聚苯胺/氧化锰原位电化学复合及复合膜在超级电容器领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了导电聚合物聚苯胺(PANI)与γ-晶态二氧化锰γ-MnO2、非化学计量氧化锰MnOx、纳米二氧化锰nm-MnO2及其苯胺甲基三乙氧基硅烷(ND42)修饰纳米粒子nm-ND42-MnO2的原位电化学复合,获得了纤维状或三维疏松多孔聚苯胺/氧化锰复合膜。研究了原位聚合对产物形貌及电化学等性能的影响。以复合膜为电极材料组装了对称型模拟超级电容器,探讨了其在超级电容器领域的应用。
     在0.5 mol·L-1 H2SO4溶液中,通过Mn2+在阳极表面电化学氧化生成γ-MnO2的反应与苯胺(Ani)阳极氧化聚合组合,实现了PANI与γ-MnO2的原位复合。原位复合改善了Ani聚合微环境,获得的复合膜PANI/γ-MnO2以纤维状结构存在。在酸性溶液中,该复合膜的循环伏安曲线显示出PANI典型的氧化还原峰。粉末X-射线衍射(XRD)检测结果表明,复合膜中氧化锰以γ-MnO2形式存在。X-射线光电子能谱(XPS)分析也表明锰以Mn(Ⅳ)价态存在。复合膜在1.0 mol·L-1 NaNO3(pH1)电解质溶液中,0-0.65 V (vs. SCE)的电位范围内具有良好的电容性能。在含50 mmol·L-1 Mn2+溶液中制备的复合膜PM250比电容最大,达到了532F/g(2.4 mA/cm2充放电电流密度),比在相似条件下制备的PANI的比电容高26%。1200次恒电流充放电(5.0 mA/cm2充放电电流密度)循环后,比电容为初始比电容76%,但库仑效率稳定在97.5%以上。以PM250为电极材料,1.0 mol·L-1 NaNO3(pH 1)为电解液组装了对称型模拟超级电容器,在2.4 mA/cm2+充放电电流密度下,比电容达到124 F/g。
     在近中性体系中(pH=5.6),Mn2+在阳极表面电化学氧化生成了非化学计量的锰氧化物MnOx,通过MnOx与PANI的原位电化学复合制备了纤维状结构的复合膜PANI/MnOx。该复合膜PANI/MnOx在酸性溶液中也表现出PANI的典型氧化还原行为。PANI/MnOx的XRD谱图上无明显衍射峰,表明MnOx以无定形结构存在。PANI/MnOx的XPS分析结果表明,锰以+2、+3、+4混合价态存在。复合膜PANI/MnOx在1.0 mol·L-1 NaNO3(pH 1)电解质溶液中,0~0.65 V的电位范围内具有优异的电容性能。在含120mmol·L-1 MnSO4溶液中制备的复合膜PMx120的比电容达到了·588 F/g(恒电流充放电电流密度:1.0 mA/cm2),比相似条件下制备的PANI的比电容(408 F/g)增加了约44%。采用恒电流充放电手段测试复合膜PMx120的循环性能,发现循环1000次后,复合膜PMx120仍可保持初始比电容的90.3%,且表现出比较稳定的98%以上库仑效率。由复合膜PMx120组装成的对称型模拟超级电容器在3.0 mA/cm2充放电电流密度下的比电容达到了112 F/g。
     研究了nm-MnO2及ND42表面修饰纳米粒子nm-ND42-MnO2与PANI的原位电化学复合,发现用ND42对纳米粒子进行表面修饰后,改善了纳米粒子与PANI的复合。复合膜PANI/nm-ND42-MnO2具有疏松多孔的三维立体结构,其电容性能明显优于基于未修饰纳米粒子制备的复合膜PANI/nm-Mn02。两种复合膜在1.0mol·L-1 NaNO3(CpH1)电解质溶液中,0~0.65 V的电位范围内均具有良好的电容性能。在1.0 mA/cm2充放电电流密度下,复合膜PANI/nm-ND42-MnO2的比电容达到了421 F/g,复合膜PANI/nm-MnO2的比电容达到了358 F/g,而在相似条件下得到的PANI的比电容只有143F/g。以复合膜PANI/nm-ND42-MnO2及PANI/nm-MnO2为电极材料,分别组装了对称型模拟超级电容器。纳米粒子修饰后制备的复合膜PANI/nm-ND42-MnO2组装成的超级电容器在以25 mV/s的扫描速度进行循环伏安扫描时,循环伏安曲线仍近似为对称性良好的矩形,表明该复合膜在高功率超级电容器领域有应用前景。在1.0 mA/cm2充放电电流密度下修饰后的复合膜PANI/nm-ND42-MnO2组装的超级电容器的比电容为84.5 F/g,而采用非修饰纳米粒子制备的复合膜PANI/nm-MnO2组装的超级电容器的比电容为58.3F/g。
In-situ hybridizations of conducting polymer polyaniline (PANI) and manganese oxidesγ-MnO2, nonstoichiometric MnOx, nm-MnO2 (manganese dioxide nanoparticles) and nm-ND42-MnO2 (ND42,N-[(triethoxysilyl)methyl]aniline, grafted manganese dioxide nanoparticles) were conducted electrochemically in this thesis. Composite films PANI/y-MnO2 and PANI/MnOx in fibrous structures and PANI/nm-MnO2 and PANI/nm-ND42-MnO2 in 3D granular structures were obtained. Characterizations of the films were conducted by X-ray diffraction (XRD), X-ray photo-electron spectroscope (XPS) and scanning electron microscope (SEM). Electrochemical and pseudocapactive properties of the films were studied by cyclic voltammetry and constant current charging-discharging experiments. Symmetric model capacitors were constructed using the films as electrodes.
