超临界二氧化碳中分子印迹聚合物的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳由于其无毒、价格便宜、临界温度,压力适中(31.1°C,7.38 MPa),具有类似液体的黏度、气体的扩散性,因此,超临界二氧化碳(scCO2)在分离、高分子合成、材料处理等领域成为代替传统有机溶剂的一种绿色溶剂。本文以scCO2为聚合反应介质,展开了如下工作:
     (1)在scCO2中以乙二醇二甲基丙烯酸酯为交联剂制备了交联聚(N-异丙基丙烯酰胺)微粒,通过改变引发剂、交联剂的用量,以及调节CO2的温度、压力制备出干燥、均一、白色的交联PNIPA粉末,交联结构的PNIPA凝胶不仅在水中表现出溶胀性能,而且在无水乙醇中溶胀性能更良好。这些性质可能使其在生物医用领域有潜在价值。
     (2)在scCO2中制备了交联聚(4-乙烯基吡啶)。实验以4-乙烯基吡啶为单体,N, N/-亚甲基双丙烯酰胺为交联剂,通过沉淀聚合得到了微黄色、干燥粉末,在反应压力为14 MPa,温度为70oC时,适当交联剂用量下,产率可达80%。
     (3)在scCO2中,以4-乙烯基吡啶为功能单体,(S)-萘普生为模板,乙二醇二甲基丙烯酸酯为交联剂,制备出对(S)-萘普生有选择吸附性能的分子印迹聚合物。在乙腈中进行平衡吸附,印迹聚合物与非印迹聚合物相比表现出了较高的选择吸附性能;Scatchard分析表明,在研究浓度范围内,所制备的分子印迹聚合物具有两类亲和力结合位点,其高、低平衡离解常数分别为:Kd1 =0.50 mmol L-1,Kd2 = 5.3 mmol L-1,表观最大结合量分别为:Qmax1 = 25.5μmol g-1,Qmax2 = 82.2μmol g-1。
Carbon dioxide is inexpensive, nontoxic, and non-flammable, and it has an easily accessible critical temperature of 31.1°C and critical pressure of 7.38 MPa, and it has both liquid and gas like characteristic. So the use of scCO2 as an alternative to traditional aqueous and organic solvents has attracted much attention in the fields of extraction, polymer synthesis and materials processing. The present study investigates the feasibility of using scCO2 as a polymerization medium for the following research work:
     (1) Cross-linked Poly (N-isopropylacrylamide) microparticles using ethylene glycol dimethacrylate as cross-linker were prepared in scCO2. It is possible to obtain uniformly dispersed particles by changing the initial concentrations of initiator, cross-linker and pressure as well as reaction time. The polymers were obtained in high yield as dry, fine and free flowing materials directly from the reaction vessel; The network showed not only easily swelled in deionized water but have relatively high swelling in pure ethanol. This shows the potential of the polymer in bio-medical applications.
     (2) Cross-linked Poly (4-vinylpyridine) (P4-VP) were synthesized in scCO2. The slight yellow, dry, fine powders were obtained directly from precipitation polymerization of 4-vinylpyridine (4-VP) in scCO2 with N, N/-methylenebisacrylamide as cross-linker. The effects of the reaction pressure, cross-linker ratio, initiator concentration, and reaction time were investigated. It was found that under the condition of 14 MPa and 70°C the cross-linked P4-VP microparticles were generated in scCO2, in yield of 80%, using higher cross-linker concentrations.
     (3) Furthermore, Molecularly Imprinted Polymers (MIPs) for (S)-naproxen were prepared in supercritical carbon dioxide. In the present work, (S)-naproxen was used as a model template, 4-vinylpyridine as a functional monomer, and Ethylene Dimethacrylate as a crosslinker. Compared with the nonimprinted polymers (NIPs), the MIPs displayed much higher (S)-naproxen uptake in acetonitrile. Scatchard analysis shows that two classes of binding sites were formed in the MIPs in the concentrations range studied. The calculated dissociation constant Kd1 and the apparent maximum binding capacities Qmax1 for the high affinity sites are 0.50 mmol L-1 and 25.5μmol g-1, while Kd2 and Qmax2 for the low affinity sites are 5.3 mmol L-1 and 82.2μmol g-1, respectively.
引文
[1]韩布兴.超临界流体科学与技术[M].北京:中国石化出版社, 2005.1-14.
