抗静电聚丙烯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前在国内外,聚丙烯(PP)制品应用非常广泛。在一些特殊场合PP可以代替某些工程塑料,被广泛应用于汽车工业、家用电器、工业配套材料、医疗用具及日用领域。但是PP具有很强的电绝缘性,体积电阻率均在1016~1020?·㎝。正因为优异的电绝缘性,PP制品在生产和使用中会积累静电荷,会引起一些危害或事故。所以消除PP的静电、降低电阻率是十分必要的。本文采用了两种不同的抗静电剂对PP的抗静电性能与力学性能进行了研究与讨论,同时考察了环境湿度对其抗静电PP的影响,主要内容为:
     (1)采用双螺杆挤出机熔融接枝方法制备了(PP/POE)-g-MAH-g-PAM,将其作为抗静电剂;同时加入石棉短纤维,采用熔融挤出的方式,得到抗静电体系。研究表明,该抗静电剂属于高分子型抗静电剂,该接枝物主链上含有酰胺基团,作为抗静电剂可使PP的电阻率下降2~3个数量级,表面电阻率可达到1011?,同时石棉短纤维能在体系中搭建增强“网络”,对PP的电性能也有一定的帮助,同时提高体系的力学性能。环境湿度对电性能有一定影响,但并不明显,环境湿度从40%增加到80%,表面电阻率下降了2个数量级。
     (2)抗静电剂采用合成的甘油乙撑双硬脂酰胺,同时在PP树脂中加入石棉短纤维与偶联剂,其中偶联剂用量约为纤维含量的1%,力学性能可达到最优。抗静电剂甘油乙撑双硬脂酰胺具有了极性的酰胺基团,同时也具有羟基基团,该合成物具有很好的亲水性,当甘油乙撑双硬脂酰胺含量达到30PHR,表面电阻率最多可下降为1.67×1011?,但力学性能却有很大的降低;加入石棉短纤维,电阻率下降约为1个数量级,同时对力学性能有一定帮助。环境湿度从40%增长到80%,试样的表面电阻率下降了3~4个数量级,要优于前一个抗静电体系。
At present, products of polypropylene (PP) are extremely widespread at home and abroad. In some special fields, PP may replace some engineering plastics, and is widely applied to automobile industry, household electric appliances, industrial matching material, medical apparatus and daily area. But PP has excellent electrical insulation property, and the range of volume resistivity is 1016~1020?·㎝. Because of excellent electrical insulation property, the products of PP can accumulate the charge in the manufacture and use, and can cause some harms or accidents. Therefore, eliminating static electricity of PP and reducing the electronic resistivity is extremely essential. This article had researched and discussed mechanical properties and antistatic properties of PP which used two kind of different antistatic agents, and had discussed environment humidity’s effects to antistatic PP. Main content is:
     (1) Antistatic system which contained short asbestos fiber and (PP/POE)-g-MAH-g-PAM had been achieved at last, and (PP/POE)-g-MAH-g-PAM which used as antistatic agent was prepared by extruded molding. The result indicated that, this antistatic agent belonged to macromolecule antistatic agent, main chain of this graft chain had acidamide groups, and it could cause electronic resistivity of PP to drop 2~3 magnitudes, the surface resistivity could reach to 1011?. Simultaneously, short asbestos fiber could build the strengthen "the network" in the system, also could help to electricity performance of PP and enhanced mechanical performance of PP. Environment humidity had the certain influence on electricity performance, but was not certainly obvious. Environment humidity increased from 40% to 80%, surface resistivity of PP dropped 2 magnitudes.
     (2) Antistatic system contained antistatic agent which was synthetic glycerol ethlene bistearic amide, short asbestos fiber and coupling agent. Mechanical performance of PP was optimal when the content of coupling agent was 1% of content of short asbestos fiber. Glycerol ethlene bistearic amide which was antistatic agent had polar acidamide groups and hydroxy groups, and had excellent hydrophilic properties. When content of glycerine ethylene double stearamide achieves 30PHR, surface resistivity of PP dropped to 1.67×1011?, but mechanics performance actually decreased. Because of addition of short asbestos fiber, electronic resistivity dropped 1 magnitude; simultaneously mechanics performance had an enhancement. The antistatic efficiency of the this antistatic system was better than the former, when environment humidity increased from 40% to 80%, surface resistivity of PP dropped 3~4 magnitudes.