     In-situ hybridization of PANI andγ-MnO2 was realized in 0.5 mmol·L-1 H2SO4 based on electropolymerization of aniline and electrochemical oxidation of Mn2+, which leading to The obtained composite film PANI/γ-MnO2 showed fibrous morphologies due to effective control of secondary growth of the polymer chains, resulted from the adjustment of chemical environment of aniline polymerization by the in-situ deposition ofγ-MnO2. PANI/γ-MnO2 displayed characteristic redox peaks of PANI on cyclic voltammogram measured in acidic aqueous solution. The XRD patterns of PANI/γ-MnO2 showed characteristic peaks ofγ-MnO2, while peaks characteristic of Mn(IV) appeared on Mn 3s XPS spectrum of the composite film. Composite film PM250 obtained from the solution containing 50 mM Mn2+ and 0.4 M aniline demonstrated a specific capacitance of 532 F/g measured through charging-discharging at 2.4 mA/cm2 in 1.0 mol·L-1 NaNO3 (adjust pH to 1), which is 26 % higher than that of similarly prepared PANI. PM250 kept 76% of its capacitance after 1200 cycles of charging-discharging at 5.0 mA/cm2 with a coulombic efficiency(η) of 97.5%.The symmetric capacitor using PM250 as the electrodes showed a capacitance of 124 F/g measured at 2.4 mA/cm2.
     Nonstoichiometric MnOx was obtained from Mn2+ in neutral aqueous solutions (pH 5.6) electrochemically together with PANI. Composite films PANI/MnOx were obtained in fibrous structures by this in-situ electrochemical co-deposition. There was no distinguished peak on XRD pattern of the composite film, revealing the amorphous nature of MnOx in the film. Manganese existed in a mixed oxidation states of +2,+3 and+4 in the film, based on XPS measurement. The composite films showed good pseudocapacitive behaviors in 1.0 mol·L-1 NaNO3 (pH=1) between 0 to 0.65 V.Composite film PMx120 obtained from the solution of 120 mM Mn2+ showed a specific capacitance of 588 F/g, which is 44 % higher than that of similarly prepared PANI (408 F/g) measured at 1.0 mA/cm2.PMx120 kept 90.3 % of its capacitance after 1000 charging-discharging cycles, with a coulombic efficiency of 98%.The specific capacitance of a symmetric capacitor using PMx120 as the electrodes was 112 F/g measured at 3.0 mA/cm2.
     In-situ electrochemical co-depositons of PANI and manganese dioxide nanoparticles, nm-MnO2, or ND42 grafted nanoparticles, nm-ND42-MnO2 were conducted to afford composite films of PANI/nm-MnO2 and PANI/nm-ND42-MnO2. Due to effective nanoparticle-template-guiding, composite film PANI/nm-ND42-MnO2 obtained from the ND42 modified nanoparticles showed uniform 3D granular structure and modified pseudocapacitive properties. PANI/nm-ND42-MnO2 displayed a specific capacitance of 421 F/g measured at 1.0 mA/cm2, while the specific capacitance of PANI/nm-MnO2 obtained from the neat nanoparticles was 358 F/g. Both of the composite films showed higher specific capacitance than similarly prepared PANI (143 F/g). Symmetric capacitors using composite films PANI/nm-ND42-MnO2 and PANI/nm-MnO2 as the electrodes, respectively were constructed. The specific capacitances of the capacitors were 84.5 and 58.3 F/g, respectively measured at 1.0 mA/cm2.
引文
1.Winter M, Brodd R T. What are batteries,fuel cells, and supercapacitors? [J],Chem. Rev.,2004,104:4245-4270.
    2. Becker H I, U. S.Patent 2800616 (to General Electric),1957.
    3.Boos D I,U.S.Patent 3536963 (to Standard Oil, SOHIO),1970.
    4. Conway B E, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercpacitors [J],J.Power Sources,1997,66:1-14.
    5.Louis P J, Terrill B A, Peter J C. Fuel cell/electrochemical capacitor hybrid for intermittent high power applications [J],J.Power Sources,1999,79:60-63.
    6. Jung D Y, Kim Y H, Kim S W, et al. Development of ultracapacitor modules for 42-V automotive electrical systems [J],J. Power Sources,2003,114:366-373.
    7. Smith T A, Mars J P, Turner G A. Using supercapacitors to improve battery performance. Power Electronics Specialists Conference, IEEE 33rd Annual,2002,1: 124-128.
    8. Andrieu X, Fauvarque F. Supercapacitor for telecommunication applications. INTELEC 15th International,1993,1(27-30):79-82.
    9. Halpin S M, Nelms R M, Schatz J E. Characterization of double-layer capacitor application issues for commercial and military applications. IECON,23th International, 1997,3:1074-1079.
    10. Nomoto S, Nakata H, Yoshioka K, et al.Advanced capacitors and their application [J], J. Power Sources,2001,97-98:807-811.
    11.刘建新.超级电容器在直流电源系统中的应用[J],华东交通大学学报,2002,19(3):72-74.
    12. Merryman S A. Chemical double-layer capacitor power sources for electrical actuation applications.IECEC, Proceedings of the 31 st Intersociety.1996,1:251-254.
    13.Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors [J],J. Electrochem. Soc.,1995,142(8):2699-2703.
    14.Lee H Y, Goodenough J B. Supercapacitor behavior with KCl electrolyte [J],J.Solid State Chem.,1999,144:220-223.
    15.Nam K W, Kim K B.A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism [J],J. Electrochem. Soc.,2002,149(3):A346-A354.
    16. Kim H S, Popov B N. Synthesis and characterization of MnO2-based mixed oxides as supercapacitors [J],J. Electrochem. Soc.,2003,150(3):D56-D62.
    17. Jeong Y U, Manthiram A. Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes [J],J. Electrochem. Soc.,2002,149(11): A1419-A1422.
    18.Lin C, Ritter J A, Popov B N. Characterization of sol-gel derived cobalt oxide xerogels as electrochemical capacitors [J],J. Electrochem.Soc.,1998,145(12):4097-4103.
    19. Liu K C, Anderson M A. Porous nickel oxide/nickel films for electrochemical capacitors [J],J.Electrochem. Soc.,1996,143(1):124-130.
    20. Lee H Y, Goodenough J B. Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl)aqueous solution [J],J. Solid State Chem.,1999,148:81-84.
    21.Prasad K R, Miura N. Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors [J],Electrochem. Commun.,2004, 6:849-852.