    [2] Y. Sato, T. Takikawa, S. Takishima, H. Masuoka, Solubility and diffusion coeffcient of carbon diokide in poly (vinyl acetate) and polystyrene[J]. Journal of Supercritical Fluids. 2001, 19: 187-198.
    [3] S. P. Nalawade, F. Picchioni, L. P. B. M. Janssen, Supercritical carbon dioxide as a green sovent for processing polymer melts: processing aspects and application[J]. Progress in Polymer Science. 2006, 31: 19-43.
    [4] K. Mikami. Green Reaction Media in Organic Synthesis[M].王官武,张泽.北京:化学工业出版社, 2007.135-194.
    [5] J. M. DeSimone, Z. Guan, C. S. Elsbernd, Synthesis of Fluoropolymers in Supercritical Carbon Dioxide [J]. Science. 1992, 257: 945-947.
    [6]董建华.高分子科学前沿与进展ii[M].北京:科学出版社, 2009.88-114.
    [7] Z. Guan, J. M. DeSimone, J. R. Combes, Homogeneous free radical polymerization in supercritical carbon dioxide: 2. Thermal decomposition of 2,2/-azobis(isobutyronittile)[J]. Macromolecules. 1993, 26: 2663-2669.
    [8] J. L. Kendall, D. A. Canelas, J. L. Young, J. M. DeSimone, Polymerizations in supercritical carbon dioxide[J]. Chemical Reviews. 1999, 99: 543-546.
    [9] A. I. Cooper, Polymer synthesis and processing using supercritical carbon dioxide[J]. Journal of Materials Chemistry. 2000, 10: 207-234.
    [10] C. D. Wood, A. I. Cooper, J. M. DeSimone, Green synthesis of polymers using supercritical carbon dioxide[J]. Current Opinion in Colloid and Interface Science. 2004, 8: 325-331.
    [11] S. L. Wells, J. M. DeSimone, CO2 technology platform: An important tool for environmental problem solving[J]. Angewandte Chemie International Edition.. 2001, 40: 518-527.
    [12] E. J. Beckman, Supercritical and near-critical CO2 in green chemical synthesis and processing[J]. Journal of Supercritical Fluids. 2004, 28: 121-191.
    [13]胡开达,包永忠,黄志明,翁志学,超临界CO2为介质的含氟单体聚合研究进展[J].化工生产与技术. 2006, 13 (1):1-4.
    [14]徐志康,朱凌燕,封麟先,超临界CO2中的高分子合成研究进展[J].化学进展. 1998, 10 (2):202-206.
    [15]徐安厚,耿兵,夏攀登,张书香,超临界CO2中的高分子合成研究进展[J].山东化工. 2004, 33 (6):19-22.
    [16]何涛,胡红旗,陈鸣才,吕社辉,刘红波,超临界二氧化碳-高分子化学中的绿色介质[J].功能高分子学报. 2003, 16 (2):281-285.
    [17]吴金,刘昭铁,超临界二氧化碳中的高分子合成[J].高分子通报.. 2005, (6):70-75.
    [18]李虹,徐安厚,张永明,超临界二氧化碳中含氟聚合物的合成[J].化学进展. 2007, 19 (10):1562-1566.
    [19]周应学,邢建伟,超临界流体改性高分子聚合物研究进展[J].化学推进剂与高分子材料. 2006, 4 (1):26-30.
    [20]徐兆瑜,超临界流体技术在聚合中的应用进展[J].化学推进剂与高分子材料. 2006, 4 (5):37-42.
    [21] F. A. Adamsky, E. J. Beckman, Inverse emusion polymerization of acrylamide in supercritical carbon dioxide[J]. Macromolecules. 1994, 27 (1):312-314.
    [22] D. H. Divid, V. P. Michael, Emulsion copolymerization of D, L-Lactide and glycolide in supercritical carbondioxide[J]. Journal of Polymer Science Part A: Polymer Chemistry. 2001, 39 (5):562-570.
    [23]曹丽琴.超临界二氧化碳中生物医用高分子的绿色合成及其性能研究[D]广州:中山大学,2007.
    [24] H. Yu-Ling, J. M. Desimone, Dipersion polymerizasion of meyhyl methacrylate stabilaized with ploy(1,1-dihydroperfluorooctyl acrylate) in supercritical carbon dioxide[J]. Macromolecules. 1995, 28 (24):8159-8166.
    [25] D. A.Canelas, D. E. Betts, J. M. DeSimone, Dispersion polymerization of styrene in supercritical carbon dioxide: importance of effective surfactants[J]. Macromolecules. 1996, 29: 2818-2821.
