Iino S. Precore and core promoter mutations, hepatitis B virus DNA levels and progressive liver injury in chronic hepatitis B. J Hepatol. Sep 2002;37(3):355-63.
    47. Kao JH, Chen PJ, Lai MY, Chen DS. Basal core promoter mutations of hepatitis B virus increase the risk of hepatocellular carcinoma in hepatitis B carriers. Gastroenterology. Feb 2003;124(2):327-34.
    48. Tanaka Y, Hasegawa I, Kato T, et al. A case-control study for differences among hepatitis B virus infections of genotypes A (subtypes Aa and Ae) and D. Hepatology. Sep 2004;40(3):747-55.
    49. Yang HI, Lu SN, Liaw YF, et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med. Jul 18 2002;347(3):168-74.
    50. Ni YH, Chang MH, Wang KJ, et al. Clinical relevance of hepatitis B virus genotype in children with chronic infection and hepatocellular carcinoma. Gastroenterology. Dec 2004;127(6):1733-8.
    51. Orito E, Mizokami M. Hepatitis B virus genotypes and hepatocellular carcinoma in Japan. Intervirology. 2003;46(6):408-12.
    52. Chan HL, Wong ML, Hui AY, Hung LC, Chan FK, Sung JJ. Hepatitis B virus genotype C takes a more aggressive disease course than hepatitis B virus genotype B in hepatitis B e antigen-positive patients. J Clin Microbiol. Mar 2003;41(3):1277-9.
    53. Chan HL, Hui AY, Wong ML, et al. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut. Oct 2004;53(10):1494-8.
    54. Kuang SY, Jackson PE, Wang JB, et al. Specific mutations of hepatitis B virus in plasma predict liver cancer development. Proc Natl Acad Sci U S A. Mar 9 2004;101(10):3575-80.
    55. Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV. Immune pathogenesis of hepatocellular carcinoma. J Exp Med. Jul 20 1998;188(2):341-50.
    56. Clevers H. At the crossroads of inflammation and cancer. Cell. Sep 17 2004;118(6):671-4.
    57. Chisari FV, Klopchin K, Moriyama T, et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell. Dec 22 1989;59(6):1145-56.
    58. Hsieh YH, Su IJ, Wang HC, et al. Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis. Oct 2004;25(10):2023-32.
    59. Brechot C, Pourcel C, Louise A, Rain B, Tiollais P. Presence of integrated hepatitis B virus DNA sequences in cellular DNA of human hepatocellular carcinoma. Nature. Jul 31 1980;286(5772):533-5.
    60. Buendia MA. Hepatitis B viruses and cancerogenesis. Biomed Pharmacother. 1998;52(1):34-43.
    61. Matsubara K, Tokino T. Integration of hepatitis B virus DNA and its implications for hepatocarcinogenesis. Mol Biol Med. Jun 1990;7(3):243-60.
    62. Paterlini-Brechot P, Saigo K, Murakami Y, et al. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene. Jun 19 2003;22(25):3911-6.
    63. Hildt E, Munz B, Saher G, Reifenberg K, Hofschneider PH. The PreS2 activator MHBs(t) of hepatitis B virus activates c-raf-1/Erk2 signaling in transgenic mice. EMBO J. Feb 15 2002;21(4):525-35.
    64. Buendia MA. Genetics of hepatocellular carcinoma. Semin Cancer Biol. Jun 2000;10(3):185-200.
    65. Laurent-Puig P, Legoix P, Bluteau O, et al. Genetic alterations associatedwith hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology. Jun 2001;120(7):1763-73.
    66. Marchio A, Pineau P, Meddeb M, et al. Distinct chromosomal abnormality pattern in primary liver cancer of non-B, non-C patients. Oncogene. Aug 3 2000;19(33):3733-8.
    67. Staib F, Hussain SP, Hofseth LJ, Wang XW, Harris CC. TP53 and liver carcinogenesis. Hum Mutat. Mar 2003;21(3):201-16.
    68. de La Coste A, Romagnolo B, Billuart P, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A. Jul 21 1998;95(15):8847-51.
    69. Nhieu JT, Renard CA, Wei Y, Cherqui D, Zafrani ES, Buendia MA. Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol. Sep 1999;155(3):703-10.
    70. Lee S, Lee HJ, Kim JH, Lee HS, Jang JJ, Kang GH. Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am J Pathol. Oct 2003;163(4):1371-8.
    71. Li X, Hui AM, Sun L, et al. p16INK4A hypermethylation is associated with hepatitis virus infection, age, and gender in hepatocellular carcinoma. Clin Cancer Res. Nov 15 2004;10(22):7484-9.
    72. Narimatsu T, Tamori A, Koh N, et al. p16 promoter hypermethylation in human hepatocellular carcinoma with or without hepatitis virus infection. Intervirology. 2004;47(1):26-31.
    73. Wei Y, Van Nhieu JT, Prigent S, Srivatanakul P, Tiollais P, Buendia MA. Altered expression of E-cadherin in hepatocellular carcinoma: correlations with genetic alterations, beta-catenin expression, and clinical features. Hepatology. Sep 2002;36(3):692-701.
    74. Kajino K, Aoki H, Hino O. Genomic instability involved in virus-related hepatocarcinogenesis. Intervirology. 1995;38(3-4):170-2.