    22.杨红生、周啸、姜翠玲、王德全.电化学电容器最新研究讲展Ⅱ氧化还原电容器[J],电子元件与材料,2003,22:38-42.
    23.黄维垣、闻建勋.化学进展丛书:高技术有机高分子材料进展[M],北京:化学工业出版社,1994.
    24. Vidal J C, Garcia E, Castillo J R. In situ preparation of a cholesterol biosensor [J], Anal. Chim. Acta,1999,385(1-3):213-222.
    25.Tamm J, Alumaa A, Hallik A, et al. Redox properties of polypyrrole bilayers [J], Electrochim. Acta,2001,46:4105-4112.
    26. Roth S,Graupner W. Industrial applications of conducting polymers [J],Synth. Met., 1993,122:229-236.
    27.亢孟强、刘俊峰、郭志新等.导电高分子聚噻吩衍生物的研究进展[J],化工新型材料,2004,32(6):9-12.
    28.雀部博之著,曹镛译.导电高分子材料[M],北京:北京科学工业出版社,1989.
    29. Martine C, Karim F, Mario L.Highly conducting water-soluble polythiophene derivatives [J],Chem. Mater.,1997,9:2902-2905.
    30. Tomas J, Wendimagegn M, Mattias S, M R. Andersson and 0 Inganas, Electrochemical bandgaps of substituted polythiophenes [J],J.Mater. Chem.,2003,13: 1316-1323.
    31.佟拉嘎、王锦艳、蹇锡高、张庆民.烷基取代聚噻吩的化学合成与光电性能研究进展[J],功能高分子学报.2004,17(3):535-541.
    32. Genies E M, Lapkowiski M, Santier C. Polyaniline spectroelectrochemistry display and battery [J],Synth. Met.,1987,18(1-3):631-636.
    33. Willstatter, R.;Moor, C., Black aniline. I. [XIII. Announcement on Quinodes] Berichte der Deutschen Chemischen Gesellischaft,Part 2,1907,40,1432-1437.
    34. Desurville R, Jozefowicz M, Yu L T. Electrochemical chains using protolytic organic semiconductiors [J],Electrochim.Acta,1968,13:1451-1458.
    35. MacDiarmid A G, Chiang, J C, Huang W, Humphry B D, Somasiri N L D. Polyaniline-protonic acid doping to the metalic regime [J],Mol. Cryst. Liq. Cryst., 1985,125:309-318.
    36. Chiang, J C, MacDiarmid A G. "Polyaniline":protonic acid doping to the emeraldine form to the metallic regime [J],Synth. Met.,1986,13:193-205.
    37. Hagiwara, T.;Yamaura, M.;Iwata, K.,Structural analysis of deprotonated polyaniline by solid-state 13C-NMR [J],Synth. Met.,1987,26:195-201.
    38. Wan M X. Absorption spectra of thin film of polyaniline [J], J. Polym. Sci.,Part A: Polym. Chem.,1992,30:543-549.
    39. Stafstrom S, Bredas J L, Epstein A J, Woo H S, Tanner D B, Huang W S, MacDiarmid A G. Polaron lattice in highly conducting polyaniline:theoretical and optical studies [J],Phys.Rev. Lett.,1987,59:1464-1467.
    40. Epstein A J, Ginder J M, Zuo F, Bigelow R W, Woo H S, Tanner D B, Richter A F, Huang W S, MacDiarmid A G. Insulator-to-metal transition in polyaniline [J], Synth. Met.,1987,18:303-309.
    41.MacDiarmid A G, Chiang J C, Richter A F, Epstein A J.Polyaniline:a new concept in conducting polymers [J],Synth.Met.,1987,18:285-290.
    42.MacDiarmid A G. "Synthetic Metals":A novel role for organic polymers (Nobel lecture) [J],Angew. Chem.Int. Ed.,2001,40:2581-2590.
    43.Gospodinova N, Terlemezyan L, Mokreva P, Kossev K. On the mechanism of oxidative polymerization of aniline [J],Polymer,1993,34:2434-2437.
    44. Gospodinova N, Mokreva P, Terlemezyan L, Kossev K. Chemical oxidative polymerization of aniline in aqueous medium without added acids [J],Polymer,1993, 34:2438-2439.
    45.唐劲松、王利祥、景遐斌、王宝忱、王佛松.苯胺的化学聚合[J],应用化学,1998,5(4):12-16.
    46. Travers J P, Chroboczek J, Kerreux F, Geoud F, Nechtschein M, Syed A A, Genies E M, Tsintavis C. Transport and magnetic-resonance studies of polyaniline [J],Mol. Cryst. Liq. Cryst.,1985,121:195-199.
    47. Pron A, Genoud F, Menardo C, Nechtschein M. The effect of the oxidation conditions on the chemical polymerization of polyaniline [J],Synth. Met.,1988,24:193-201.
    48. Bingham A, Ellis B. Polymerization of aromation amines with ferric chloride to produce thermally stable polymers [J],J. Polym. Sci:Part A-1,1969,7:3229-3244.
    49. Kumar N, Vadera S R, Jane P C. Synthesis and characterization of FeCl4-doped polyaniline [J],Polymer,1992,33:2424-2426.
    50. Yan H, Toshima N. Chemical preparation of polyaniline and its derivatives by using cerium(Ⅳ)sulfate [J],Synth. Met.,1995,69:151-152.
    51.Kovacic P, Koch F W. Coupling of naphthalene nuclei by lewis acid catalyst-oxidant [J],J. Org. Chem.,1965,30:3176-3181.
    52. Toshima N,Yan H, Ishiwatari M. Catalytic polymerization of aniline and its derivatives by using copper(II) salts and oxygen-new-type of polyaniline with branched structure [J],Bull.Chem.Soc. Jap.,1994,67:1947-1953.
    53.Moon D K, Maruyama T, Osakada K, Yamamoto T. Chemical oxidation of polyaniline by radical generating reagents, O2, H2O2-FeCl3 catalyst, and dibenzoyl peroxide [J], Chem. Lett.,1991,9:1633-1636.
    54.周震涛、杨洪业、王克检、刘芳.聚苯胺的化学合成、结构及导电性能[J],华南 理工大学学报(自然科学版),1996,24(7):72-77.