    [26] T. J. Romack, E. E. Maury, J. M. DeSimone, Precipitation Polymerization of Acrylic Acid inSupercritical Carbon Dioxide [J]. Macromolecules. 1995, 28: 912-915.
    [27]胡红旗,陈明才,李静,等,超临界CO2中的丙烯酸聚合反应[J].高分子学报. 1998, 6: 740-743.
    [28] H. Hori, S. Christian, W. Leitner, Rhodium-catalyzed phenylacetylene polymerization in compressed carbondioxide[J]. Macromolecules. 1999, 32: 3178-3182.
    [29] A. I. Cooper, W. P. Hems, A. B. Holmes, Synthesis of highly crosslinked polymers in supercritical carbon dioxide heterogeneous polymerization[J]. Macromolecules. 1999, 32: 2156-2166.
    [30] A. I. Cooper, A. B. Holmes, Synthesis of molded monolithic porous polymers using supercritical carbon dioxide as the porogenic solvent[J]. Advanced Materials. 1999, 11: 1270-1274.
    [31]廖传华,王重庆.超临界流体与绿色化工[M].北京:中国石化出版社,2007.113-116.
    [32]陈莉.智能高分子材料[M].北京:化学工业出版社,2005.43-45.
    [33] A. S. Hoffman, Hydrogels for biomedical applications .Advanced Drug Delivery[J]. Advanced Drug Delivery Review. 2005, 54: 3-12.
    [34]姜忠义,吴洪.分子印迹技术[M].北京:化学工业出版社,2003.1-5.
    [35] L. Pauling, A theory of the structure of formation of antibodies[J]. Journal of the American Chemical Society. 1940, 62 (10):2643-2657.
    [36] F. H. Dickey, The role of organic peroxides in the introdunction of mutations[J]. Proceedings of the National Academy of Sciences.1949, 35 (5):227-229.
    [37] G. Wulff, A.Sarhan, Uber die anwendung won enzymanalog gebauten polymeren zur zacemattrennung [J]. Angewandte Chemie International Edition. 1972, 84 (8):364-369.
    [38] G. Vlatakis, L. I. Andersson, R. Muller, K. Masbach, Drug assay using anti -body mimics made by molecular imprinting[J]. Nature. 1993, 361: 645-649.
    [39] G. Yi, P. F. T. Anthony, Molecularly Imprinted Sorbent Assays: Recent Developments and Applications[J]. Chemistry A European Journal. 2009, 15: 8100-8177.
    [40]陈长宝,周杰,吴春辉,分子印迹技术研究进展[J].化学研究与应用. 2006, 18 (8):896-902.
    [41]马玉哲,李红霞,分子印迹技术的应用进展[J].化工技术与开发. 2009, 38: (4):20-23.
    [42]曲祥金,周杰,分子印迹聚合物的制备技术研究进展[J].山东农业大学学报(自然科学版). 2000, 31 (4):457-462.
    [43]史瑞雪,郭成海,邹小红,分子印迹技术研究进展[J].化学进展. 2002, 14 (3):182-191.
    [44]司汴京,陈长宝,周杰,新一代分子印迹技术[J].化学进展. 2009, 21 (9):1813-1819.
    [45]蒋旭红,涂伟萍,分子印迹聚合物微球制备方法研究进展[J].材料导报. 2007, 21 (12):52-54.
    [46] Lin, J. M., T. Nakagama, K. Uchiyama, T. Hobo, Enantioseparation of d, 1- phenylalanine by molecularly imprinted polymer particles filled capillary electrochromatography[J]. Journal of Liquid Chromatography. 1997, 20 (10):1489-1506.
    [47] S. A. Piletskii, V. P. Kukhar, D. M. Fedoryak, Synthesis of polymer sorbents selective to components of nucleic acids[J]. Ukrainskii Khimicheskii Zhurnal. 1989, 55 (8):872-875.
    [48] B. Sellergren, Direct drug determination by selective sample enrichment on an imprinted polymer[J]. Analytical Chemistry. 1994, 66: 1578-1582.
    [49] I. Tabushi, I. Hamachi, First member of artificial flavolipid family, its synthesis and incorporation into artificial liposomes[J]. Tetrahedron Letters. 1986, 27 (44):5401-5404.
    [50] K. Morihara, M. Takiguchi, T. Shimada, Footprint Catalysis. XI. Molecular Footprint Cavities Imprinted with Chiral Amines and Their Chiral Molecular Recognition[J]. Bulletin of the Chemical Society of Japan. 1994, 67 (4):1078-1084.