引文
[1]钱伯章.国内外聚丙烯生产与市场分析[J].中国石油和化工经济分析,2006(10):44~49
    [2]赵抒卿.高分子材料抗静电技术,纺织工业出版社,1991
    [3]郑玉婴.ABS 阻燃抗静电体系的研究.福州大学学报(自然科学版),2000,4(28):95~98
    [4]杜仕国.抗静电剂的开发及其应用[J].化工新型材料,1994(7):9~12
    [5]化工百科全书编写组.化工百科全书.北京:化工出版社,1995:668
    [6]Klinken berg,Van der Minne J L. Electro-statistics in the petroleum industry, Amsterdam,Elesevier,1958
    [7]刘冠文.抗静电剂在 BOPP 上的应用效能[J].合成材料老化与应用,2002(2):10~18
    [8]M.Omastová,I.Chodák,J.Pionteck.Electrical and mechanical properties of conducting polymer composites.Synthetic Metals,1999,102:1251~1252
    [9]Jingsong Xie,Jingyong Hou,Yafang Han. A discussion of the contact behaviour of a carbon-fibrecomposite for electric contact applications[J],Composites Science and Technology,1999,59:1189~1194
    [10]Chensha Li. Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes. Composites Science and Technology,2004,64:2089~2096
    [11]化工新型材料,1981(1):34
    [12]张海波.添加氧化锌晶须得聚丙烯腈纤维抗静电性研究.合成纤维,2005(6):25~26
    [13]陈晓梅.马来酸酐接枝聚丙烯P石墨导电纳米复合材料的研究[J].高分子学报,2006(3):331~335
    [14]Sherman R D,Middleman L M,Jacobs S M. Poyim. Eng. Sci. 1983,23:36
    [15]Moshe Narkis,Gershon Lidor,Anita Vaxman,Limor Zuri.New injection moldable electrostatic dissipative (ESD) composites based on very low carbon black loadings[J]. Journal of Electrostatics,1999,47:201~214
    [16]Sumita M. Asai S. MiyaderaN,et. al. Electrical conductivity of Carbon black filled ethylene-vinyl acetate copolymer as a function of vinyl acete content. Coll. Polym. Sci,1986(284):212
    [17]邓毅.导电炭黑在塑料中的应用[J].中国塑料,2001,15(4):6
    [18]陆长征等.炭黑填充导电塑料的研究[J].塑料,2000,29(1):32~34
    [19]陈耀庭,周明义,王国全等.碳纤维/聚合物复合材料的导电性及电磁屏蔽性能的研究[J].塑料科技,1997(6):4.
    [20]贺福,王茂章著.碳纤维及其复合材料[M].北京:科学出版社,1995.
