新型絮凝—杀菌双效高分子的合成及其絮凝、杀菌性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源短缺和水环境污染已成为制约我国国民经济和社会发展的重要因素。传统的水处理方法是通过絮凝方法去除水中污染物,加入杀菌剂消除生物性污染,且絮凝和杀菌两个环节是分开进行的,造成工艺流程和操作复杂化,以及絮凝、杀菌两个工序前后不能兼顾等问题。
     本文通过分子设计,以甲胺、烯丙基氯和氯化苄为原料合成单体二烯丙基甲基苄基氯化铵,以过硫酸铵(APS)为引发剂合成了聚二烯丙基甲基苄基氯化铵(PDAMABC);以二烯丙基胺、氯乙酸丁酯、K2CO3和盐酸为原料合成单体N, N-二烯丙基-N-羰丁氧甲基氯化铵(DACBMAC),以APS为引发剂合成了聚(N,N-二烯丙基-N-羰丁氧甲基氯化铵)(PDACBMAC);以二烯丙基甲基胺和盐酸为原料合成二烯丙基甲基胺盐酸盐,以APS为引发剂先合成聚二烯丙基甲基胺盐酸盐(PDAMAC),再在水-乙醇混合溶剂中与3-氯-2-羟丙基-二甲基十二烷基氯化铵(CHPDDAC)反应,合成了含十二烷基的二烯丙基季铵盐聚合物(PDAMADC),确定了适宜的合成条件,采用IR、1HNMR和元素分析等手段对中间产物和产物的结构进行了表征。
     以浊度为201NTU的硅藻土模拟悬浊液为对象,研究了合成产物的除浊性能,并与聚二甲基二烯丙基氯化铵(PDMDAAC)进行比较。结果表明,合成产物的特性粘数越大,对悬浊液的除浊效果越好;PDAMABC和PDAMADC具有较宽的pH适用范围:4~10;PDACBMAC适合在中性和弱酸性条件下使用。处理硅藻土悬浊液时,当PDAMABC用量为0.3mg/L时,浊度去除率达87.72%,PDAMADC和PDACBMAC的用量为0.4mg/L时,浊度去除率分别达93.13%和90.58%,好于PDMDAAC的最佳去除率82.55%。
     采用平皿计数法和MPN法分别研究了合成产物对大肠杆菌、硫酸盐还原菌和铁细菌的杀菌性能,并与PDMDAAC和十二烷基二甲基苄基氯化铵(1227)进行比较;通过细菌的β-半乳糖苷酶的活性测定,探讨了合成产物的杀菌(抗菌)机理。结果表明,杀菌效果均随投加量的增加而增加,用量为50mg/L时,PDAMADC和PDACBMAC的杀菌率分别为98.31%和97.52%,高于1227的95.91%, PDAMABC的杀菌率为达86.70%,略高于PDMDAAC的85.40%;在相同投加量时,杀菌率均随特性粘数的增大而增大;PDACBMAC的杀菌效果在pH值为5.7~7.2时最好,pH值大于7.5时,杀菌率下降很快,PDAMADC和PDAMABC受pH值影响较小,在pH值大于6.7,杀菌率随pH值的增加而变化不大。对硫酸盐还原菌和铁细菌杀菌结果表明,PDAMADC>PDACBMAC≈1227>PDAMABC>PDMDAAC。通过对细菌的β-半乳糖苷酶的活性测定,表明合成产物的抗菌机理是基于杀菌作用。
     将合成产物用于处理含菌量为3×103cfu/mL,浊度和COD分别为113NTU和203mg/L的生活污水。结果表明,合成产物在用量为11mg/L时,絮凝效果最佳,PDAMADC、PDACBMAC和PDAMABC对生活污水中腐生菌杀菌率分别为96.31%、93.42%和87.78%,对浊度的去除率分别为89.13%、87.28%和85.31%,对COD的去除率分别为72.80%、70.94%和68.12%,处理效果均好于PDMDAAC和PAM。
     因此,PDAMADC和PDACBMAC是兼具良好的絮凝和杀菌性能的双效高分子,可在絮凝工序实现絮凝和杀菌两种功能,使絮凝和杀菌协同作用,提高水处理的效果、简化水处理工艺和降低水处理的成本,具有良好的应用前景。
The shortage of water resources and the pollution of water environment have become the important factors that restrict national economic and social development of our country. Traditional method of water treatment is to remove pollutants by flocculation and to eliminate biological contamination by adding fungicide, but the two steps are always conducted separately, resulting in a series of problems, such as process and operation complicating, and incompatibility of flocculation and sterilization, etc.