    [51] M. Komiyama, T. Takeuchi, T. Mukawa, H. Asanuma. Molecular Imprinting:From Fundamentals to Applications[M].吴世康,汪鹏飞.北京:科学出版社, 2006.6-10.
    [52] G. Wulff, J. Vitemeiers, Synthesis of macroporous copolymers from amino acid based vinyl compounds[J]. Makromol Chem.. 1989, 190: 1917-1921.
    [53] L. Andersson, B. Sellergren, K. Mosbach, Imprinting of amino acid deriv- atives in macroporous polymers[J]. Tetrahedron Letters. 1984, 25: 5211-5218.
    [54] M. J. Whitcombe, M. E.Rodriguez, P.Villar, E. N.Vulfson, Anew emthod for the introduction of recognition site functionality into polymers prepared by molecular impinting[J]. Journal of the American Chemical Society. 1995, 117: 7105-7111.
    [55] R. Suedee, V. Seechamnanturakit, B. Canyuk, C. Ovatlarnporn, G. P. Martin, Temperature sensitive dopamine-imprinted (N, N/-methylene-bis-acrylamide cross-linked) polymer and its potential application to the selective extraction of adrenergic drugs from urine[J]. Journal of Chromatography A. 2006, 1114: 239-249.
    [56] M. Herbert, F. Montilla, A. n. Galindo, The use of pyridine-functionalised polydimethylsiloxane polymers as a supercritical carbon dioxide solubilising support for copper compounds[J]. Inorganic Chemistry Communications 2007, 10: 735-737.
    [57] L. P. Chen, L. Q. Cao, Precipitation copolymerization of N-isopropylacrylamide and acrylic acid in supercritical carbon dioxide[J]. Journal of Polymer Science Part A: Polymer Chemistry. 2007, 45 (5):955-962.
    [58] H. Shiho, J. M. Desimone, Dispersion polymerization of glycidyl methacrylate insupercritical carbon dioxide[J]. Macromolecules. 2001, 34: 1198-1203.
    [59] A. I. Cooper, W. P. Hems, A. B. Holmes, Clean polymer synthesis and processing using scCO2[J]. Macromolecules. 1999, 32: 2156-2172.
    [60] I. A Quintero-Ortega, G. Luna-MPacenas, J. F. J.Alvarado, J. F. Louvier-Hernandez, I. C.Sanchez, Modeling of the free-radical copolymerization kinetics with cross-linking of vinyl/divinyl monomers in supercritical carbon dioxide[J]. Industrial and Engineering Chemistry Research. 2005, 44: 2823-2828.
    [61] H. I. Meléndez-Ortiza, E. Bucio, G. Burillo, Radiation-grafting of 4-vinylpyridine and N-isopropylacrylamide onto polypropylene to give novel pH and thermo-sensitive films[J]. Radiation Physics and Chemistry. 2009, 78 (1):1-7.
    [62] Y. Wang, G. Wei, F. Wen, X. Zhang, W. Zhang, L. Shi, Adsorption of poly(N-isopropyl- acrylamide-co-4-vinylpyridine) onto core-shell poly(styrene-co-methylacrylic acid) microspheres[J]. European Polymer Journal. 2008, 44: 1175-1182.
    [63] Y. Ren, X. Jiang, J. Yin, Copolymer of poly(4-vinylpyridine)-g-poly(ethylene oxide) respond sharply to temperature, pH and ionic strength[J]. European Polymer Journal. 2008, 44 (12):4108-4114.
    [64] Y. Li, L. Hong, M. Yang, Crosslinked and quaternized poly(4-vinylpyridine)/polypyrrole compositeas a potential candidate for the detection of low humidity[J]. Talanta. 2008, 75 (2):412-417.
    [65] U. G. Gautam, A. Shundo, M. P. Gautam, M. Takafuji, H. Ihara, High retentivity and selectivity for polycyclic aromatic hydrocarbons with poly(4-vinylpyridine)-grafted silica in normal-phase high-performance liquid chromatography[J]. Journal of Chromatography A. 2008, 1189 (1-2):77-82.
    [66] J. Fang, Z. Gu, D. Gang, C. Liu, E. S. Ilton, B. Deng, Cr(VI) Removal from Aqueous Solution by Activated Carbon Coated with Quaternized Poly(4-vinylpyridine)[J]. Environmental Science & Technology. 2007, 41 (13):4748-4753.
