用于碱性高铁电池的高铁酸钾的合成及稳定性的改善
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高铁酸盐(Fe(Ⅵ))是铁的高氧化态化合物,具有较高的氧化还原电位、较大的电化学理论容量、合成原料来源丰富,放电产物Fe2O3·nH2O对环境无污染,且可以用做废水处理的絮凝剂。高铁酸盐可以用作废水和生活用水的处理剂及有机合成反应中的氧化剂,还可以用作高铁电池中的正极材料。
     高铁酸盐(Fe(Ⅵ))的主要制备方法有三种:电化学氧化法、干化学氧化法和湿化学氧化法。湿化学氧化法在目前被认为是最切实可行的方法,具有合成工艺成熟、成本低、产品纯度较高等特点,但是目前的湿化学氧化法仍具有产率相对较低、操作繁琐、反应时间长、产品容量低等缺点。
     目前研究的高铁酸盐中K2FeO4最容易被合成,且通常作为合成其他高铁酸盐的中间体。且高铁酸盐均不稳定,容易分解,其中最稳定的高铁酸盐也是K2Fe04(固态时在干燥密封的条件下保存,每年分解0.1%)。由于K2FeO4的这些优点,使其受到更多关注。但是K2Fe04在水溶液介质特别是酸性介质中不稳定,在饱和KOH溶液中比较稳定,但是也会逐渐分解成Fe2O3·nH2O,从而降低其放电性能。
     针对合成K2Fe04过程出现的问题以及K2FeO4的不稳定性,本文作了如下研究:
     (1)概述了高铁酸盐的合成方法、纯度分析方法、结构、性质及其应用,并提出了本论文的研究目的和意义。
     (2)提出了超声波辅助合成K2FeO4的方法,这种方法具有产率较高(53-59%)、操作简单、反应时间短、产品容量高等优点。本文研究了影响制备K2FeO4纯度的因素(吸收氯气的温度、反应物的量、反应时间、分离和纯化工艺等)。通过铬法测定,合成出的产品纯度为95-96.8%。X-射线衍射(XRD)研究表明合成出的K2FeO4为四面体结构,属于D2h (Pnma)空间群。扫描电子显微镜(SEM)显示合成出的K2FeO4晶体为多面体柱状结构,约25-200μm长,1-10μm宽。红外光谱表明K2FeO4是以Fe原子为中心,与四个等价对称的O原子连接构成正四面体的结构。
     (3)研究了高铁酸钾电池中电极的组成、电解液浓度及放电倍率对其放电性能的影响。并研究了高铁酸钾电极的循环伏安性能。结果显示,高铁酸钾与乙炔黑按照80:20的质量比混合制备的电极,在10mol·L-1 KOH溶液中,以0.25C的放电倍率放电性能最好。且高铁酸钾的纯度越高,放电性能也越好。本工艺合成出的高铁酸钾电池的容量均高于以前文献报道的容量。
     (4)为了增加高铁酸钾的稳定性,我们介绍了用有机化合物2,3-萘酞菁作为高铁酸钾的保护膜包覆在高铁酸钾的表面,包覆后的材料通过扫描电子显微镜(SEM)、傅里叶红外转换光谱(FT-IR)、X-射线光电子能谱(XPS)表征。本章还研究了不同比例2,3-萘酞菁包覆K2Fe04后浸泡在电解液中不同时间的电化学性能。恒流放电测试显不K2FeO4的放电容量随浸泡时间的增加而降低,浸泡于10 mol.L-1KOH溶液中3 h,以0.25C的倍率放电到截止电压0.8 V,2,3-萘酞菁的包覆含量增加,K2Fe04的放电容量增大。但是浸泡时间为6 h后,2%的2,3-萘酞菁对于改善K2FeO4的容量更好。2,3-萘酞菁包覆的高铁酸钾浸泡于碱液中3-12 h,其容量大约可以增加26%-50%。开路电位曲线显示K2Fe04的稳定性随着浸泡时间的增加而减弱,随着2,3-萘酞菁含量的增加而增强。通过电化学阻抗谱研究了2,3-萘酞菁改善K2FeO4的稳定性的原因:2,3-萘酞菁包覆在高铁酸钾表面,对高铁酸钾电极起到保护膜的作用,在短时间的浸泡过程中,减慢了高铁酸钾的分解;2,3-萘酞菁在高铁酸钾电极中还增强了电极中电子在界面之间的转移能力。
     (5)我们选择了与之结构类似的有机化合物酞菁作为高铁酸钾的保护膜。不同比例的酞菁包覆后的K2Fe04通过扫描电子显微镜(SEM)研究,发现K2Fe04晶体的表面也被酞菁部分包覆住,且酞菁的包覆含量越高,包覆的面积越大也越厚。傅里叶红外转换光谱(FT-IR)也显示酞菁包覆在了K2Fe04的上面。本章还研究了不同比例酞菁包覆K2FeO4后浸泡在电解液中不同时间的电化学性能。恒流放电测试显示浸泡在电解液中相同时间后,酞菁包覆的高铁酸钾电池阴极容量比未包覆高铁酸钾的高得多。通过用很少量的酞菁包覆高铁酸钾,浸泡在碱液中3-12h,超铁碱性电池的阴极容量大约可以增加21%-35%,略低于同比例2,3-萘酞菁包覆高铁酸钾的容量。开路电位也显示包覆后的K2FeO4的稳定性随着浸泡时间的增加而减弱,随着酞菁包覆含量的增加而增强。通过电化学阻抗谱探讨了酞菁改善K2FeO4的稳定性的原因:酞菁包覆在高铁酸钾表面,对高铁酸钾电极起到保护膜的作用,在短时间的浸泡过程中,减慢了高铁酸钾的分解;酞菁在高铁酸钾电极中增强了电极中电子在界面之间的转移能力。
     (6)介绍了使用有机化合物萘作为保护膜,研究其对高铁酸钾稳定性的改善。不同比例的萘包覆后的K2FeO4通过扫描电子显微镜(SEM)研究,发现K2FeO4晶体的表面被萘部分包覆住,且萘的含量越高,包覆的面积越大越厚。傅里叶红外转换光谱(FT-IR)也显示萘包覆在了K2FeO4的上面。本章还研究了不同含量萘包覆K2FeO4后浸泡在电解液中不同时间的电化学性能。恒流放电测试结果显示通过用很少量的萘包覆高铁酸钾后浸泡在碱液中3-12 h,超铁碱性电池的阴极容量大约可以增加1.9%-49%,明显低于同比例2,3-萘酞菁及酞菁对高铁酸钾阴极容量的改善。开路电位显示K2FeO4的稳定性随着浸泡时间的增加而减弱,随着萘的含量的增加而增强。通过电化学阻抗谱探讨了萘包覆对高铁酸钾电极稳定性改善不大的原因:萘在高铁酸钾电极中没有增强电极中电子在界面之间的转移能力。萘只起到保护层的作用,部分阻碍了高铁酸钾和电解液的接触。
Ferrate(Ⅵ) is the high-oxidation-state compound of iron which possesses relatively high redox potential, large electrochemical capacity, abundance of raw materials in nature and environmentally friendly discharge product Fe2O3·nH2O which could be used as coagulation in waste water. Ferrate(Ⅵ) compounds could be also used to be as strong oxidants in waste water treatment and as selective oxidants in organic synthesis, also could be as cathodic materials in super iron batteries.