    55.周震涛、刘芳、杨洪业、应晓等.(NH4)2S2O8体系聚苯胺合成、结构与性能研究[J],华南理工大学学报(自然科学版),1995,23(2):47-52.
    56.Armes S P, Aldissi M. Potassium iodate oxidation route to polyaniline-an optimization study [J],Polymer,1991,32:2043-2048.
    57. Cao Y, Andreatta A, Heeger A J, Smith P. Influence of chemical polymerization conditions on the properties of polyaniline [J],Polymer,1989,30:2305-2311.
    58. Genies E M, Syed A A, Tsintavis C. Electrochemical study of polyaniline in aqueous and organic medium-redox and kinetic-properties [J],Mol. Cryst. Liq. Cryst.,1985, 121:181-186.
    59. Kogan L, Fokeeva L, Shunina L, Estrin Y, Kasumova L, Kaplunov M, Davidova G, Knerelman E. An oxidizing agent for aniline polymerization [J],Synth. Met.,1999, 100:303.
    60. Gospodinova N, Terlemezyan L. Conducting polymers prepared by oxidative polymerization:polyaniline [J],Prog. Polym. Sci.,1998,23:1443-1484.
    61.Kuzmany H, Genies E M, Syed A. A. Springer Series in Solid State Science [M], Springer, Berlin,1985,63, p223.
    62. Kuzmany H, Sariciftci N. S.In-situ spectro-electrochemical studies of polyaniline [J], Sythn, Met.,1987,18:353-358.
    63.苏静、王庚超、邓惠山、范晓青.掺杂质子酸的类型对聚苯胺结构和导电率的影响[J],功能高分子学报,2002,15(2):122-126.
    64.於黄中、刘少琼、黄河等.樟脑磺酸原位聚合聚苯胺的性能研究[J],功能材料,2002,33(6):626-630.
    65.林薇薇、南军义、田永辉、梁辉建.XPS研究聚苯胺的竞争掺杂行为[J],化学物理学报,2000,13(5):592-598.
    66.张清华、王献红、景遐斌.聚苯胺的合成及光谱特性[J],化学世界,2001,5:242-244.
    67. Diaz A F, Logan J A. Electroactive polyaniline film [J],J. Electroanal. Chem.,1980, 111(1):111-114.
    68.Mohilner D M, Adams R N, Argersinger W J J. Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode [J],J. Am.Chem. Soc.,1962,84:3618-3622.
    69. Kitani A, Kaya M, Sasaki K, Nelson R F. Performance study of aqueous polyaniline batteries [J],J. Electrochem.Soc.,1986,133:1069-1073.
    70. Mengoli G, Munari M T, Bianco P, Anodic synthesis of polyaniline coatings onto fe sheets [J],J.Appl. Polym.Sci.,1981,26:4247-4257.
    71.Noufi R, Nozik A J, White J, Warren L F. Enhanced stability of photoelectrodes with electroqenerated polyaniline films [J],J.Electrochem. Soc.,1982,129:2261-2265.
    72. Blajeni B A, Taniguchi I, Bockris J O. Photoelectrochemical reduction of carbon dioxide using polyaniline-coated silicon[J],J. Electroanal. Chem.,1983,149: 291-293.
    73.Kobayashi T, Yoneyama H, Tamura H, Polyaniline film-coated electrodes as electrochromic display devices [J],J.Electroanal.Chem.,1984,161:419-423.
    74. Gottesfeld S, Redondo A, Feldberg S W. On the mechanism of electrochemical switching in films of polyaniline [J],J. Electrochem. Soc.,1987,134:271-272.
    75.Paul E W, Ricco A J, Wrighton M S.Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices [J], J. Phys. Chem.,1985,89:1441-1447.
    76. Volkov A, Tourillon G, Lacaze P C, Dubois J E. Electrochemical polymerization of aromatic amines:IR, XPS and PMT study of thin film formation on a Pt electrode [J],J. Electroanal. Chem,1980,115:279-291.
    77. Ohsaka T, Ohnuki Y, Oyama N, Katagiri G, Kamisako K. IR absorption spectroscopic identification of electroactive and electroinactive polyaniline films prepared by the electrochemical polymerization of aniline [J],J. Electroanal. Chem.,1984,161: 399-405.
    78.Kitani A, Izumi J, Yano J, Hiromoto Y, Sasaki K. Basic behaviors and properties of the electrodeposited polyaniline [J],Bull. Chem.Soc. Jpn.,1984,57:2254-2257.
    79.Breitenbach M, Heckner K H. Elektrochemische untersuchungen der bildung und eigenschaften von polyanilinfilmen auf platin-und kohleelektroden [J],J.Electroanal. Chem.,1973,43:267-286.
    80. Carlin C M, Kepley L J, Bard A J. Polymer films on electrodes XVI. in situ ellipsometric measurements of polybipyrazine, polyaniline, and polyvinylferrocene films [J],J.Electrochem. Soc.,1985,132:353-359.
    81.Oyama N, Ohnuki Y, Chiba K, Ohsaka T. Selectivity of polyaniline film-coated electrode for redox reactions of species in solution [J],Chem. Lett. (Jpn),1983,12: 1759-1762.
    82. Glarum S H, Marshall J H. The impedance of polyaniline electrode films [J],J. Electrochem.Soc.,1987,134:142-147.
    83.傅谊、马建标、何炳林.恒电位条件下制备聚苯胺及其电化学行为[J],化学研究与应用,1998,10(2):133-137.
    84. Choi S J, Park S M.Electrochemistry of conductive polymers. ⅩⅩⅥ. Effects of electrolytes and growth methods on polyaniline morphology [J],J.Electrochem. Soc., 2002,149(2):E26-E34.
    85.Hatchett D W, Josowicz M, Janata J. Comparison of chemically and electrochemically synthesized polyaniline films [J],J. Electrochem. Soc,1999,146(12):4535-4538.
    86.牛林、魏丰华、陈晓、宫辛玲.电解质溶液组成对聚苯胺电化学合成的影响[J],山东大学学报(自然科学版),2002,37(1):65-73.