     In this paper, Three kinds of flocculation-sterilization double-effect polymers were designed and synthesised as the followings: (1) The monomer diallylmethylbenzylammonium chloride (DAMABC) was synthesized using methylamine, allyl chloride and NaOH as raw materials, then initiated by ammonium peroxydisulfate (APS) to prepare poly(diallylmethylbenzylammonium chloride) (PDAMABC); (2) N,N-diallyl-N-carbobutoxymethylammoniumchloride (DACBMAC) was synthesized using diallylamine, butyl chloroacetate, K2CO3 and hydrochloric acid as raw materials, next Poly(N,N-diallyl-N-carbobutoxymethylammonium chloride) (PDACBMAC) was prepared using DACBMAC as monomer and APS as initiator in aqueous solution; (3) Poly(N,N-diallyl-N-carbobutoxymethylammonium chloride) (PDAMAC) was synthesized using diallylmethylamine hydrochloride (DAMAC) which was prepared from diallylmethylamine and hydrochloric acid as monomer and APS as initiator, then reacted with (dodecyldimethyl-2-hydroxypropane)ammonium chloride (CHPDDAC) in mixed water-alcohol solvent to synthesize a kind of polymer with dodecyl (PDAMADC). The suitable conditions were determined and the structures of in-process products and products were characterized by FT-IR, 1HNMR and elementary analysis.
     Diatomite suspension with the turbidity of 201 NTU was chosen as the object to test the flocculation property of the synthetic products, which was compared with poly (dimethyl diallyl ammonium chloride) (PDMDAAC). The results show that the higher the intrinsic viscosity of the products is, the better the effects of the turbidity removal are; PDAMABC and PDAMADC are applied in a wide pH range from 4 to 10, while PDACBMAC is suitable to be used under neutral or weakly acidic conditions. The removal rate of turbidity is up to 87.72% when the dosage of PDAMABC at 0.3 mg/L, and the removal rates reach 93.13% and 90.58%, respectively, when the dosage of PDAMADC and PDACBMAC is at 0.4mg/L separately, which are better than the optimal removal rate 82.55% of PDMDAAC.
     The methods of plate counting and MPN were used to study the sterilization property against Escherichia coli (E.coli), sulfate-reducing bacteria (SRB) and iron bacteria (IB), respectively, and compared with PDMDAAC and dodecyldimethylbenzylammonium chloride (1227). Antimicrobial mechanism of the products was explored though theβ-D-galactosidase enzyme activity assay. The results show that, the bactericidal rate increases with the increasing of dosage. When the dosage is 50mg/L, bactericidal rates of PDAMADC and PDACBMAC against E.coli are 98.31% and 97.52%, respectively, better than 95.91% of 1227, while the bactericidal rate of PDAMABC is up to 86.70%, slightly higher than 85.40% of PDMDAAC. The bactericidal rate increases with increasing intrinsic viscosity at the same dosage. The optimum bactericidal effect of PDACBMAC reveals when pH in a range of 5.7~7.2, and bactericidal rate decreases rapidly when pH>7.5, but PDAMADC and PDAMABC are less affected by the pH value, whose bactericidal rates change little with increasing pH when pH>6.7. The sterilization effects of the products against SRB and IB show as the following order: PDAMADC>PDACBMAC≈1227>PDAMABC>PDMDAAC. The results of measuring activities of the enzyme ofβ-D-galactosidase indicate that the antimicrobial mechanism of the products is based on a sterilization action.