    [21]宋学智,阎恒梅.工程塑料应用[J].1991,1:53
    [22]S.A. Gordeyev,J.A. ferreira,C.A. Bernardo,I.M. Ward A promising conductive material:highly oriented polypropylene filled with short vapour-grown carbon fibers. Materials letters,2001,51,32~36
    [23]范凌云等.表面改性碳纳米管/PMMA复合材料的电性能[J].电子元件与材料,2006,25(4):24~26
    [24]吕咏梅.抗静电剂开发与生产现状[J].中国石油与化工,2003(11):37~39
    [25]李涛.抗静电剂在PP与PE中的应用[J].现代塑料加工应用,2003,15(1):35~37
    [26]李燕云.抗静电剂综述[J].北京石油化工学院学报,2003,11(1):28~32
    [27]陈国华.高分子材料抗静电技术[J].塑料,2000,29(4):31~34
    [28]Markus C. Grob,Ernst Minder. Permanent antistatic additives:new developments [J]. Plastics Additives & Compounding,1999:2~20
    [29]刘冠云.抗静电剂在BOPP中的应用效能.合成材料老化与应用,2002(2):10~12
    [30]黄东辉.抗静电剂在聚烯烃发泡材料中的应用研究.塑料助剂,2005(6):27~29
    [31]陈宇等.聚烯烃包装材料抗静电剂的研究进展.精细与专用化学品,2001(9):32~34
    [32]张念泰等.抗静电PE膜的研制.江苏石油化工学院学报,2000,12(2):15~17
    [33]董秀洁等.抗静电阻燃材料 ABS、PP、PE 的研究与开发.印染助剂.2002,19(1):48
    [34]丁运生等.抗静电聚丙烯的制备研究.塑料工业.2004,32(5):37~38
    [35]李爱英等.抗静电 PP 的研究.塑料工业.2004,32(10):43~44
    [36]贺大禄,李宝芳,罗英武等.复合抗静电剂在 PP 上的应用[J].塑料工业,2003,31(5):43~45
    [37]吴祥亮,张中华.国内外聚烯烃塑料抗静电剂的现状及其发展动向[J].精细石油化工,1991(5):21~24
    [38]张景昌,李冬霞等.塑料纳米填料静电及力学性能的研究和应用[J].中原工学院学报,2003,14 (1):84~85
    [39]张洪艳,王海泉,陈国华. 新型导电填料—纳米石墨微片[J].塑料,2006,35(4):42~45
    [40]王僧山.有机抗静电剂的应用和发展现状[J].广东塑料.2006(3):43~47
    [41]赵择卿编译《高分子材料抗静电技术》.北京:纺织工业出版社,1991
    [42]吕世光编《塑料助剂手册》.北京:轻工业出版社,1988
    [43]赵择卿,陈小立编《高分子材料导电和抗静电技术及应用》.北京:中国纺织出版社,2006
    [44]邓如生.共混改性工程塑料.北京:化学工业出版社,2003.114
    [45]张凌军,谢鸽成.抗静电剂 IRGASTAT P[J].塑料助剂,2005(2):34~36
    [46]赵和英.抗静电 PET 树脂的合成及性能研究[J]合成树脂及塑料,2003,20(2):1~5
    [47]李书娟.永久型抗静电剂的研究进展[J].塑料工业,2006,34(5):29~32
    [48]丁乃秀.聚丙烯导电复合材料的增韧改性研究.塑料制造[J].2006(8):60~63
    [49]夏琳.POE 的性能及其在聚丙烯共混改性中的应用[J].弹性体.2006,16(3):65~68
    [50]王经武编.塑料改性技术.北京:化学工业出版社,2004:259
    [51]刘扬.石棉增强复合材料.纤维复合材料[J].1999,(2):49
    [52]刘得利.国外石棉水泥建筑材料发展概况[J].国外建材,61~63
    [53]Morris WL,Inman R U,Cox b n..J Master Sci,1989,24:199
    [54]Xu Min,Cai Zhi. Effects of different modifiers on the properties of wood-polymer composites[J]. Journal of Forestry Research,2004,15(1):7779
    [55]Jayamol George , and M S Sreekala. A review of interface modification and characterization of natural fiber reinforced plastics composites[J]. Poly. Eng. Sci.,2001,41(9):1471~1484
    [56]薛平,张明珠,何亚东等.木塑复合材料及挤出成型特性的研究[J].中国塑料,2001,15(8):5359
    [57]N.E. Zafeiropoulosa,D.R. Williams,C.A. Bailliea,et al. Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments[J]. Composites:Part A,2002,33:1083~1093
    [58]杨宁,贵大勇,刘吉平. 硅烷偶联剂对晶须的表面处理及应用[J]. 塑料科技,2004,160(8):14~17
    [59]张士华,陈光,崔崇,米成,顾金萍,于静静. 偶联剂处理对玻璃纤维/尼龙复合材料力学性能的影响[J].复合材料学报,2006,23(3):31~36
    [60]王敏.乙撑双硬脂酰胺的生产技术及市场前景[J]. 精细化工原料及中间体,2005,(11):18~21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700