    87.肖诗铁、黄怡、田海明.自支撑聚苯胺导电膜的电化学合成及性能[J],华南理工大学学报(自然科学版)[J],1997,25(8):126-129.
    88. Tsakova V, Milchev J, Schultze W. Growth of polyaniline films under pulse potentiostatic condition [J],J. Electroanal. Chem.,1993,346(1-2):85-87.
    89. Kobayashi T, Hiroshi Y, Hideo T. Oxidative degradation pathway of polyaniline film electrodes [J],J. Electroanal. Chem.,1984,177(1-2):293-297.
    90. Do J S, Chang W B. Amperometric nitrogen dioxide gas sensor based on PAn/Au/Nafion prepared by constant current and cyclic voltammetry methods [J], Sensor Actuat. B-Chem.,2004,101(1-2):97-106.
    91.Luo Y C, Do J S.Urea biosensor based on PANT(urease)-Nafion/Au composite electrode [J],Biosens.Bioelectron.,2004,20(1):15-23.
    92.穆绍林、阚锦晴、张爱光.苯胺在碱性溶液中的电化学聚合和聚合物的性质[J],电化学,1996,2(1):54-60.
    93.Nunziante P, Pistoia G. Factor affecting the growth of thick polyaniline films by cyclic voltammetry technique [J],Electrochim. Acta,1989,34(2):223-228.
    94. Zotti G, Cattarin S, Comisso N. Cyclic potential electropolymerization of aniline [J],J. Electroanal. Chem.,1988,239(1-2):387-396.
    95.Dinh H N, Birss V I. Characteristics of the polyaniline anodic pre-peak [J], Electrochim. Acta,1999,44(26):4763-4771.
    96. Xing S X, Zhao C, Jing S Y, Wang Z C. Morphology and conductivity of polyaniline nanofibers prepared by'seeding'polymerization [J],Polymer,2006,47:2305-2313.
    97. Xing S X, Zhao C, Jing S Y, Wu Y, Wang Z C. Morphology and gas-sensing behavior of in situ polymerized nanostructured polyaniline films [J],Europ. Polym. J.,2006,42: 2730-2735.
    98. Wu C G, Bein T. Conducting polyaniline filaments in a mesoporous channel host [J], Science,1994,264:1757-1759.
    99. Martin C R. Nanomaterials:a membrane-based synthetic approach [J],Science,1994, 266:1961-1966.
    100. Wang C, Wang Z, Li M, Li H, Well-aligned polyaniline nano-fibril array membrane and its field emission property [J],Chem. Phys. Lett.,2001,341:431-434.
    101.Martin C R. Template synthesis of electronically conductive polymer nanostructures [J],Acc. Chem. Res.,1995,28:61-68.
    102. Niu Z, Yang Z, Hu Z, Lu Y, Han C C. Polyaniline-silica composite conductive capsules and hollow spheres [J],Adv. Fuct. Mater.,2003,13(12):949-954.
    103.Ma Y, Zhang J, Zhang G, He H. Polyaniline nanowires on Si surfaces fabricated with DNA templates [J],J.Am.Chem. Soc.,2004,126:7097-7101.
    104. Carswell A D W, O'Rear E A, Grady B P. Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces:from spheres to wires to flat films [J],J.Am.Chem. Soc.,2003,125: 14793-14800.
    105.Madathil R, Parkesh R, Ponrathnam S,Large M C J. Patterning of conductive polyaniline films from a polymerization-induced self-assembled gel [J], Macromolecules,2004,37;2002-2003.
    106.Liu J M, Yang S C. Novel colloidal polyaniline fibrils made by template guided chemical polymerization[J],J. Chem,Soc.,Chem.Common.,1991:1529-1531.
    107. Li W,Wang H. L. Oligomer-assisted synthesis of chiral polyaniline nanofibers [J],J. Am.Chem. Soc.,2004,126:2278-2279.
    108.Qiu H J, Wan M X. Synthesis, characterization, and electrical properties of nanostructural polyaniline doped with novel sulfonic acids (4-{n-[4-(4-nitrophenylazo)phenyloxy]alkyl} aminobenzene sulfonic acid) [J],J. Polym. Sci.,Part A:Polym. Chem.,2001,39:3485-3497.
    109. Wei Z X, Zhang Z M, Wan M X. Formation mechanism of self-assembled polyaniline micro/nanotubes [J],Langmuir,2002,18:917-921.
    110. Huang L M, Wang Z B, Wang H T, Cheng X L, Mitra A, Yan Y S.Polyaniline nanowires by electropolymerization from liquid crystalline phases [J],J. Mater. Chem., 2002,12:388-391.
    111.Lu X F, Yu Y H, Chen L, Mao H P, Wang L F, Zhang W J, Wei Y. Poly(acrylic acid)-guided synthesis of helical polyaniline microwires [J],Polymer,2005,46: 5329-5333.
    112. MacDiarmid A G, Jones W E, Norns I D, Gao J, Johnson A T, Pinto N J, Hone J, Han B, Ko F K, Okuzaki H, Llaguno M. Electrostatically-generated nanofibers of electronic polymers [J],Synth. Met.,2001,119:27-30.
    113.Norris I D, Shaker M M, Ko F K, MacDiarmid A G. Electrostatic fabrication of ultrafine conducting fibers:polyaniline/polyethylene oxide blends [J], Synth. Met., 2000,114:109-114.
    114. He H X, Li C Z, Tao N J. Conductance of polymer nanowires fabricated by a combined electrodeposition and mechanical break junction method [J],Appl. Phys. Lett.,2001,78:811-813.
    115.Whitesides G M, Grzybowski B. Self-assembly at all scales [J],Science,2002,295: 2418-2421.
    116. Huang J X, Virji S, Weiller B H, Kaner R B.Polyaniline nanofibers:facile synthesis and chemical sensors [J],J. Am.Chem. Soc.,2003,125:314-315.