     There are three main three preparation methods of ferrate(Ⅵ): electrochemical oxidation method, dry oxidation method and wet oxidation method. Among these preparation methods, the wet oxidation method is widely considered to be the most practical, because the approach possesses low ferrate(Ⅵ) generation yield, long reaction time, fussy operation process and low capacity product.
     In past several years, among these Fe(Ⅵ) compounds investigated, K2FeO4 was readily synthesized and usually used as the precursor for other Fe(Ⅵ) synthesis. Among the super-iron cathodes, K2FeO4 has attracted the most attention during the past few years due to its higher solid-state stability (<0.1% decomposition/year in the dry and sealed condition). However, in aqueous solution, K2FeO4 is very unstable. And the stability of K2FeO4 in acid solution is lower than that in saturated KOH solution. In saturated KOH solution, the K2Fe04 could still decompose to be Fe2O3·nH2O, which would debase the discharge performance of K2Fe04.
     To resolve the questions about synthesis of potassium ferrate and improve the stability of potassium ferrate, the following works were carried out in this dissertation.
     (1) The preparation method, the purity analysis methods, the structure, the physicochemical properties and the application of ferrate(Ⅵ) were reviewed. Then the goal and ideas of the work were introduced.
     (2) An ultrasound-assisted convenient method was developed for the synthesis of battery grade K2FeO4 with high yield (53-59%). The use of ultrasonic simplified the preparation process and increased the practical discharged capacity of product. The factors (eg. the temperature of collecting chlorine, the quantity of reactant, the temperature and time of reaction, the process of separation and purification, etc.) which affected the purity of K2Fe04 were studied. The purity of the synthesized salt was determined by chromite method to be 95-96.8%. It was found that sample of the solid potassium ferrate has a tetrahedral structure with a space group of D2h (Pnma) from X-ray diffraction (XRD) spectrum. From the scanning electronic microscopy (SEM), the K2Fe04 powders were crystallized polyhedron-shaped stick, and the particles had dimensions on the order of 25-200μm in length and 1-10μm in width. Fourier transform infrared spectroscopy (FT-IR) showed K2FeO4 had a tetrahedral structure which centralizes with Fe atoms next to the four equivalent Fe-O bonds.
     (3) In this dissertation, the electrochemical performance of the K2Fe04 electrodes was studied by using cyclic voltammetry, galvanostatic discharge methods. The influence of the composition of the electrode, concentration of the electrolyte and discharge rate on the discharge performance of K2FeO4 cathode. The results showed that the discharge capacity is the highest when discharged at rate of 0.25C to a cutoff of 0.8 V in 10 mol/L KOH aqueous electrolyte. The higher purity of potassium ferrate possesses a higher capacity which is higer than that reported in previous literature.
     (4) To improve the stability of K2FeO4 electrodes, using 2,3-Naphthalocyanine (C48H26N8) as coating was introduced in the dissertation. The electrode material with the coating was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) and the results showed that the K2FeO4 was locally coated with 2,3-Naphthalocyanine. Electrochemical behavior of potassium ferrate (VI) (K2Fe04) coated with different weight level of 2,3-Naphthalocyanine is investigated as a function of exposure time to electrolyte. Galvanostatic discharge curves indicate that the electrochemical capacity of K2FeO4 decreases with increasing exposure time. It also indicates that the level of 2,3-Naphthalocyanine has a positive effect on the capacity of K2FeO4 within 3 h. But after storing in the electrolyte for 6 h, the effect of level of 2,3-Naphthalocyanine on the capacity is not obvious when the content of 2,3-Naphthalocyanine is more than 2%. The capacity of K2Fe04 coated with a few percent of 2,3-Naphthalocyanine increased 26%-50% after storing in 10 mol/L KOH for 3-12 h. Open-circuit potential curves indicate that the stability of K2FeO4 decreases with increasing exposure time. But it also indicates that the stability of K2Fe04 increases with increasing content of 2,3-Naphthalocyanine. Electrochemical impedance spectroscopy (EIS) results reveal that 2,3-Naphthalocyanine coating blocks K2Fe04 contact with the electrolyte and decreases the transfer resistance in the electrode, which are responsible for the enhancement of K2FeO4 stability.
     (5) Phthalocyanine (C32H18N8) with a close structure with 2,3-Naphthalocyanine was used as coating was introduced in the dissertation. The electrode material coated with different content of phthalocyanine was characterized by scanning electron microscopy (SEM), the result showed that the K2Fe04 was locally coated with phthalocyanine and the proportion and thickness of phthalocyanine increseased with increasing the ratio of phthalocyanine. Fourier transform infrared spectroscopy (FT-IR) also showed that K2Fe04 was coated with phthalocyanine. Electrochemical behavior of K2Fe04 coated with different weight level of phthalocyanine is investigated as a function of exposure time to electrolyte. Galvanostatic discharge curves indicate that the electrochemical capacity of K2Fe04 coated with phthalocyanine is higher than uncoated K2FeO4. The capacity of K2Fe04 coated with a few percent of phthalocyanine which is slightly lower than 2,3-Naphthalocyanine increased 21%-35%. Open-circuit potential curves indicate that the stability of K2FeO4 decreases with increasing exposure time. But it also indicates that the stability of K2Fe04 increases with increasing content of phthalocyanine. Electrochemical impedance spectroscopy (EIS) results reveal that phthalocyanine coating blocks K2Fe04 contact with the electrolyte and decreases the transfer resistance in the electrode, which are responsible for the enhancement of K2Fe04 stability.