    75. Chisari FV. Hepatitis B virus transgenic mice: models of viral immunobiology and pathogenesis. Curr Top Microbiol Immunol. 1996;206:149-73.
    76. Su Q, Schroder CH, Hofmann WJ, Otto G, Pichlmayr R, Bannasch P. Expression of hepatitis B virus X protein in HBV-infected human livers and hepatocellular carcinomas. Hepatology. Apr 1998;27(4):1109-20.
    77. Araki K, Miyazaki J, Hino O, et al. Expression and replication of hepatitis B virus genome in transgenic mice. Proc Natl Acad Sci U S A. Jan 1989;86(1):207-11.
    78. Terradillos O, Billet O, Renard CA, et al. The hepatitis B virus X genepotentiates c-myc-induced liver oncogenesis in transgenic mice. Oncogene. Jan 30 1997;14(4):395-404.
    79. Doitsh G, Shaul Y. Enhancer I predominance in hepatitis B virus gene expression. Mol Cell Biol. Feb 2004;24(4):1799-808.
    80. Huan B, Siddiqui A. Regulation of hepatitis B virus gene expression. J Hepatol. 1993;17 Suppl 3:S20-3.
    81. Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev. Mar 2000;64(1):51-68.
    82. Nassal M, Schaller H. Hepatitis B virus replication. Trends Microbiol. Sep 1993;1(6):221-8.
    83. Murakami S, Cheong J, Ohno S, Matsushima K, Kaneko S. Transactivation of human hepatitis B virus X protein, HBx, operates through a mechanism distinct from protein kinase C and okadaic acid activation pathways. Virology. Feb 15 1994;199(1):243-6.
    84. Tang H, Oishi N, Kaneko S, Murakami S. Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci. Oct 2006;97(10):977-83.
    85. Dandri M, Petersen J, Stockert RJ, Harris TM, Rogler CE. Metabolic labeling of woodchuck hepatitis B virus X protein in naturally infected hepatocytes reveals a bimodal half-life and association with the nuclear framework. J Virol. Nov 1998;72(11):9359-64.
    86. Dandri M, Schirmacher P, Rogler CE. Woodchuck hepatitis virus X protein is present in chronically infected woodchuck liver and woodchuck hepatocellular carcinomas which are permissive for viral replication. J Virol. Aug 1996;70(8):5246-54.
    87. Nomura T, Lin Y, Dorjsuren D, Ohno S, Yamashita T, Murakami S. Human hepatitis B virus X protein is detectable in nuclei of transfected cells, and is active for transactivation. Biochim Biophys Acta. Mar 30 1999;1453(3):330-40.
    88. Forgues M, Difilippantonio MJ, Linke SP, et al. Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol Cell Biol. Aug 2003;23(15):5282-92.
    89. Forgues M, Marrogi AJ, Spillare EA, et al. Interaction of the hepatitis B virus X protein with the Crm1-dependent nuclear export pathway. J Biol Chem. Jun 22 2001;276(25):22797-803.
    90. Lin Y, Nomura T, Yamashita T, Dorjsuren D, Tang H, Murakami S. The transactivation and p53-interacting functions of hepatitis B virus X protein are mutually interfering but distinct. Cancer Res. Nov 15 1997;57(22):5137-42.
    91. Lee DK, Park SH, Yi Y, et al. The hepatitis B virus encoded oncoprotein pX amplifies TGF-beta family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis. Genes Dev. Feb 15 2001;15(4):455-66.
    92. Andrisani OM, Barnabas S. The transcriptional function of the hepatitis B virus X protein and its role in hepatocarcinogenesis (Review). Int J Oncol. Aug 1999;15(2):373-9.
    93. Cross JC, Wen P, Rutter WJ. Transactivation by hepatitis B virus X protein is promiscuous and dependent on mitogen-activated cellular serine/threonine kinases. Proc Natl Acad Sci U S A. Sep 1 1993;90(17):8078-82.
    94. Cheong JH, Yi M, Lin Y, Murakami S. Human RPB5, a subunit shared by eukaryotic nuclear RNA polymerases, binds human hepatitis B virus X protein and may play a role in X transactivation. EMBO J. Jan 3 1995;14(1):143-50.
    95. Lin Y, Tang H, Nomura T, et al. The hepatitis B virus X protein is a co-activator of activated transcription that modulates the transcription machinery and distal binding activators. J Biol Chem. Oct 16 1998;273(42):27097-103.
    96. Haviv I, Vaizel D, Shaul Y. pX, the HBV-encoded coactivator, interacts with components of the transcription machinery and stimulates transcription in a TAF-independent manner. EMBO J. Jul 1 1996;15(13):3413-20.
    97. Murakami S, Cheong JH, Kaneko S. Human hepatitis virus X gene encodes a regulatory domain that represses transactivation of X protein. J Biol Chem. May 27 1994;269(21):15118-23.
    98. Tang H, Delgermaa L, Huang F, et al. The transcriptional transactivation function of HBx protein is important for its augmentation role in hepatitis B virus replication. J Virol. May 2005;79(9):5548-56.