    117. Huang J X, Kaner R B. A general chemical route to polyaniline nanofibers [J],J.Am. Chem. Soc.,2004,126:851-855.
    118. Michaelson J C, McEvoy A J.Interfacial polymerization of aniline [J],J. Chem.Soc., Chem.Commun.,1994:79-80.
    119.Liu J, Lin Y H, Liang L, Voigt J A.,Huber D L, Tian Z R R, Coker E, Mckenzie B, Mcdermott M J. Templateless assembly of molecularly aligned conductive polymer nanowires:a new approach for oriented nanostructures [J],Chem. Eur. J.,2003,9(3): 604-611.
    120. Kitani A, Kaya M, Tsujioka S I, et al. Flexible polyaniline [J],J.Polym. Sci. Part A: Polym. Chem.,1988,26(6):1531-1539.
    121.Andrade G T, Aguirre M J, Biaggio S R. Influence of the first potential scan on the morphology and electrical properties of potentiodynamically grown polyaniline films [J],Electrochim. Acta,1998,44:633-642.
    122. Zhou H H, Jiao S Q,Chen J H,Wei W Z,Kuang Y F. Relationship between preparation conditions, morphology and electrochemical properties of polyaniline prepared by pulse galvanostatic method (PGM) [J],Thin Solid Films,2004,450: 233-239.
    123. Zhang X Y, Goux W J, Manohar S K. Synthesis of polyaniline nanofibers by "nanofiber seeding" [J],J. Am.Chem. Soc.,2004,126:4502-4503.
    124. Huang JX, Kaner RB. Nanofiber formation in the chemical polymerization of aniline: a mechanistic study [J],Angew. Chem. Int. Ed.,2004,43:5817-5821.
    125.Chiou N R, Epstein A J.Polyaniline nanofibers prepared by dilute polymerization [J], Adv. Mater.,2005,17:1679-1683.
    126. Bunker B C, Rieke P C, Tarasevich B J, Campbell A A, Fryxell G E, Graff G L, Song L, Liu J, Virden J W, McVay G L. Ceramic thin-film formation on functionalized interfaces through biomimetic processing [J],Science,1994,264:48-55.
    127. Liang L, Liu J, Windisch C F, Exarhos G J, Lin Y H. Direct assembly of large arrays of oriented conducting polymer nanowires [J],Angew. Chem. Int. Ed.,2002,41(19): 3665-3668.
    128. Lu X F, Mao H, Chao D M, Zhang W J, Wei Y. Fabrication of polyaniline nanostructures under ultrasonic irradiation:from nanotubes to nanofibers [J], Macromol.Chem. Phys.,2006,207:2142-2152.
    129. Jing X L, Wang Y Y, Wu D, She L,Guo'Y, Polyaniline nanofibers prepared with ultrasonic irradiation [J],J. Polym.Sci.Part A:Polym.Chem.,2006,44:1014-1019.
    130. Pillalamarri S K, Blum F D, Tokuhiro A T, Story J G, Bertino M F. Radiolytic synthesis of polyaniline nanofibers:a new templateless pathway [J],Chem. Mater., 2005,17:227-229.
    131.Werake L K, Story J G, Bertino M F, Pillalamarri S K, Blum F D. Photolithographic synthesis of polyaniline nanofibres [J],Nanotechnology,2005,16(12):2833-2837.
    132. Kinyanjui J M, Hanks J, Hatchett D W, Smith A, Josowicz M. Chemical and electrochemical synthesis of polyaniline/gold composites [J],J. Electrochem. Soc., 2004,151(12):D113-D120.
    133.Tian S J, Liu J Y, Zhu T, Knoll W. Polyaniline doped with modified gold nanoparticles and its electrochemical properties in neutral aqueous solution [J],Chem. Commun., 2003:2738-2739.
    134. Sapurina I Y, Gribanov A V, Mokeev M V, Zgonnik V N, Trchova M, Stejskal J. Polyaniline composites with fullerene C60 [J],Phys. Solid State,2002, (44)3:574-575.
    135.Ballav N. High-conducting polyaniline via oxidative polymerization of aniline by MnO2,PbO2 and NH4VO3 [J],Mater. Lett.,2004,58(26):3257-3260.
    136. Sui X M, Chu Y, Xing S X, Liu C Z. Synthesis of PANI/AgCI, PANI/BaSO4 and PANI/TiO2 nanocomposites in CTAB/hexanol/water reverse micelle [J],Mater. Lett., 2004,58:1255-1259.
    137.吴伯荣、田艳红、马志亲等.乙炔黑吸附聚合法制取聚苯胺的研究[J],高分子材料科学与工程,1996,12(4):41-44.
    138. Ago H, Kugler T, Cacialli F, et al.Work function of purified and oxidized carbon nanotubes[J],Synth. Met.,1999,103(1-3):2494-2495.
    139. Feng W,Bai X D, Lian Y Q, Liang J, Wang X G, Yoshino K. Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization [J],Carbon,2003,41:1551-1557.
    140. Xiao X P, Liu M, P. Gong, K. Direct synthesis of a polyaniline intercalated graphite oxide nanocomposite [J],Carbon,2000,38(4):626-628.
    141.Gill M, Mykytiuk J,Armes S P, et al.Novel colloidal polyaniline-silica composites [J], J.Chem.Soc.,Chem.Commum.,1992,(8):664-667.
    142.吴秋菊、薛志坚、漆宗能等.具有伸展链构象聚苯胺/蒙脱土混杂纳米复合物的合成与表征[J],高分子学报,1999,(5):551-556.
    143.Wan M X, Li W G A composite of polyaniline with both conducting and fettomagnetic functions [J], J. Appl. Polym. Sci.,1997,35(11):2129-2136.
    144. Hu C C, Chu C H. Electrochemical and textural characterization of iridium-doped polyaniline films for electrochemical capacitors [J],Mater. Chem. Phys.,2000,65: 329-338.
    145.Zhou Z H, Cai N C, Zhou Y H. Capacitive of characteristics of manganese oxides and polyaniline composite thin film deposited on porous carbon [J],Mater. Chem. Phys., 2005,94:371-375.
    146. Gemeay A H, Mansour I A, Sharkawy R G, Zaki A B. Preparation and characterization of polyaniline/manganese dioxide composites via oxidative polymerization:Effect of acids[J],Europ. Polym. J.,2005,41:2575-2583.