     (6) Organic compound naphthalene was introduced to be the coatings to improve the stability of K2FeO4. The electrode material coated with different ratio of naphthalene was characterized by scanning electron microscopy (SEM). The result showed that the K2Fe04 was locally coated with naphthalene and the proportion and thickness of naphthalene also increseased with increasing the ratio of naphthalene. Fourier transform infrared spectroscopy (FT-IR) also showed that K2FeO4 was coated with naphthalene. Electrochemical behavior of K2Fe04 coated with different weight level of naphthalene is investigated as a function of exposure time to electrolyte. Galvanostatic discharge curves indicate that the electrochemical capacity of K2FeO4 coated with naphthalene is slightly higher than uncoated K2FeO4. The capacity of K2FeO4 coated with a few percent of naphthalene, which is lower than 2,3-Naphthalocyanine and naphthalene, increased 1.9%-49. Open-circuit potential curves indicate that the stability of K2FeO4 decreases with increasing exposure time. But it also indicates that the stability of K2FeO4 increases with increasing content of naphthalene. Electrochemical impedance spectroscopy (EIS) results reveal that naphthalene coating increases the transfer resistance in the electrode, but naphthalene coating blocks K2Fe04 contact with the electrolyte which are responsible for the enhancement of K2FeO4 stability.
引文
[1]S. Licht, B. Wang, S. Ghosh. Energetic iron(Ⅵ) chemistry:The super-iron battery [J]. Science,1999,285:1039-1042.
    [2]X. Yu, S. Licht. Advances in Fe(Ⅵ) charge storage:Part Ⅰ. Primary alkaline super-iron batteries[J]. J. Power Sources,2007,171 (2):966-980.
    [3]E. C. R. Fremy. preparation of potassium farrate(Ⅵ) in alkaline solution[J]. Acad. SciParis,1841,12:23.
    [4]J. A. Thompsom. Proeess for Producing alkali metal ferrates utilizing hematite and magnetite[J]. US4545974,1985/1984.
    [5]E. M. Tamayo, A. B. Porter, D. B. Porter. Iron compounds in high oxidation states. Ⅰ.the reaction between BaO2 and FeSO4[J]. Thermoehim. Acta,1985,91: 249-263.
    [6]E. M. Tamayo, A. B. Porter, D. B. Porter. Iron compounds in high oxidation states: Ⅱ.Reaction between Na2O2 and FeSO4[J]. Thermochim. Acta,1986,97: 243-255.
    [7]李志远,赵建国,韦丽红.过氧化钠法高铁酸盐转化的实验研究[J].无机盐工业,1995,5:10-12.
    [8]Y. M. Kiselev, N. S. Kopelev, N. A. Zavyalova. The preparation of alkalimetal ferrate(Ⅵ) [J]. J. Inorg. Chem.,1989,34:1250-1253.
    [9]J. M. Schreyer. Higher valence compounds of iron [M]. Oregon State College, Corvallis, Oregon,1948.
    [10]H. J. Hrostowski, A. B. Scott. The Magnetic Susceptibility of Potassium Ferrat[J]. J. Chem. Phys.,1950,18:105-107.
    [11]G. W. Thompson, L. T. Ockerman, J. M. Schreyer. Prearation and Purification of Potassium Ferrate.Ⅵ. [J]. J. Am. Chem. Soc.,1951,73:1379-1381.
    [12]罗志勇.高纯度高铁酸钾的稳定合成[J].重庆大学学报(自然科学版),2005,28(5):109-111,115.
    [13]D. H. Williams, J. T. Riley. Preparation and alcohol:oxidation studies of the ferrate(Ⅵ) ion, FeO42-[J]. Inorg. chim. Acta,1974,8:177-183.
    [14]王永龙,周宁,叶世海,等.高铁酸钾的合成与电化学性能研究[J].电化学,2003,9(1):15-18.
    [15]王先友,杨红平,汪形艳,等.纳米级铁酸盐的制备及其电化学性能[J].中南大学学报(自然科学版),2004,35(3):402-407.
    [16]L. Delaude, P. Laszlo. A Novel Oxidizing Reagent Based on Potassium Ferrate(Ⅵ)1[J]. J. Organ. Chem.,1996,61(18):6360-6370.
    [17]Z. Ding, C. Yang, Q. Wu. The electrochemical generation of ferrate at porous magnetite electrode[J]. Electrochim. Acta,2004,49(19):3155-3159.
    [18]K. Bouzek, I. Rousar. Current efficiency during anodic dissolution of iron to ferrate(vi) in concentrated alkali hydroxide solutions[J]. J. Appl. Electrochem., 1993,23(12):1317-1322.
    [19]A. S. Venkatadri, H. H. Bauer, W. F. Wagner. Potentiostatic Anodic Synthesis of Ferrate(Ⅵ)[J]. J. Electrochem. Soc.,1974,121 (2):249-250.
    [20]何伟春.高铁(Ⅵ)化合物的电化学合成与性质研究[M].博士学位论文,浙江大学,杭州,2007.
    [21]A. Denvir, D. Pletcher. Electrochemical generation of ferrate Part Ⅰ:Dissolution of an iron wool bed anode[J]. J. Appl. Electrochem.,1996,26(8):815-822.
    [22]A. Denvir, D. Pletcher. Electrochemical generation of ferrate Part 2:Influence of anode composition[J]. J. Appl. Electrochem.,1996,26(8):823-827.
    [23]K. Bouzek, L. Flower, I. Rousar, et al. Electrochemical production of ferrate(vi) using sinusoidal alternating current superimposed on direct current. Pure iron electrode[J]. J. Appl. Electrochem.,1999,29(5):569-576.