    99. Le TT, Zhang S, Hayashi N, Yasukawa M, Delgermaa L, Murakami S. Mutational analysis of human RNA polymerase II subunit 5 (RPB5): the residues critical for interactions with TFIIF subunit RAP30 and hepatitis B virus X protein. J Biochem. Sep 2005;138(3):215-24.
    100. Doitsh G, Shaul Y. HBV transcription repression in response to genotoxic stress is p53-dependent and abrogated by pX. Oncogene. Dec 9 1999;18(52):7506-13.
    101. Ahn JY, Chung EY, Kwun HJ, Jang KL. Transcriptional repression of p21(waf1) promoter by hepatitis B virus X protein via a p53-independent pathway. Gene. Sep 5 2001;275(1):163-8.
    102. Zhang Z, Torii N, Furusaka A, Malayaman N, Hu Z, Liang TJ. Structuraland functional characterization of interaction between hepatitis B virus X protein and the proteasome complex. J Biol Chem. May 19 2000;275(20):15157-65.
    103. Zhang Z, Protzer U, Hu Z, Jacob J, Liang TJ. Inhibition of cellular proteasome activities enhances hepadnavirus replication in an HBX-dependent manner. J Virol. May 2004;78(9):4566-72.
    104. Lee TH, Elledge SJ, Butel JS. Hepatitis B virus X protein interacts with a probable cellular DNA repair protein. J Virol. Feb 1995;69(2):1107-14.
    105. Jia L, Wang XW, Harris CC. Hepatitis B virus X protein inhibits nucleotide excision repair. Int J Cancer. Mar 15 1999;80(6):875-9.
    106. Klein NP, Schneider RJ. Activation of Src family kinases by hepatitis B virus HBx protein and coupled signaling to Ras. Mol Cell Biol. Nov 1997;17(11):6427-36.
    107. Bouchard MJ, Wang LH, Schneider RJ. Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science. Dec 14 2001;294(5550):2376-8.
    108. Bouchard MJ, Wang L, Schneider RJ. Activation of focal adhesion kinase by hepatitis B virus HBx protein: multiple functions in viral replication. J Virol. May 2006;80(9):4406-14.
    109. Zhang SM, Sun DC, Lou S, et al. HBx protein of hepatitis B virus (HBV) can form complex with mitochondrial HSP60 and HSP70. Arch Virol. Aug 2005;150(8):1579-90.
    110. Tanaka Y, Kanai F, Kawakami T, et al. Interaction of the hepatitis B virus X protein (HBx) with heat shock protein 60 enhances HBx-mediated apoptosis. Biochem Biophys Res Commun. May 28 2004;318(2):461-9.
    111. Takada S, Shirakata Y, Kaneniwa N, Koike K. Association of hepatitis B virus X protein with mitochondria causes mitochondrial aggregation at the nuclear periphery, leading to cell death. Oncogene. Nov 25 1999;18(50):6965-73.
    112. Huh KW, Siddiqui A. Characterization of the mitochondrial association of hepatitis B virus X protein, HBx. Mitochondrion. Feb 2002;1(4):349-59.
    113. Blum HE, Zhang ZS, Galun E, et al. Hepatitis B virus X protein is not central to the viral life cycle in vitro. J Virol. Feb 1992;66(2):1223-7.
    114. Zoulim F, Saputelli J, Seeger C. Woodchuck hepatitis virus X protein is required for viral infection in vivo. J Virol. Mar 1994;68(3):2026-30.
    115. Chen HS, Kaneko S, Girones R, et al. The woodchuck hepatitis virus X gene is important for establishment of virus infection in woodchucks. J Virol. Mar 1993;67(3):1218-26.
    116. Zheng Y, Li J, Johnson DL, Ou JH. Regulation of hepatitis B virusreplication by the ras-mitogen-activated protein kinase signaling pathway. J Virol. Jul 2003;77(14):7707-12.
    117. Xu Z, Yen TS, Wu L, et al. Enhancement of hepatitis B virus replication by its X protein in transgenic mice. J Virol. Mar 2002;76(5):2579-84.
    118. Bouchard MJ, Puro RJ, Wang L, Schneider RJ. Activation and inhibition of cellular calcium and tyrosine kinase signaling pathways identify targets of the HBx protein involved in hepatitis B virus replication. J Virol. Jul 2003;77(14):7713-9.
    119. Melegari M, Wolf SK, Schneider RJ. Hepatitis B virus DNA replication is coordinated by core protein serine phosphorylation and HBx expression. J Virol. Aug 2005;79(15):9810-20.
    120. Leupin O, Bontron S, Schaeffer C, Strubin M. Hepatitis B virus X protein stimulates viral genome replication via a DDB1-dependent pathway distinct from that leading to cell death. J Virol. Apr 2005;79(7):4238-45.
    121. Hwang GY, Lin CY, Huang LM, et al. Detection of the hepatitis B virus X protein (HBx) antigen and anti-HBx antibodies in cases of human hepatocellular carcinoma. J Clin Microbiol. Dec 2003;41(12):5598-603.
    122. Zhang X, Dong N, Zhang H, You J, Wang H, Ye L. Effects of hepatitis B virus X protein on human telomerase reverse transcriptase expression and activity in hepatoma cells. J Lab Clin Med. Feb 2005;145(2):98-104.