    147. Biswas M, Ray S S, Liu Y P. Water dispersible conducting nanocomposites of poly(N-vinylcarbazole), polypyrrole and polyaniline with nanodimensional manganese (IV) oxide [J],Synth. Met.,1999,105:99-105.
    148. Prasad K R, Miura N. Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor [J],Electrochem. Solid State Lett,2004,7:A425-A428.
    149. Cantu M L, Romero P G Electrochemical and chemical syntheses of the hybrid organic-inorganic electroactive material formed by phosphomolybdate and polyaniline. Application as cation-insertion electrodes [J], Chem. Mater.,1998,10(3):698-704.
    150. Shen P K, Huang H T, Tseung A C C. A study of tungsten trioxide and polyaniline composite films [J],J. Electrochem. Soc.,1992,139(7):1840-1845.
    151.Gurunathan K, Trivedi D C. Studies on polyaniline and colloidal TiO2 composites [J], Mater. Lett.,2000,45(5):262-268.
    152. Danielle C S, Michelle S M, Ivo A H, Aldo J G Z. Preparation and characterization of novel hybrid materials formed from (Ti,Sn)O2 nanoparticles and polyaniline [J],Chem. Mater.,2003,15:4658-4665.
    153.井新利、王杨勇、张东华.二氧化硅/聚苯胺复合粒子的制备与性能[J],材料工程,2004,1:20-24.
    154. Khiew, P S, Huang, N M, Radiman, S, Ahmad, M S.Synthesis and characterization of conducting polyaniline-coated cadmium sulphide nanocomposites in reverse microemulsion [J],Mater. Lett.,2004,58(3-4):516-521.
    155.Iroh J O, Rajagopalan R. Electrochemical synthesis of polyaniline-polypyrrole composite coatings on carbon fibers in aqueous sulphonate solution [J],Surf. Eng., 2000,16(6):481-486.
    156.张广平、毕先同.聚苯胺在一些有机溶剂中的溶解性[J],高分子学报,1994,(1):55-59.
    157.封伟、韦玮、吴洪才.光电导聚苯胺/染料共聚材料性能的研究[J],功能材料,1999,30(3):317-319.
    158. Isao Y, Takuma Y, Takakazu Y.Ring-opening graft copolymerization of epoxide with polyaniline:chemical properties and lithium ionic conductivity of the copolymer [J],J. Polym. Sci. Part A:Polym. Chem.,2001,39(18):3137-3142.
    159.邓建国、王建华、龙新平等.聚苯胺复合材料研究进展[J],高分子通报,2002,(3):33-37.
    160.肖诗铁、黄怡.聚苯胺/PA-6导电复合膜电化学合成与性能[J],功能高分子学报,1998,11(2):257-260.
    161.刘皓、李兴致、勾学平等.聚苯胺/维尼纶导电复合纤维的制备与性能[J],高分子材料科学与工程,1994,10(6):22-25.
    162.曾幸荣、潘莉芳、张淳等.PANI-PVC原位复合材料的制备与性能[J],高分子材料科学与工程,1996,12(5):53-56.
    163.万景华、王行方、黄红军等.聚苯胺/聚乙炔复合导电膜的研究[J],功能材料,1996,27(4):320-322.
    164. Reddy R N, Reddy R G. Sol-gel MnO2 as an electrode material for electrochemical capacitors [J],J. Power Sources,2003,124:330-337.
    165.Pang S C, Anderson M A, Chapman T W. Novel electrode materials for thin-film ultracapacitors:comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide [J],J.Electrochem.Soc.,2000,147(2):444-450.
    166. Bach S,Henry M, Baffier N, Livage J.Sol-gel synthesis of manganese oxides [J],J. Solid State Chem.,1990,88:325-333.
    167.周建新.柠檬酸盐凝胶法制备纳米Ni-Mn复合氧化物电极材料及其电容特性研究(D),江苏大学,2005.
    168. Bao S J, He B L, Liang Y Y, Zhou W J, Li H L. Synthesis and electrochemical characterization of amorphous MnO2 for electrochemical capacitor [J],Mater. Sci. Engin. A,2005,397:305-309.
    169. Subramanian V, Zhu H W, Vajai R, Ajayan P M, Wei B Q. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures [J],J. Phys. Chem. B,2005, 109:20207-20214.
    170. Zhang Y G, Liu Y, Guo F, Hu Y H, Liu X Z, Qian Y T. Single-crystal growth of MnOOH and beta-MnO2 microrods at lower temperatures [J],Solid State Commun., 2005,134:523-527.
    171.杨或、贾殿赠、葛炜炜等.低热固相反应制备无机纳米材料的方法[J],无机化学学报,2004,20(8):881-888.
    172.张月、王金霞、高艳阳.纳米Mn02的低热固相合成[J],化学工程师,2005,6:20-21.
    173.张治安、杨邦朝、胡永达、邓梅根、汪斌华.纳米氧化锰电极材料的制备和电容特性研究[J],无机化学学报,2005,21(3):389-393.
    174. Chang J K, Tsai W T. Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors [J],J. Electrochem. Soc.,2003,150:A1333-A1338.
    175.Wu M S, Chiang P C J. Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors [J],Electrochem. Solid State lett.,2004,7(6):A123-A126.
    176. Liu X X, Bian L J, Zhang L, Zhang L J. Composite films of polyaniline and molybdenum oxide formed by electrocodeposition in aqueous media [J],J. Solid State Electrochem.,2007,11:1279-1286.
    177. Liu X X, Li Y B, Bian L J, Dou Y Q, Huo Y Q. Electrodeposition of hybrid film of polyaniline/silica and its pseudocapacitive properties [J],J.Solid State Electrochem., DOI 10.1007/s10008-007-0450-x.
    178.Duarte M M E, Pilla A S,Mayer C E. Electrooxidation of Mn(II) to MnO2 on graphite fibre electrodes [J],J.Appl.Electrochem.,2003,33:387-392.
    179. Duic L, Mandic Z, Kovac S.Polymer-dimer distribution in the electrochemical synthesis of polyaniline [J],Electrochim. Acta,1995,40:1681-1688.