     The products had been applied in the treatment of sewage with a bacterial capacity of 3×103 cfu/mL, turbidity of 113 NTU and COD of 203 mg/L. The results show that satisfactory effect can be achieved when the dosage of the products is at 11mg/L, and the bactericidal rates of PDAMADC, PDACBMAC and PDAMABC are 96.31%, 93.42% and 87.78%, respectively, the corresponding turbidity removal rates are 89.13%, 87.28% and 85.31%, and the COD removal rates are 72.80%, 70.94% and 68.12%, which are better than those of PDMDAAC and PAM.
     In short, PDAMADC and PDACBMAC are efficient dual-effect polymers with excellent flocculation and sterilization properties, which could achieve two functions only by flocculation, in addition, making the flocculation and sterilization work in coordination with each other, improving the efficiency of water treatment and simplifying process flow and reducing costs, therefore, they have a good application prospect in water treatment.
引文
[1]江山,王立,俞豪杰,等.新型有机高分子抗菌剂[J].高分子通报, 2002, 12(6): 57-62.
    [2]周轩榕,邢晓东,刘铮,等.表面接触消毒技术[J].化工进展, 2002, 21 (6): 439-442.
    [3]李芳蓉,贾如琰,何玉凤.水处理絮凝剂的应用现状及发展趋势[J].甘肃科技, 2007, 23(1): 155-158.
    [4]常青,傅金锰,郦兆龙.絮凝原理[M].兰州:兰州大学出版社, 1993. 267-269.
    [5]何铁林.水处理化学品手册[M].北京:化学工业出版社, 2000.
    [6]杨永强,杨大令,蹇锡高,等.聚合氯化铝的制备及其在废水处理中的应用[J].水处理技术, 2005, 31(10): 52-55.
    [7]朱雄文,石华前.废酸制备聚铝处理高含盐含油废水的试验研究[J].黑龙江生态工程职业学院学报, 2006, 19(4): 9-10.
    [8]孙嘉彦,毕媛媛,等.聚合氯化铝的合成及应用[J].南通职业大学学报, 2005, 19(4): 10-12.
    [9]汪琳,李明玉,方刚,等.聚合硫酸铝的制备及其混凝性能[J].暨南大学学报(自然科学版), 2009, 30(3): 277-281.
    [10]薛彦辉,薛大兵,张琳.聚合硫酸铝制备条件的研究及应用[J].能源环境保护, 2008, 22(2): 24-25.
    [11] A.I. Zouboulis, P.A. Moussas, F. Vasilakou。Polyferric sulphate: Preparation, characterisation and application in coagulation experiments [J]. Journal of Hazardous Materials, 2008, 155(3): 459-468.
    [12]周锦,柳亚军,郭薇薇.新型聚合硫酸铁的制备[J].甘肃科技, 2006, 22(4): 41-42.
    [13]姜华,罗罹,吕亮.烧渣制备聚合硫酸铁及其对造纸废水的处理效果[J].中国给水排水, 2008, 24(19): 80-83.
    [14] Guoyuan Lei, Jun Ma, Ankun Song. Effect of basicity on coagulation performance of polyferric chloride applied in eutrophicated raw water [J]. Desalination , 2009, 247(1-3): 518-529 .
    [15] YUAN Yu-li, WEN Yue-zhong, LI Xiao-ying. Treatment of wastewater from dye manufacturing industry by coagulation [J]. Zhejiang Univ SCIENCE 2006, 7(Suppl.II): 340-344.
    [16]夏远亮,焦炜,王志军,等.碱式磷酸铁复合络合物的合成及絮凝作用的研究[J].黑龙江商学院学报(自然科学版), 2000, 16(2): 90-93.
    [17]贾汝林.聚合氯化硫酸铁制备方法[J].无机盐工业. 2009, 41(8): 48-49.