    123. Kim CM, Koike K, Saito I, Miyamura T, Jay G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature. May 23 1991;351(6324):317-20.
    124. Yu DY, Moon HB, Son JK, et al. Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein. J Hepatol. Jul 1999;31(1):123-32.
    125. Lee TH, Finegold MJ, Shen RF, DeMayo JL, Woo SL, Butel JS. Hepatitis B virus transactivator X protein is not tumorigenic in transgenic mice. J Virol. Dec 1990;64(12):5939-47.
    126. Reifenberg K, Lohler J, Pudollek HP, et al. Long-term expression of the hepatitis B virus core-e- and X-proteins does not cause pathologic changes in transgenic mice. J Hepatol. Jan 1997;26(1):119-30.
    127. Hu Z, Zhang Z, Kim JW, Huang Y, Liang TJ. Altered proteolysis and global gene expression in hepatitis B virus X transgenic mouse liver. J Virol. Feb 2006;80(3):1405-13.
    128. Madden CR, Finegold MJ, Slagle BL. Hepatitis B virus X protein acts as a tumor promoter in development of diethylnitrosamine-induced preneoplastic lesions. J Virol. Apr 2001;75(8):3851-8.
    129. Shirakata Y, Kawada M, Fujiki Y, et al. The X gene of hepatitis B virusinduced growth stimulation and tumorigenic transformation of mouse NIH3T3 cells. Jpn J Cancer Res. Jul 1989;80(7):617-21.
    130. Oguey D, Dumenco LL, Pierce RH, Fausto N. Analysis of the tumorigenicity of the X gene of hepatitis B virus in a nontransformed hepatocyte cell line and the effects of cotransfection with a murine p53 mutant equivalent to human codon 249. Hepatology. Nov 1996;24(5):1024-33.
    131. Seifer M, Gerlich WH. Increased growth of permanent mouse fibroblasts in soft agar after transfection with hepatitis B virus DNA. Arch Virol. 1992;126(1-4):119-28.
    132. Seifer M, Hohne M, Schaefer S, Gerlich WH. In vitro tumorigenicity of hepatitis B virus DNA and HBx protein. J Hepatol. 1991;13 Suppl 4:S61-5.
    133. Schuster R, Gerlich WH, Schaefer S. Induction of apoptosis by the transactivating domains of the hepatitis B virus X gene leads to suppression of oncogenic transformation of primary rat embryo fibroblasts. Oncogene. Feb 24 2000;19(9):1173-80.
    134. Schuster R, Hildt E, Chang SF, et al. Conserved transactivating and pro-apoptotic functions of hepadnaviral X protein in ortho- and avihepadnaviruses. Oncogene. Sep 26 2002;21(43):6606-13.
    135. Artandi SE, DePinho RA. Mice without telomerase: what can they teach us about human cancer? Nat Med. Aug 2000;6(8):852-5.
    136. Braig M, Lee S, Loddenkemper C, et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. Aug 4 2005;436(7051):660-5.
    137. Kim YC, Song KS, Yoon G, Nam MJ, Ryu WS. Activated ras oncogene collaborates with HBx gene of hepatitis B virus to transform cells by suppressing HBx-mediated apoptosis. Oncogene. Jan 4 2001;20(1):16-23.
    138. Sharpless NE, DePinho RA. Cancer: crime and punishment. Nature. Aug 4 2005;436(7051):636-7.
    139. Chan DW, Ng IO. Knock-down of hepatitis B virus X protein reduces the tumorigenicity of hepatocellular carcinoma cells. J Pathol. Feb 2006;208(3):372-80.
    140. Hamasaki K, Nakao K, Matsumoto K, Ichikawa T, Ishikawa H, Eguchi K. Short interfering RNA-directed inhibition of hepatitis B virus replication. FEBS Lett. May 22 2003;543(1-3):51-4.
    141. Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology. Apr 2003;37(4):764-70.
    142. Olson EN, Klein WH. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. Jan1994;8(1):1-8.
    143. Kadesch T. Consequences of heteromeric interactions among helix-loop-helix proteins. Cell Growth Differ. Jan 1993;4(1):49-55.
    144. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. Apr 6 1990;61(1):49-59.
    145. Norton JD, Deed RW, Craggs G, Sablitzky F. Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol. Feb 1998;8(2):58-65.
    146. Evans SM, O'Brien TX. Expression of the helix-loop-helix factor Id during mouse embryonic development. Dev Biol. Oct 1993;159(2):485-99.
    147. Riechmann V, Sablitzky F. Mutually exclusive expression of two dominant-negative helix-loop-helix (dnHLH) genes, Id4 and Id3, in the developing brain of the mouse suggests distinct regulatory roles of these dnHLH proteins during cellular proliferation and differentiation of the nervous system. Cell Growth Differ. Jul 1995;6(7):837-43.
    148. Yokota Y. Id and development. Oncogene. Dec 20 2001;20(58):8290-8.
    149. Lyden D, Young AZ, Zagzag D, et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature. Oct 14 1999;401(6754):670-7.
    150. Nickoloff BJ, Chaturvedi V, Bacon P, Qin JZ, Denning MF, Diaz MO. Id-1 delays senescence but does not immortalize keratinocytes. J Biol Chem. Sep 8 2000;275(36):27501-4.