    [24]K. Bouzek, I. RouSAr. Influence of anode material on current yield during ferrate(vi) production by anodic iron dissolution:Part Ⅲ:Current efficiency during anodic dissolution of pure iron to ferrate(vi) in concentrated alkali hydroxide solutions[J]. J. Appl. Electrochem.,1997,27(6):679-684.
    [25]K. Bouzek, I. Rousar, M. A. Taylor. Influence of anode material on current yield during ferrate(vi) production by anodic iron dissolution Part Ⅱ:Current efficiency during anodic dissolution of white cast iron to ferrate(vi) in concentrated alkali hydroxide solutions[J]. J. Appl. Electrochem.,1996,26(9):925-931.
    [26]K. Bouzek, I. Rousar. Influence of anode material on current yields during ferrate(vi) production by anodic iron dissolution Part Ⅰ:Current efficiency during anodic dissolution of grey cast iron to ferrate(vi) in concentrated alkali hydroxide solutions[J]. J. Appl. Electrochem.,1996,26(9):919-923.
    [27]K. Bouzek, M. J. Schmidt, A. A. Wragg. Influence of electrolyte composition on current yield during ferrate(Ⅵ) production by anodic iron dissolution[J]. Electrochem. Commun.,1999,1(9):370-374.
    [28]V. Lescuras-Darrou, F. Lapicque, G. Valentin. Electrochemical ferrate generation for waste water treatment using cast irons with high silicon contents[J]. J. Appl. Electrochem.,2002,32(1):57-63.
    [29]M. De Koninck, D. Belanger. The electrochemical generation of ferrate at pressed iron powder electrode:comparison with a foil electrode[J]. Electrochim. Acta,2003,48(10):1435-1442.
    [30]M. De Koninck, T. Brousse, D. Belanger. The electrochemical generation of ferrate at pressed iron powder electrodes:effect of various operating parameters [J]. Electrochim. Acta,2003,48(10):1425-1433.
    [31]S. Licht, R. Tel-Vered, L. Halperin. Direct electrochemical preparation of solid Fe(VI) ferrate, and super-iron battery compounds[J]. Electrochem. Commun., 2002,4(11):933-937.
    [32]S. Licht, R. Tel-Vered, L. Halperin. Toward Efficient Electrochemical Synthesis of Fe(Ⅵ) Ferrate and Super-Iron Battery Compounds[J]. J. Electrochem. Soc., 2004,151(1):A31-A39.
    [33]W. He, J. Wang, C. Yang, et al. The rapid electrochemical preparation of dissolved ferrate(Ⅵ):Effects of various operating parameters[J]. Electrochim. Acta,2006,51(10):1967-1973.
    [34]何伟春,杨长春.高铁酸钠快速电合成及其分解动力学研究[J].无机盐工业,2003,35(4):17-19.
    [35]何伟春,华勇.快速电合成法制备多功能复合高铁(铝)酸盐水处理剂[J].河南大学学报(自然科学版),2003,33(3):39-42.
    [36]杨长春,何伟春,等.电解合成Na2FeO4制备K2FeO4[J]应用化学,2002,19(6):564-568.
    [37]杨长春,何伟春,等.电池级K2FeO4的制备及其电化学性能[J].电池,2003,33(1):27-29.
    [38]何伟春,杨长春,等.快速电合成法制备K2FeO4新工艺研究[J].郑州工业高等专科学校学报,2002,18(2):1-2.
    [39]何伟春,王建明,周利,等.高铁酸三钾钠的合成及其物理化学性质研究[J].化学学报,2007,65(20):2261-2265.
    [40]何伟春,胡秀荣,沈报春,等K3Na(FeO4)2的电合成及其晶体结构[J].无机化学学报,2007,23(4):655-658.
    [41]徐志花.高铁化合物的制备及其电化学性能研究[M].博士学位论文,浙江大学,杭州,2006.
    [42]J. M. Schreyer, G. W. Thompson, L. T. Ockerman. Ferrate Oxidimetry: Oxidation of Arsenite with Potassium Ferrate(Ⅵ)[J]. Anal. Chem.,1950,22(5): 691-692.
    [43]J. M. Schreyer, G. W. Thompson, L. T. Ockerman. Oxidation of Chromium(Ⅲ) with Potassium Ferrate(Ⅵ)[J]. Anal. Chem.,1950,22(11):1426-1427.
    [44]A. S. Venkatadri, W. F. Wagner, H. H. Bauer. Ferrate(VI) analysis by cyclic voltammetry[J]. Anal. Chem.,1971,43(8):1115-1119.
    [45]贾汉东,杨新玲.高铁酸盐的直接分光光度法测定[J].分析化学,1999,27(5):617-617.
    [46]贾汉东,尚中锋.高铁酸盐的量气分析法[J].分析化学,1998,26(4):493-493.
    [47]R. J. Audette, J. W. Quail. Potassium, rubidium, cesium, and barium ferrates(Ⅵ). Preparations, infrared spectra, and magnetic susceptibilities[J]. Inorg. Chem., 1972,11(8):1904-1908.
    [48]R. H. Herber, D. Johnson. Lattice dynamics and hyperfine interactions in M2FeO4 (M=potassium(1+), rubidium(1+), cesium(1+)) and M'FeO4 (M' strontium(2+), barium(2+))[J]. Inorg. Chem.,1979,18(10):2786-2790.
    [49]M. L. Hoppe, E. O. Schlemper, R. K. Murmann. Structure of dipotassium ferrate(VI)[J]. Acta Crystallographica Section B,1982,38 (8):2237-2239.
    [50]冯长春,杜春萍.高铁酸钾的结构研究[J].化学世界,1991,32(3):102-106.
    [51]H. Goff, R. K. Murmann. Mechanism of isotopic oxygen exchange and reduction of ferrate(Ⅵ) ion (FeO42-)[J]. J. Am. Chem. Soc.,1971,93(23): 6058-6065.
    [52]H. J. Hrostowski, A. B. Scott. The Magnetic Susceptibility of Potassium Ferrate[J]. J. Chem. Phys.,1950,18(1):105-107.
    [53]R. Scholder, H. V. Bunsen, F. Kindervater, et al. Zur Kenntnis der Ferrate(VI). In WILEY-VCH Verlag:1955,282:268-279.