    [67] Y. Meng, D. Gu, F. Zhang, Y. Shi, L. Cheng, D. Feng, Z. Wu, Z. Chen, Y. Wan, A. Stein, D. Zhao, A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic?Organic Self-Assembly[J]. Chemistry of Materials. 2006, 18 (18):4447-4464.
    [68] Q. Fu, L. C. He, Q. Q. Zhang, E. Amut, Q. Fang, C. Chang, Uniformly Sized Molecularly Imprinted Polymers for on-line Concentration, Purification, and Measurement of Nimodipine in Plasma[J]. Journal of Applied Polymer Science. 2009, 111 (6):2830-2836.
    [69]金玉顺,刘振明,郭文莉,李树新,曾海,聚4-乙烯基吡啶的合成与表征[J].弹性体. 2004, 14 (5):29-33.
    [70]陶为华,李爱民,龙超,钱洪明,乙烯吡啶树脂的合成及应用研究进展[J].离子交换与树脂. 2008, 24 (1):89-94.
    [71] K. Ishizu, M. Yasuda, a. T. Tamura, Synthesis of cross-linked core-shell polymer particles by free-radical dispersion copolymerization of 4-vinylpyridine with polystyrene macromonomers in nonaqueous media[J]. Journal of Colloid and Interface Science. 2003, 267: 320-325.
    [72]陈庆德,沈兴海,高宏成, N, N/-亚甲基双丙烯酰胺与4-乙烯基吡啶共聚微凝胶的r-射线辐照合成[J].高分子学报. 2005, (1):61-65.
    [73] J. Haginaka, H. Sanbe, Uniformly sized molecularly imprinted polymer for (S)-naproxen: Retention and molecular recognition properties in aqueous mobile phase[J]. Journal of Chromatography A. 2001, 913 (1-2):141-146.
    [74] J. Haginaka, H. Takehira, K. Hosoya, N. Tanaka, Uniform-sized molecularly imprinted polymer for(S)-naproxen selectively modified with hydrophilic external layer[J]. Journal of Chromatography A. 1999, 849 (2):331-339.
    [75] T. A. Sergeyeva, S. A. Piletsky, A. A. Brovko, Conductimtric sensor for at razine detection based on molecularly imprinted polymer membranes[J]. Analyst. 1999, 124 331-334.
    [76]雷建都,贺湘凌,谭天伟,分子印迹技术及应用[J].现代化工. 2002, 21 (4):17-20.
    [77]李萍.分子印迹聚合物的制备及在手性识别和手性拆分上的应用[D]南京:东南大学,2003.
    [78]马娟娟.S-萘普生印迹聚合物材料的合成及性能研究[D]南京:南京理工大学,2004.
    [79]邴乃慈,田震,陈胜文,李庆华,许振良, SBA-15表面S-naproxen分子印迹聚合物微球的合成与分子识别特性[J].华东理工大学学学报(自然科学版).2009, 35 (4):564-567.
    [80] J. Y. Wang, Z. L. Xu, P. Wu, S. J. Yin, Binding constant and transport property of S-Naproxen molecularly imprinted composite membrane[J]. Journal of Membrane Science. 2009, 331 (1-2):84-90.
    [81]马娟娟,王新龙,徐兴友,不同功能单体制备的S-萘普生印迹聚合物材料的性能[J].精细化工. 2007, 24 (2):134-153.
    [82]李萍,戎非,谢一兵,朱馨乐,袁伟春, (S)-萘普生分子印迹聚合物结合特性及制备中复合物的性能研究[J].东南大学学报(自然科学版). 2003, 33 (4):475-478.
    [83] B. Sellergren, M. Lepisto, K. Mosbach, Highly Enantioselective and Substrate-Selective Polymers Obtained by Molecular Imprinting Utilizing Noncovalent Interactions.NMR and Chromatographic Studies on the Nature of Recognition[J]. Journal of the American Chemical Society. 1998, 110 (17):5853-5860.
    [84] L. Ye, K. Yoshimatsu, D. Kolodziej, J. D. C. Francisco, E. S. Dey, Preparation of Molecular Imprinted Polymers in Supercritical Carbon Dioxide[J]. Journal of Applied Polymer Science. 2006, 102: 2863-2867.
    [85] H. I. Yanmamura, M. J. Kuhar. Neurotransmitter receptor binding[M].New York: Raven Press 1985.485-489.
    [86]祝庆麟, Satchard作图及其参数求解法[J].中国医学科学院学报. 1986, 8 (6):465-471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700