    151. Alani RM, Hasskarl J, Grace M, Hernandez MC, Israel MA, Munger K. Immortalization of primary human keratinocytes by the helix-loop-helix protein, Id-1. Proc Natl Acad Sci U S A. Aug 17 1999;96(17):9637-41.
    152. Foreman KE, Friborg J, Chandran B, et al. Injection of human herpesvirus-8 in human skin engrafted on SCID mice induces Kaposi's sarcoma-like lesions. J Dermatol Sci. Jul 2001;26(3):182-93.
    153. Tang J, Gordon GM, Muller MG, Dahiya M, Foreman KE. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen induces expression of the helix-loop-helix protein Id-1 in human endothelial cells. J Virol. May 2003;77(10):5975-84.
    154. Schindl M, Schoppmann SF, Strobel T, et al. Level of Id-1 protein expression correlates with poor differentiation, enhanced malignant potential, and more aggressive clinical behavior of epithelial ovarian tumors. Clin Cancer Res. Feb 2003;9(2):779-85.
    155. Ouyang XS, Wang X, Lee DT, Tsao SW, Wong YC. Over expression of ID-1 in prostate cancer. J Urol. Jun 2002;167(6):2598-602.
    156. Schoppmann SF, Schindl M, Bayer G, et al. Overexpression of Id-1 isassociated with poor clinical outcome in node negative breast cancer. Int J Cancer. May 10 2003;104(6):677-82.
    157.Schindl M, Oberhuber G, Obermair A, Schoppmann SF, Karner B, Birner P. Overexpression of Id-1 protein is a marker for unfavorable prognosis in early-stage cervical cancer. Cancer Res. Aug 1 2001;61(15):5703-6.
    158. Lin CQ, Singh J, Murata K, et al. A role for Id-1 in the aggressive phenotype and steroid hormone response of human breast cancer cells. Cancer Res. Mar 1 2000;60(5):1332-40.
    159. Volpert OV, Pili R, Sikder HA, et al. Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell. Dec 2002;2(6):473-83.
    160. Wice BM, Gordon JI. Forced expression of Id-1 in the adult mouse small intestinal epithelium is associated with development of adenomas. J Biol Chem. Sep 25 1998;273(39):25310-9.
    161. Kreider BL, Benezra R, Rovera G, Kadesch T. Inhibition of myeloid differentiation by the helix-loop-helix protein Id. Science. Mar 27 1992;255(5052):1700-2.
    162. Shoji W, Yamamoto T, Obinata M. The helix-loop-helix protein Id inhibits differentiation of murine erythroleukemia cells. J Biol Chem. Feb 18 1994;269(7):5078-84.
    163. Lister J, Forrester WC, Baron MH. Inhibition of an erythroid differentiation switch by the helix-loop-helix protein Id1. J Biol Chem. Jul 28 1995;270(30):17939-46.
    164. Jen Y, Weintraub H, Benezra R. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev. Aug 1992;6(8):1466-79.
    165. Katagiri T, Imada M, Yanai T, Suda T, Takahashi N, Kamijo R. Identification of a BMP-responsive element in Id1, the gene for inhibition of myogenesis. Genes Cells. Sep 2002;7(9):949-60.
    166. Ling MT, Wang X, Tsao SW, Wong YC. Down-regulation of Id-1 expression is associated with TGF beta 1-induced growth arrest in prostate epithelial cells. Biochim Biophys Acta. Apr 15 2002;1570(3):145-52.
    167. Ma Y, Koza-Taylor PH, DiMattia DA, et al. Microarray analysis uncovers retinoid targets in human bronchial epithelial cells. Oncogene. Jul 31 2003;22(31):4924-32.
    168. Goldstein S. Replicative senescence: the human fibroblast comes of age. Science. Sep 7 1990;249(4973):1129-33.
    169. McConnell BB, Starborg M, Brookes S, Peters G. Inhibitors of cyclin-dependent kinases induce features of replicative senescence in earlypassage human diploid fibroblasts. Curr Biol. Mar 12 1998;8(6):351-4.
    170. Hara E, Smith R, Parry D, Tahara H, Stone S, Peters G. Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol. Mar 1996;16(3):859-67.
    171. Tang J, Gordon GM, Nickoloff BJ, Foreman KE. The helix-loop-helix protein id-1 delays onset of replicative senescence in human endothelial cells. Lab Invest. Aug 2002;82(8):1073-9.
    172. Norton JD, Atherton GT. Coupling of cell growth control and apoptosis functions of Id proteins. Mol Cell Biol. Apr 1998;18(4):2371-81.
    173. Alani RM, Young AZ, Shifflett CB. Id1 regulation of cellular senescence through transcriptional repression of p16/Ink4a. Proc Natl Acad Sci U S A. Jul 3 2001;98(14):7812-6.
    174. Ohtani N, Zebedee Z, Huot TJ, et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature. Feb 22 2001;409(6823):1067-70.
    175. Sherr CJ. Cancer cell cycles. Science. Dec 6 1996;274(5293):1672-7.
    176. Tournay O, Benezra R. Transcription of the dominant-negative helix-loop-helix protein Id1 is regulated by a protein complex containing the immediate-early response gene Egr-1. Mol Cell Biol. May 1996;16(5):2418-30.