    [54]T. Ichida. Mossbauer Study of the Thermal Decomposition Products of K2FeO4[J]. Bull. Chem. Soc. J.,1973,46(1):79-82.
    [55]蒋凤生,张毓昌.高铁酸钾热分解的研究[J].无机化学学报,1990,6(2):136-140.
    [56]A. I. Tsapin, M. G. Goldfeld, G. D. McDonald, et al. Iron(Ⅵ):Hypothetical Candidate for the Martian Oxidant[J]. Icarus,2000,147(1):68-78.
    [57]W. Yang, J. Wang, T. Pan, et al. Physical characteristics, electrochemical behavior, and stability of BaFeO4[J]. Electrochim. Acta,2004,49 (21): 3455-3461.
    [58]陈建军,杨海福,等.固体高铁酸钡热分解动力学的研究[J].青海大学学报(自然科学版),2002,20(3):17-19.
    [59]陈建军,任彦蓉.固体高铁酸钡的稳定性研究[J].青海大学学报(自然科学版),2003,21(1):20-23.
    [60]张雪盈,杨长春,高杰.高铁酸钾晶体结构的研究[J].合成化学,2005,13(4):391-393.
    [61]J. M. Schreyer, L. T. Ockerman. Stability of Ferrate(Ⅵ) Ion in Aqueous Solution[J]. Anal. Chem.,1951,23(9):1312-1314.
    [62]W. F. Wagner, J. R. Gump, E. N. Hart. Factors Affecting Stability of Aqueous Potassium Ferrate(Ⅵ)Solutions[J]. Anal. Chem.,1952,24(9):1497-1498.
    [63]R. H. Wood. The Heat, Free Energy and Entropy of the Ferrate(Ⅵ) Ion[J]. J. Am. Chem. Soc.,1958,80(9):2038-2041.
    [64]高玉梅,丁小会.高铁酸盐的稳定性研究进展[J].河南工程学院学报(自然科学版),2009,21(3):18-21.
    [65]贾汉东,鲍改玲.过渡金属离子对高铁酸盐溶液稳定性的影响[J].电池,2004,34(6):430-431.
    [66]贾汉东,高玉梅,鲍改玲.高铁酸盐溶液稳定性的光化效应[J].郑州大学学报(理学版),2004,36(1):71-73.
    [67]宋华,王园园,李茂.Fe042-离子在碱性水溶液中稳定性的研究[J].石油炼制与化工,2009,3:52-55.
    [68]宋华.高铁酸钾在中性、酸性介质中的稳定性[J].化学通报,2008,71(9).
    [69]杨卫华,王建明,曹江林,等K2FeO4在稀KOH溶液中的稳定性研究[J].化学学报,2004,62(19):1951-1955.
    [70]庄玉贵,颜文强,许冬梅,等.高铁酸盐稳定剂的筛选[J].福建师大福清分校学报,2006,2:40-43.
    [71]毛海荣,刘一真,樊耀亭,等.复合高铁酸盐在水溶液中稳定性的研究[J].光谱学与光谱分析,2003,23(6):1206-1209.
    [72]张铁锴,王宝辉,吴红军,等.卤化钾对碱液中高铁酸钾的稳定性研究[J].无机盐工业,2005,37(3):11-13.
    [73]S. Licht, B. Wang, S. Gosh, et al. Insoluble Fe(Ⅵ) compounds:effects on the super-iron battery[J]. Electrochem. Commun.,1999,1(11):522-526.
    [74]W. P. Griffith. Infrared spectra of tetrahedral oxyanions of the transition metals[J]. J. Chem. Soc. A:Inorg., Phys., Theor.,1966:1467-1468.
    [75]S. Licht, B. Wang. Nonaqueous Phase Fe(Ⅵ) Electrochemical Storage and Discharge of Super-Iron/Lithium Primary Batteries[J]. Electrochem. Solid-State Lett.,2000,3(5):209-212.
    [76]S. Licht, L. Yang, B. Wang. Synthesis and analysis of Ag2FeO4 Fe(Ⅵ) ferrate super-iron cathodes[J]. Electrochem. Commun.,2005,7(9):931-936.
    [77]孟祥茹,卢艳霞,等.高铁酸钙的ksp0常数和热力学函数的测定[J].河南科学,2001,19(1):42-45.
    [78]孟祥茹,贾汉东.分光光度法测定高铁酸锶的ksp0常数和热力学函数[J].郑州大学学报(自然科学版),1999,31(3):66-69.
    [79]S. Licht, V. Naschitz, L. Halperin, et al. Analysis of ferrate(Ⅵ) compounds and super-iron Fe(Ⅵ) battery cathodes:FTIR, ICP, titrimetric, XRD, UV/VIS, and electrochemical characterization[J]. J. Power Sources,2001,101(2):167-176.
    [80]W. H. Yang, J. M. Wang, Z. B. Zhang, et al. Studies on the Electrochemical Characteristics of K2FeO4 Electrode[J]. Chin. Chem. Lett,2002,13(8):761-764.
    [81]杨卫华K2FeO4在KOH溶液中的电极反应特征[J].华侨大学学报(自然科学版),2006,27(4):375-377.
    [82]W. Yang, J. Wang, T. Pan, et al. Studies on the electrochemical characteristics of K2Sr(FeO4)2 electrode[J]. Electrochem. Commun.,2002,4(9):710-715.
    [83]S. Licht, B. Wang, G. Xu, et al Solid phase modifiers of the Fe(Ⅵ) cathode: effects on the super-iron battery[J]. Electrochem. Commun.,1999,1(11): 527-531.
    [84]X. Yu, S. Licht. Advances in Fe(Ⅵ) charge storage Part Ⅱ. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries[J]. J. Power Sources, 2007,171:1010-1022.
    [85]张丽华,王西蕊,刘佳刚,等.绿色电池阴极材料高铁酸盐的电化学性能研究[J].材料导报(纳米与新材料专辑),2008,3:200-203.
    [86]周宁,叶世海,王永龙,等.高铁酸钾电化学性能研究[J].电化学,2003,9(3):253-258.