    180. Shim Y B, Won M S,Park S M. Electrochemistry of conductive polymers Ⅷ in situ spectroelectrochemical studies of polyaniline growth mechanisms [J],J. Electrochem. Soc.,1990,137:538-544.
    181.Walanda D K, Lawrance G A, Donne S W. Hydrothermal MnO2:synthesis, structure, morphology and discharge performance [J],J.Power Sources,2005,139:325-341.
    182. Chigane M, Ishikawa M. Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism [J],J. Electrochem. Soc.,2000,147:2246-2251.
    183. Wei X L, Fahlman M, Epstein A J. XPS study of highly sulfonated polyaniline [J], Macromolecules,1999,32:3114-3117.
    184. Chen W C, Wen T C.Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors [J],J. Power Sources,2003,117:273-282.
    185.Pan L J, Pu L, Shi Y, Sun T, Zhang R, Zheng Y D. Hydrothermal synthesis of polyaniline mesostructures [J],Adv. Funct. Mater.,2006,16:1279-1288.
    186. Jang J, Bae J, Lee K. Synthesis and characterization of polyaniline nanorods as curing agent and nanofiller for epoxy matrix composite [J],Polymer,2005,46:3677-3684.
    187. Aoki K, Tano S.Simultaneous occurrence of polymerization and decomposition of polyaniline films [J],Electrochim.Acta,2005,50:1491-1496.
    188. Mazeikiene R, Malinauskas A. Electrochemical stability of polyaniline [J],Europ. Polym. J.,2002,38:1947-1952.
    189. Arsov L J D, Plieth W, KoBmehl G. J. Electrochemical and Raman spectroscopic study of polyaniline; influence of the potential on the degradation of polyaniline [J],J. Solid State Electrochem.,1998,2:355-361.
    190. Ryu K S, Hong Y S, Park Y J, Wu X L, Kim K M, Lee Y G, Chang S H, Lee S J. Polyaniline doped with dimethylsulfate as a polymer electrode for all solid-state power source system[J],Solid State Ionics,2004,175:759-763.
    191.Park J H, Park O O. Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes [J],J.Power Sources,2002,111:185-190.
    192. Pei Q B, Bi X T. Electro-oxidative polymerization of aniline on platinum anodes coated with polyurethane film.[J],Synth. Met.,1989,30(3):351-358.
    193.Duic L, Mandic Z. Counter-ion and pH effect on the electrochemical synthesis of polyaniline [J],J.Electroanal. Chem.,1992,335(1-2):207-221.
    194. Camalet J L, Lacroix J C, Nguyen T D, Aeiyach S, Pham M C, Petitjean J, Lacaze P C. Aniline electropolymerization on platinum and mild steel from neutral aqueous media [J],J. Electroanal. Chem.,2000,485(1):13-20.
    195.Nguyen T D, Camalet J L, Lacroix J C, Aeiyach S, Pham M C, Lacaze P C. Polyaniline electrodeposition from neutral aqueous media:application to the deposition on oxidizable metals [J],Synth. Met.,1999,102(1-3):1388-1389.
    196. Cases F, Huerta F, Garces P, Morallon E, Vazquez J L. Voltammetric and in situ FTIRS study of the electrochemical oxidation of aniline from aqueous solutions buffered at pH 5[J],J. Electroanal. Chem.,2001,501(1-2):186-192.
    197. Jannakoudakis A D, Jannakoudakis P D, Pagalos N, Theodoridou E. Electro-oxidation of aniline and electrochemical behaviour of the produced polyaniline film on carbon-fibre electrodes in aqueous methanolic solutions [J],Electrochim. Acta,1993, 38(11):1559-1566.
    198. Liu X X, Zhang L, Li Y B, Bian L J, Su Z, Zhang L J. Electropolymerization of aniline in aqueous solutions at pH 2 to 12 [J],J. Mater. Sci.,2005,40(17):4511-4515.
    199. Hu C C, Wang C C. Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition [J],J. Electrochem. Soc., 2003,150:A1079-A1084.
    200. Silva R C, Garcia J. R, Sanchez J L A, Loyola E F, Farias M H, Castillon F F, Diaz J A. Comparative study of polyaniline cast films prepared enzymatically and chemically synthesized polyaniline [J],Polymer,2004,45:4711-4717.
    201.Huang J X, Kaner R B.The intrinsic nanofibrillar morphology of polyaniline [J], Chem. Commun.,2006:367-376.
    202.Komarneni S.Feature article. Nanocomposites [J],J.Mater. Chem,1992,2(12): 1219-1230.
    203.Rong M Z, Zhang M Q, Zheng Y X. Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites [J],Polymer,2001, 42(1):167-183.
    204. Fu Q, Wang G. Polyethylene toughened by rigid inorganic particles [J],Polymer Engineering and Science,1992,32(2):94-97.
    205.吴春蕾、章明秋、容敏智.纳米SiO2表面接枝聚合改性及其聚丙烯基复合材料的力学性能[J],复合材料学报,2002,19(6):61-67.
    206.谷元.粉粒体表面改性技术及其应用[J],化工进展,1994,1:33
    207.朱嫦娥.聚吡咯(聚苯胺)基复合材料的制备及其作锂二次电池正极的性能研究(D),河北工业大学,2005
    208.周彤辉、阮文红、王跃林、容敏智、章明秋.原位接枝改性纳米二氧化硅/聚丙烯复合材料Ⅰ:结构表征[J],复合材料学报,2006,23(2):71-76.
    209.任丽.有机/无机纳米导电复合材料的合成与表征(D),河北工业大学,2000
    210.冯杨柳、张密林、陈野、韩莹、石兆辉.无机盐水溶液反应合成MnO2纳米粉体及其电容特性[J],硅酸盐学报,2005,33(3):318-322.
    211.Li J, Zhu L H, Wu Y H, Harima Y,Zhang A Q, Tang H Q, Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization [J],Polymer,2006,47:7361-7367.
    212. Kulkarni M V, Viswanath A K, Khanna P K. Synthesis and characterization of conducting polyaniline doped with polymeric acids [J],J. Macromol. Sci. A 2006,43: 759-771.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700