    177. Schiffman MH, Brinton LA. The epidemiology of cervical carcinogenesis. Cancer. Nov 15 1995;76(10 Suppl):1888-901.
    178. Tsao SW, Wong N, Wang X, et al. Nonrandom chromosomal imbalances in human ovarian surface epithelial cells immortalized by HPV16-E6E7 viral oncogenes. Cancer Genet Cytogenet. Oct 15 2001;130(2):141-9.
    179. Wong YC, Wang X, Ling MT. Id-1 expression and cell survival. Apoptosis. May 2004;9(3):279-89.
    180. Hu YC, Lam KY, Law S, Wong J, Srivastava G. Identification of differentially expressed genes in esophageal squamous cell carcinoma (ESCC) by cDNA expression array: overexpression of Fra-1, Neogenin, Id-1, and CDC25B genes in ESCC. Clin Cancer Res. Aug 2001;7(8):2213-21.
    181. Ouyang XS, Wang X, Ling MT, Wong HL, Tsao SW, Wong YC. Id-1 stimulates serum independent prostate cancer cell proliferation through inactivation of p16(INK4a)/pRB pathway. Carcinogenesis. May 2002;23(5):721-5.
    182. Wang X, Xu K, Ling MT, et al. Evidence of increased Id-1 expression and its role in cell proliferation in nasopharyngeal carcinoma cells. Mol Carcinog. Sep 2002;35(1):42-9.
    183. Desprez PY, Lin CQ, Thomasset N, Sympson CJ, Bissell MJ, Campisi J. A novel pathway for mammary epithelial cell invasion induced by the helix-loop-helix protein Id-1. Mol Cell Biol. Aug 1998;18(8):4577-88.
    184. Fong S, Itahana Y, Sumida T, et al. Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proc Natl Acad Sci U S A. Nov 11 2003;100(23):13543-8.
    185. Ling MT, Wang X, Ouyang XS, Xu K, Tsao SW, Wong YC. Id-1 expression promotes cell survival through activation of NF-kappaB signalling pathway in prostate cancer cells. Oncogene. Jul 17 2003;22(29):4498-508.
    186. Ling MT, Wang X, Lee DT, Tam PC, Tsao SW, Wong YC. Id-1 expression induces androgen-independent prostate cancer cell growth through activation of epidermal growth factor receptor (EGF-R). Carcinogenesis. Apr 2004;25(4):517-25.
    187. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. Mar 2002;2(3):161-74.
    188. Talhouk RS, Chin JR, Unemori EN, Werb Z, Bissell MJ. Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development. Jun 1991;112(2):439-49.
    189. Shiomi T, Okada Y. MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev. Jun-Sep 2003;22(2-3):145-52.
    190. Gu ZD, Li JY, Li M, et al. Matrix metalloproteinases expression correlates with survival in patients with esophageal squamous cell carcinoma. Am J Gastroenterol. Aug 2005;100(8):1835-43.
    191. Ogawa M, Ikeuchi K, Watanabe M, et al. Expression of matrix metalloproteinase 7, laminin and type IV collagen-associated liver metastasis in human colorectal cancer: immunohistochemical approach. Hepatogastroenterology. May-Jun 2005;52(63):875-80.
    192. Takai N, Miyazaki T, Fujisawa K, Nasu K, Miyakawa I. Id1 expression is associated with histological grade and invasive behavior in endometrial carcinoma. Cancer Lett. Apr 26 2001;165(2):185-93.
    193. Minn AJ, Gupta GP, Siegel PM, et al. Genes that mediate breast cancer metastasis to lung. Nature. Jul 28 2005;436(7050):518-24.
    194. Sato Y. Molecular diagnosis of tumor angiogenesis and anti-angiogenic cancer therapy. Int J Clin Oncol. Aug 2003;8(4):200-6.
    195. Brahimi-Horn MC, Pouyssegur J. The hypoxia-inducible factor and tumor progression along the angiogenic pathway. Int Rev Cytol. 2005;242:157-213.
    196. Rosen EM, Lamszus K, Laterra J, Polverini PJ, Rubin JS, Goldberg ID.HGF/SF in angiogenesis. Ciba Found Symp. 1997;212:215-26; discussion 27-9.
    197. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69 Suppl 3:4-10.
    198. Ling MT, Lau TC, Zhou C, et al. Overexpression of Id-1 in prostate cancer cells promotes angiogenesis through the activation of vascular endothelial growth factor (VEGF). Carcinogenesis. Oct 2005;26(10):1668-76.
    199. Lehne G. P-glycoprotein as a drug target in the treatment of multidrug resistant cancer. Curr Drug Targets. Jul 2000;1(1):85-99.
    200. Kim R, Emi M, Tanabe K, Toge T. Therapeutic potential of antisense Bcl-2 as a chemosensitizer for cancer therapy. Cancer. Dec 1 2004;101(11):2491-502.
    201. Davis JM, Navolanic PM, Weinstein-Oppenheimer CR, et al. Raf-1 and Bcl-2 induce distinct and common pathways that contribute to breast cancer drug resistance. Clin Cancer Res. Mar 2003;9(3):1161-70.