    [87]苏秀丽,刘洪涛,张校刚CoTiO3改性K2FeO4电极的电化学行为[J].应用化学,2004,21(12):1249-1252.
    [88]K. A. Walz, A. N. Suyama, W. E. Suyama, et al. Characterization and performance of high power iron(Ⅵ) ferrate batteries[J]. J. Power Sources,2004, 134(2):318-323.
    [89]S. Licht, B. Wang, S. Ghosh, et al. Enhanced Fe(Ⅵ) cathode conductance and charge transfer:effects on the super-iron battery[J]. Electrochem. Commun., 2000,2(7):535-540.
    [90]S. Licht, V. Naschitz, D. Rozen, et al. Cathodic Charge Transfer and Analysis of Cs2Fe04, K2Fe04, and Mixed Alkali Fe(Ⅵ) Ferrate Super-irons[J]. J. Electrochem. Soc.,2004,151(8):A1147-A1151.
    [91]S. Licht, X. Yu. An Alkaline Periodate Cathode and Its Unusual Solubility Behavior in KOH[J]. Electrochem. Solid-State Lett.,2007,10(2):A36-A39.
    [92]S. Licht, X. Yu, D. Qu. A novel alkaline redox couple:chemistry of the Fe6+/B2-super-iron boride battery[J]. Chem. Comm.,2007:2753-2755.
    [93]S. Licht, X. Yu, D. Zheng. Cathodic chemistry of high performance Zr coated alkaline materials[J]. Chem. Commun.,2006:4341-4343.
    [94]S. Licht, R. Tel-Vered. Rechargeable Fe(Ⅲ/Ⅵ) super-iron cathodes[J]. Chem. Commun.,2004:628-629.
    [95]X. Yu, S. Licht. Advances in electrochemical Fe(Ⅵ) synthesis and analysis[J]. J. Appl. Electrochem.,2008,38:731-742.
    [96]S. Licht, V. Naschitz, S. Ghosh, et al. SrFeO4:Synthesis, Fe(Ⅵ) characterization and the strontium super-iron battery[J]. Electrochem. Commun., 2001,3(7):340-345.
    [97]S. Licht, S. Ghosh, V. Naschitz, et al. Fe(Ⅵ) catalyzed manganese redox chemistry:Permanganate and super-iron alkaline batteries[J]. J. Phys. Chem. B, 2001,105(48):11933-11936.
    [98]X. Yu, S. Licht. Recent advances in synthesis and analysis of Fe(Ⅵ) cathodes: solution phase and solid-state Fe(Ⅵ) syntheses, reversible thin-film Fe(Ⅵ) synthesis, coating-stabilized Fe(Ⅵ) synthesis, and Fe(VI) analytical methodologies[J]. J. Solid State Electrochem.,2008,12(12):1523-1540.
    [99]Z. Xu, J. Wang, H. Shao, et al. Preliminary investigation on the physicochemical properties of calcium ferrate(Ⅵ)[J]. Electrochem. Commun.,2007,9 (3): 371-377.
    [100]S. Licht, X. Yu, Y. Wang. Stabilized Alkaline Fe(Ⅵ) Charge Transfer:Zirconia Coating Stabilized Super-Iron Alkaline Batteries[J]. J. Electrochem. Soc.,2008, 155:A1-7.
    [101]K. A. Walz, J. R. Szczech, A. N. Suyama, et al. Stabilization of Iron(VI)Ferrate Cathode Materials Using Nanoporous Silica Coatings[J]. J. Electrochem. Soc., 2006,153(6):A1102-A1107.
    [102]S. Licht, S. Ghosh, V. Naschitz. Hydroxide Activated AgMnO4 Alkaline Cathodes, Alone and in Combination with Fe.Ⅵ. Super-Iron, BaFeO4[J]. Electrochem. Solid-State Lett.,2001,4(12):A209-A212.
    [103]M. Koltypin, S. Licht, I. Nowik, et al. Study of Various ("super iron")MeFeO4 compounds in Li salt solutions as potential cathode materials for Li batteries solutions as potential cathode materials for Li batteries[J]. J. Electrochem. Soc., 2006,153(1):A32-A41.
    [104]R. Tel-Vered, D. Rozen, S. Licht. Enhancement of Nonaqueous Fe.VI. Super-iron Primary Cathodic Charge Transfer[J]. J. Electrochem. Soc.,2003, 150(12):A1671-A1675.
    [105]S. Licht, S. Ghosh, Q. Dong. Charge Storage Effects in Alkaline Cathodes Containing Fluorinated Graphite[J]. J. Electrochem. Soc.,2001,148(10): A1072-A1077.
    [106]M. Koltypin, S. Licht, R. T. Vered, et al. The study of K2FeO4 (Fe6+-super iron compound) as a cathode material for rechargeable lithium batteries[J]. J. Power Sources,2005,146(1-2):723-726.
    [107]S. Licht, S. Ghosh. High power BaFe(Ⅵ)O4/MnO2 composite cathode alkaline[J]. J. Power Sources,2002,109:465-468.
    [108]X. Yu, S. Licht. Zirconia coating stabilized super-iron alkaline cathodes[J]. J. Power Sources,2007,173(2):1012-1016.
    [109]K. A. Walz, A. Handrick, J. R. Szczech, et al. Evaluation of SiO2 and TiO2 coated BaFeO4 cathode materials for zinc alkaline and lithium non-aqueous primary batteries[J]. J. Power Sources,2007,167:545-549.
    [110]张瑛洁,王禄鹏,赵伟.高铁酸盐在水和废水处理中的应用进展[J].东北电力学院学报,2005,25(6):18-24.
    [111]牛微.高效水处理剂高铁酸盐的制备及应用[J].沈阳工程学院学报(自然科学版),2010,6(1):23-26.
    [112]许良,邱慧琴.多功能水处理药剂高铁酸钾的研制及应用研究[J].净水技术,2004,23(4):29-31.
    [113]J.-Q. Jiang, B. Lloyd. Progress in the development and use of ferrate(Ⅵ) salt as an oxidant and coagulant for water and wastewater treatment[J]. Water Research, 2002,36(6):1397-1408.
    [114]V. K. Sharma, W. Rivera, J. O. Smith, et al. Ferrate(Ⅵ) oxidation of aqueous cyanide[J]. Environ. Sci. Technol.,1998,32:2608-2613.
    [115]V. K. Sharma, J. T. Bloom, V. N. Joshi. Oxidation of ammonia by ferrate(Ⅵ)[J]. J. Environ Sci. Health, A,1998,33:635-650.
    [116]贾汉东,鲍改玲,等.未纯化高铁酸盐原液处理含硫废水的研究[J].郑州大学学报(自然科学版),2001,33(2):79-82.
    [117]V. K. Sharma, J. O. Smith, F. J. Millero. Ferrate(Ⅵ) oxidation of hydrogen sulfide [J]. Environ. Sci. Technol.,1997,31:2486-2491.
    [118]夏庆余,王丽琼,陈力勤,等.电解制备高铁酸盐及其处理苯胺废水的研究[J].化工环保,2005,25(2):88-92.
    [119]P. Sylvester, L. A. Rutherford, A. Gonzalez-Martin, et al. Ferrate Treatment for Removing Chromium from High-Level Radioactive Tank Waste[J]. Environ. Sci. Technol.,2001,35(1):216-221.
    [120]J. Ma, W. Liu. Effectiveness of ferrate (Ⅵ) preoxidation in enhancing the coagulation of surface waters[J]. Water Research,2002,36(20):4959-4962.
    [121]Y. Lee, I.-h. Um, J. Yoon. Arsenic(Ⅲ) Oxidation by Iron(VI) (Ferrate) and Subsequent Removal of Arsenic(Ⅴ) by Iron(Ⅲ) Coagulation[J]. Environ. Sci. Technol.,2003,37(24):5750-5756.
    [122]卫世乾.复合高铁酸盐处理含Ag(CN)2-、Zn(CN)42配离子模拟废水的研究[J].许昌学院学报,2008,27(2):105-110.
    [123]N. Graham, C.-c. Jiang, X.-Z. Li, et al. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate[J]. Chemosphere,2004,56 (10):949-956.
    [124]曲久辉,林谡,王立立.高铁酸盐的溶液稳定性及其在水质净化中的应用[J].环境科学学报,2001,21(6):106-109.
    [125]刘伟,蔡国庆,等.高铁酸盐预氧化除藻工艺对含藻水中溶解性有机物的影响[J].哈尔滨工业大学学报,2002,34(2):220-224.
    [126]J.-Q. Jiang, A. Panagoulopoulos, M. Bauer, et al. The application of potassium ferrate for sewage treatment[J]. J. Environ. Manag.,2006,79(2):215-220.
    [127]马军.高铁酸盐复合药剂预氧化除藻效能研究[J].中国给水排水,1998,14(5):9-11.
    [128]李玲,何争光,王太平,等.高铁酸盐除藻的实验研究[J].安全与环境工程,2008,15(4):51-54.
    [129]T. Ohta, T. Kamachi, Y. Shiota, et al. A Theoretical Study of Alcohol Oxidation by Ferrate[J]. J. Organ. Chem.,2001,66(12):4122-4131.
    [130]Y. Shiota, N. Kihara, T. Kamachi, et al. A Theoretical Study of Reactivity and Regioselectivity in the Hydroxylation of Adamantane by Ferrate(Ⅵ)[J]. J. Organ. Chem.,2003,68(10):3958-3965.
    [131]H. Huang, D. Sommerfeld, B. C. Dunn, et al. Ferrate(Ⅵ) oxidation of aniline[J]. J. Chem. Soc., Dalton Trans.,2001,(8):1301-1305.
    [132]J. D. Carr, P. B. Kelter, A. T. Ericson. Ferrate(Ⅵ) oxidation of nitrilotriacetic acid[J]. Environ Sci. Technol.,1981,15(2):184-187.
    [133]C.-M. Ho, T.-C. Lau. Lewis acid activated oxidation of alkanes by barium ferrate[J]. New J. Chem.,2000,24(8):587-590.
    [134]T. Kamachi, T. Kouno, K. Yoshizawa. Participation of Multioxidants in the pH Dependence of the Reactivity of Ferrate(Ⅵ)[J]. J. Organ. Chem.,2005,70(11): 4380-4388.
    [135]J. F. Read, C. R. Graves, E. Jackson. The kinetics and mechanism of the oxidation of the thiols 3-mercapto-1-propane sulfonic acid and 2-mercaptonicotinic acid by potassium ferrate[J]. Inorg. Chim. Acta,2003,348: 41-49.
    [136]L. Delaude, P. Laszlo, P. Lehance. Oxidation of organic substrates with potassium ferrate (Ⅵ) in the presence of the K10 montmorillonite[J]. Tetrahedron Lett.,1995,36(46):8505-8508.
    [137]V. K. Sharma. Potassium ferrate(VI):an environmentally friendly oxidant[J]. Adv. Environ. Res.,2002,6(2):143-156.
    [138]M. Murshed, D. A. Rockstraw, A. T. Hanson, et al. Rapid oxidation of sulfide mine tailings by reaction with potassium ferrate[J]. Environ. Poll.,2003,125(2): 245-253.
    [139]Y. Y. Eng, V. K. Sharma, A. K. Ray. Ferrate(Ⅵ):Green chemistry oxidant for degradation of cationic surfactant[J]. Chemosphere,2006,63(10):1785-1790.
    [140]V. K. Sharma, S. K. Mishra, A. K. Ray. Kinetic assessment of the potassium ferrate(Ⅵ) oxidation of antibacterial drug sulfamethoxazole[J]. Chemosphere, 2006,62(1):128-134.
    [141]G. W. Thompson, L. T. Ockerman, J. M. Schreyer. Preparation and Purification of Potassium Ferrate. Ⅵ[J]. J. Am. Chem. Soc.,1951,73(3):1379-1381.
    [142]D. H. Williams, J. T. Riley. Preparation and alcohol oxidation studies of the ferrate(Ⅵ) ion, FeO42[J]. Inorg. Chim. Acta,1974,8:177-183.
    [143]于海迎.高能铁基电池材料(钾盐)改性及电化学性能研究[M].硕士学位 论文,大庆石油学院,大庆,2006.