    202. Nakanishi C, Toi M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer. Apr 2005;5(4):297-309.
    203. Vasilevskaya I, O'Dwyer PJ. Role of Jun and Jun kinase in resistance of cancer cells to therapy. Drug Resist Updat. Jun 2003;6(3):147-56.
    204. Ling MT, Wang X, Ouyang XS, et al. Activation of MAPK signaling pathway is essential for Id-1 induced serum independent prostate cancer cell growth. Oncogene. Dec 5 2002;21(55):8498-505.
    205. Cheung HW, Ling MT, Tsao SW, Wong YC, Wang X. Id-1-induced Raf/MEK pathway activation is essential for its protective role against taxol-induced apoptosis in nasopharyngeal carcinoma cells. Carcinogenesis. Jun 2004;25(6):881-7.
    206. Zhang X, Ling MT, Wang X, Wong YC. Inactivation of Id-1 in prostate cancer cells: A potential therapeutic target in inducing chemosensitization to taxol through activation of JNK pathway. Int J Cancer. Apr 15 2006;118(8):2072-81.
    207. Lin JC, Chang SY, Hsieh DS, Lee CF, Yu DS. The association of Id-1, MIF and GSTpi with acquired drug resistance in hormone independent prostate cancer cells. Oncol Rep. May 2005;13(5):983-8.
    208. Ling MT, Wang X, Zhang X, Wong YC. The multiple roles of Id-1 in cancer progression. Differentiation. Dec 2006;74(9-10):481-7.
    209. Florio M, Hernandez MC, Yang H, Shu HK, Cleveland JL, Israel MA. Id2 promotes apoptosis by a novel mechanism independent of dimerization to basic helix-loop-helix factors. Mol Cell Biol. Sep 1998;18(9):5435-44.
    210. Kim D, Peng XC, Sun XH. Massive apoptosis of thymocytes inT-cell-deficient Id1 transgenic mice. Mol Cell Biol. Dec 1999;19(12):8240-53.
    211. Parrinello S, Lin CQ, Murata K, et al. Id-1, ITF-2, and Id-2 comprise a network of helix-loop-helix proteins that regulate mammary epithelial cell proliferation, differentiation, and apoptosis. J Biol Chem. Oct 19 2001;276(42):39213-9.
    212. Tanaka K, Pracyk JB, Takeda K, et al. Expression of Id1 results in apoptosis of cardiac myocytes through a redox-dependent mechanism. J Biol Chem. Oct 2 1998;273(40):25922-8.
    213. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. Nov 2001;7(11):1194-201.
    214. de Candia P, Solit DB, Giri D, et al. Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors. Proc Natl Acad Sci U S A. Oct 14 2003;100(21):12337-42.
    215. Ruzinova MB, Schoer RA, Gerald W, et al. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell. Oct 2003;4(4):277-89.
    216. Lee TK, Man K, Ling MT, et al. Over-expression of Id-1 induces cell proliferation in hepatocellular carcinoma through inactivation of p16INK4a/RB pathway. Carcinogenesis. Nov 2003;24(11):1729-36.
    217. Matsuda Y, Yamagiwa S, Takamura M, et al. Overexpressed Id-1 is associated with a high risk of hepatocellular carcinoma development in patients with cirrhosis without transcriptional repression of p16. Cancer. Sep 1 2005;104(5):1037-44.
    218. Damdinsuren B, Nagano H, Kondo M, et al. TGF-beta1-induced cell growth arrest and partial differentiation is related to the suppression of Id1 in human hepatoma cells. Oncol Rep. Feb 2006;15(2):401-8.
    219. Oshikawa O, Tamura S, Kawata S, et al. The effect of hepatitis B virus X gene expression on response to growth inhibition by transforming growth factor-beta 1. Biochem Biophys Res Commun. May 24 1996;222(3):770-3.
    220. Zhu R, Li BZ, Li H, et al. Association of p16INK4A hypermethylation with hepatitis B virus X protein expression in the early stage of HBV-associated hepatocarcinogenesis. Pathol Int. Jun 2007;57(6):328-36.
    221. Jung JK, Arora P, Pagano JS, Jang KL. Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a-cyclin D1-CDK 4/6-pRb-E2F1pathway. Cancer Res. Jun 15 2007;67(12):5771-8.
    222. Han HK, Han CY, Cheon EP, Lee J, Kang KW. Role of hypoxia-inducible factor-alpha in hepatitis-B-virus X protein-mediated MDR1 activation. Biochem Biophys Res Commun. Jun 1 2007;357(2):567-73.
    223. Kim HJ, Chung H, Yoo YG, et al. Inhibitor of DNA binding 1 activates vascular endothelial growth factor through enhancing the stability and activity of hypoxia-inducible factor-1alpha. Mol Cancer Res. Apr 2007;5(4):321-9.
    224. Ling MT, Chiu YT, Lee TK, et al. Id-1 induces proteasome-dependent degradation of the HBX protein. J Mol Biol. Sep 26 2008;382(1):34-43.
    225. Ling MT, Kwok WK, Fung MK, Xianghong W, Wong YC. Proteasome mediated degradation of Id-1 is associated with TNFalpha-induced apoptosis in prostate cancer cells. Carcinogenesis. Feb 2006;27(2):205-15.