    [144]宋华.Fe(V1)化学:绿色有机氧化合成技术研究[M].硕士学位论文,大庆石油学院,大庆,2005.
    [145]贾汉东,卫世乾,鲍改玲,等.加入阴、阳离子对高铁酸盐溶液稳定性的影响[J].郑州大学学报(理学版),2006,38(1):101-104.
    [146]苏秀丽,刘洪涛,张校刚,等KMnO4改性K2FeO4电极的电化学性能研究[J].电源技术,2004,28(10):630-632.
    [147]许秀清,单治国,朱承驻,等.高铁酸盐制备及氧化降解硝基苯水溶液的研究[J].合肥工业大学学报(自然科学版),2008,31(4):507-510.
    [148]C. Li, X. Z. Li, N. Graham. A study of the preparation and reactivity of potassium ferrate[J]. Chemosphere,2005,61(4):537-543.
    [149]S. Licht, V. Naschitz, B. Liu, et al. Chemical synthesis of battery grade super-iron barium and potassium Fe(VI) ferrate compounds[J]. J. Power Sources, 2001,99(1-2):7-14.
    [150]廖立兵,李国武,X射线衍射方法与应用[M].北京:地质出版社,2008.
    [151]王志涛.超铁电池K2FeO4基阴极材料的调制和电池性能[M].硕士学位论文,大庆石油学院,大庆,2005.
    [152]R. J. Auette, J. W. Quail, W. H. Black, et al. Crystal structures of M2FeO4 (M= K, Rb, Cs)[J]. J. Solid State Chem.,1973,8(1):43-49.
    [153]Q. Shi, M. Yu, X. Zhou, et al. Structure and performance of porous polymer electrolytes based on P(VDF-HFP) for lithium ion batteries[J]. J. Power Sources, 2002,103(2):286-292.
    [154]N. T. K. Sundaram, O. T. M. Musthafa, K. S. Lokesh, et al. Effect of porosity on PVdF-co-HFP-PMMA-based electrolyte[J]. Mat. Chem. Phys.,2008,110(1): 11-16.
    [155]王永龙,吴玉菊,薄晋科,等K2FeO4-Zn碱性固态电解质电池电化学性能研究[J].化学学报,2008,66(17):1955-1960.
    [156]I. Gobernado-Mitre, R. Aroca, J. A. DeSaja. Vibrational spectra and molecular organization in thin solid films of 2,3-naphthalocyanines[J]. Chem. Mat.,1995, 7(1):118-122.
    [157]T. Sugimoto, Y. Wang. Mechanism of the Shape and Structure Control of Monodispersed a-Fe2O3 Particles by Sulfate Ions[J]. J. coll. Inter. Sci.,1998, 207:137-149.
    [158]英D.Briggs,桂琳琳,黄惠忠,等.X射线与紫外光电子能谱[M].第一版, 北京:北京大学出版社,1984.
    [159]L. Ottaviano, L. Lozzi, F. Ramondo, et al. Copper hexadecafluoro phthalocyanine and naphthalocyanine:The role of shake up excitations in the interpretation and electronic distinction of high-resolution X-ray photoelectron spectroscopy measurements[J]. J. Electron Spect. Relat. Phenom.,1999,105 (2-3):145-154.
    [160]S. Licht, V. Naschitz, S. Ghosh. Silver Mediation of Fe(Ⅵ) Charge Transfer: , Activation of the K2FeO4 Super-iron Cathode[J]. J. Phys. Chem. B,2002,106(23):5947-5955.
    [161]J. A. Gonzalez, E. Otero, A. Bautista, et al. Use of electrochemical impedance spectroscopy for studying corrosion at overlapped joints[J]. Prog. Organ. Coat., 1998,33(1):61-67.
    [162]S. Feliu, M. Morcillo. The reproducibility of impedance parameters obtained for painted specimens[J]. Prog. Organ. Coat.,1995,25(4):365-377.
    [163]F. Mansfeld, M. W. Kendig. Electrochemical Impedance Spectroscopy of protective coatings[J]. Mat. Corr./Werkst. Korr.,1985,36(11):473-483.
    [164]P. L. Bonora, F. Deflorian, L. Fedrizzi. Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion[J]. Electrochim. Acta,41 (7-8): 1073-1082.
    [165]W. Su, M. Bao, J. Jiang. Infrared spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes:Part 12. The infrared characteristics of phthalocyanine in heteroleptic bis(phthalocyaninato) rare earth complexes[J]. Vibr. Spectros.,2005, 39(2):186-190.
    [166]J. Jiang, D. P. Arnold, H. Yu. Infra-red spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes[J]. Polyhedron,1999,18(16):2129-2139.
    [167]M. M. E. Jacob, A. K. Arof. FTIR studies of DMF plasticized polyvinyledene fluoride based polymer electrolytes[J]. Electrochim. Acta,2000,45(10): 1701-1706.
    [168]R. Seoudi, G. S. El-Bahy, Z. A. El Sayed. FTIR, TGA and DC electrical conductivity studies of phthalocyanine and its complexes[J]. J. Molec. Struc., 2005,753(1-3):119-126.
    [169]S. Singh, S. K. Tripathi, G. S. S. Saini. Effect of pyridine on infrared absorption spectra of copper phthalocyanine[J]. Spectrochim. Acta Part A:Mol. Biomol. Spectr.,2008,69(2):619-623.
    [170]王晔,阚家义,金葆康.β-(1,2)-萘醌电化学行为研究[J].安徽大学学报(自然科学版),2010,34(1):87-90.
    [171]伍林,宗志敏,等.1,1′-和1,2′-二萘甲酮结构的光谱分析[J].光谱学与光谱分析,2003,23(1):192-193.
    [172]董先明,周宏伟,等.萘普生及其中间体的红外光谱和核磁共振谱分析[J].湖南化工,2000,30(6):44-46.
    [173]张祖训.超微电极电化学[M].第一版,北京:科学出版社,1998
    [174]张天莉,严继民.酞菁及其不对称取代物的电子结构和非线性光学特性的理论研究[J].化学学报,2000,58(8):981-987.
    [175]张天莉,严继民.叔丁基及硝基不对称取代酞菁的电子结构及其非线性光学性[J].科学通报,1998,43(21):2282-2286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700