    226. Lingbeck JM, Trausch-Azar JS, Ciechanover A, Schwartz AL. E12 and E47 modulate cellular localization and proteasome-mediated degradation of MyoD and Id1. Oncogene. Sep 22 2005;24(42):6376-84.
    227. Berse M, Bounpheng M, Huang X, Christy B, Pollmann C, Dubiel W. Ubiquitin-dependent degradation of Id1 and Id3 is mediated by the COP9 signalosome. J Mol Biol. Oct 15 2004;343(2):361-70.
    228. Liu J, Lian Z, Han S, et al. Downregulation of E-cadherin by hepatitis B virus X antigen in hepatocellullar carcinoma. Oncogene. Feb 16 2006;25(7):1008-17.
    229. Lian Z, Liu J, Li L, et al. Enhanced cell survival of Hep3B cells by the hepatitis B x antigen effector, URG11, is associated with upregulation of beta-catenin. Hepatology. Mar 2006;43(3):415-24.
    230. Xie H, Song J, Liu K, et al. The expression of hypoxia-inducible factor-1alpha in hepatitis B virus-related hepatocellular carcinoma: correlation with patients' prognosis and hepatitis B virus X protein. Dig Dis Sci. Dec 2008;53(12):3225-33.
    231. Marrero JA, Fontana RJ, Barrat A, et al. Prognosis of hepatocellular carcinoma: comparison of 7 staging systems in an American cohort. Hepatology. Apr 2005;41(4):707-16.
    232. Fong S, Debs RJ, Desprez PY. Id genes and proteins as promising targets in cancer therapy. Trends Mol Med. Aug 2004;10(8):387-92.
    233. Zhao ZR, Zhang ZY, Zhang H, Jiang L, Wang MW, Sun XF. Overexpression of Id-1 protein is a marker in colorectal cancer progression. Oncol Rep. Feb 2008;19(2):419-24.
    234. Le Jossic C, Ilyin GP, Loyer P, Glaise D, Cariou S, Guguen-Guillouzo C. Expression of helix-loop-helix factor Id-1 is dependent on the hepatocyteproliferation and differentiation status in rat liver and in primary culture. Cancer Res. Dec 1 1994;54(23):6065-8.
    235. Zhang X, Ling MT, Wong YC, Wang X. Evidence of a novel antiapoptotic factor: role of inhibitor of differentiation or DNA binding (Id-1) in anticancer drug-induced apoptosis. Cancer Sci. Mar 2007;98(3):308-14.
    236. Wada H, Nagano H, Yamamoto H, et al. Expression pattern of angiogenic factors and prognosis after hepatic resection in hepatocellular carcinoma: importance of angiopoietin-2 and hypoxia-induced factor-1 alpha. Liver Int. May 2006;26(4):414-23.
    237. Huang J, Kwong J, Sun EC, Liang TJ. Proteasome complex as a potential cellular target of hepatitis B virus X protein. J Virol. Aug 1996;70(8):5582-91.
    238. Terradillos O, de La Coste A, Pollicino T, et al. The hepatitis B virus X protein abrogates Bcl-2-mediated protection against Fas apoptosis in the liver. Oncogene. Jan 17 2002;21(3):377-86.
    239. Miao J, Chen GG, Chun SY, Lai PP. Hepatitis B virus X protein induces apoptosis in hepatoma cells through inhibiting Bcl-xL expression. Cancer Lett. May 8 2006;236(1):115-24.
    240. Pan J, Duan LX, Sun BS, Feitelson MA. Hepatitis B virus X protein protects against anti-Fas-mediated apoptosis in human liver cells by inducing NF-kappa B. J Gen Virol. Jan 2001;82(Pt 1):171-82.
    241. Mansour SJ, Matten WT, Hermann AS, et al. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science. Aug 12 1994;265(5174):966-70.
    242. Yu FL, Liu HJ, Lee JW, Liao MH, Shih WL. Hepatitis B virus X protein promotes cell migration by inducing matrix metalloproteinase-3. J Hepatol. Apr 2005;42(4):520-7.
    243. Ou DP, Tao YM, Tang FQ, Yang LY. The hepatitis B virus X protein promotes hepatocellular carcinoma metastasis by upregulation of matrix metalloproteinases. Int J Cancer. Mar 15 2007;120(6):1208-14.
    244. Lee SW, Lee YM, Bae SK, Murakami S, Yun Y, Kim KW. Human hepatitis B virus X protein is a possible mediator of hypoxia-induced angiogenesis in hepatocarcinogenesis. Biochem Biophys Res Commun. Feb 16 2000;268(2):456-61.
    245. Kim VN. RNA interference in functional genomics and medicine. J Korean Med Sci. Jun 2003;18(3):309-18.
    246. Stewart SA, Dykxhoorn DM, Palliser D, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA. Apr 2003;9(4):493-501.
    247. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stabletransduction of nondividing cells by a lentiviral vector. Science. Apr 12 1996;272(5259):263-7.
    248. Chen Y, Lin MC, Yao H, et al. Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin. Hepatology. Jul 2007;46(1):200-8.
    249. Liau SS, Ashley SW, Whang EE. Lentivirus-mediated RNA interference of HMGA1 promotes chemosensitivity to gemcitabine in pancreatic adenocarcinoma. J Gastrointest Surg. Nov 2006;10(9):1254-62; discussion 63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700