    [18]吴宇峰,周坤坪,唐同庆.高效絮凝剂聚合氯化硫酸铁的制备及其混凝效果的研究[J].工业水处理. 2000, 20(10): 24-26.
    [19]胡俊虎,刘喜元,李晓宏,等.复合型絮凝剂聚合氯化铝铁(PAFC)的合成及其应用[J].环境化学, 2007, 26(1): 35-38.
    [20]马晓梅,樊民强,薛绍武.聚硅酸铝絮凝剂的制备和性能研究[J].无机盐工业, 2006, 38(3): 43-45.
    [21] J.C.S.S. Menezes, R.A. Silva, I.S. Arce, I.A.H. Schneider.Production of a poly-alumino-iron sulphate coagulant by chemical precipitation of a coal mining acid drainage[J]. Minerals Engineering, 2010, 23(3): 249-251.
    [22]杨春.聚合硫酸铝铁的制备与性能评定[J].安徽工业大学学报, 2007, 24(2): 156-158.
    [23]李利改.聚合硫酸铝铁的絮凝效果及其流变性能研究[J].武汉工业学院学报, 2006, 25(1): 57-61.
    [24] A.I. Zouboulis, P.A. Moussas. Polyferric silicate sulphate (PFSiS): Preparation, characterisation and coagulation behaviour [J] . Desalination, 2008, 224(1-3): 307-316.
    [25]张琼,许兆义,李进.聚铁硅复合混凝剂制备方法的比较研究[J] .北京交通大学学报, 2005, 29(1): 60-63.
    [26]崔霞,肖锦.铝盐絮凝剂及其环境效应[J] .工业水处理, 1998, 18(3): 6-9.
    [27]万鹰昕,程鸿德.无机高分子絮凝剂絮凝机制的研究进展[J] .矿物岩石地球化学通报, 2001, 20 (1): 62-65.
    [28]张燕兴,叶君,何婉芬,等.新型纤维素絮凝剂的制备与絮凝作用[J] .造纸科学与技术, 2005, 24(6): 116-118.
    [29]何静,袁同琦,刘竹,等.纤维素改性阳离子絮凝剂的制备及其絮凝性能[J].北京林业大学学报, 2009, 31(1): 43-46.
    [30]马东兵,盛力,岳峥.改性淀粉絮凝剂的开发与应用[J] .辽宁化工, 2007, 36(2): 117-119.
    [31]杨爱丽,高伟,魏文韫,等.新型木质素季铵盐絮凝剂的合成与絮凝性能[J] .中国造纸学报, 2008, 23(2): 60-63.
    [32]于晓彩,于洋,刘培.壳聚糖衍生物的合成及其絮凝性能的研究[J].环境工程学报, 2009, 3(8): 1386-1390.
    [33]李正惠,郭艳丽.共聚合阳离子聚丙烯酰胺的合成及性能测试[J].工业水处理, 2003, 23(4): 38-40.
    [34]卢红霞,刘福胜.阳离子絮凝剂P(DMC-AM)的合成及絮凝性能[J].精细石油化工, 2005, 25(5): 56-59.
    [35]刘茂刚,孔振兴,蒋拥华,等.高分子量阳离子聚丙烯酰胺共聚物P(DMDAAC-AM)的合成[J].化学与生物工程, 2006, 23(3): 18-20.
    [36]钟宏,常庆伟,李华明,等.反相乳液聚合制备阳离子型高分子絮凝剂P(DMC-AM)[J].化工进展, 2009, 28: 241-246.
    [37]刘立华,龚竹青.二步法合成二甲基二烯丙基氯化铵的工艺改进.精细化工, 2006, 23(6): 588-592, 624.
    [38]刘立华,李菁,李佳秋.二烷基二烯丙基季铵盐高分子的合成与基础研究进展.高分子通报, 2006(5): 86-93.
    [39]邰晓曦,陈明清,刘晓亚,毛等.亲水性大分子单体的合成与应用述评[J].江苏化工. 2004, 32(3): 15-18.
    [40]苏会妙.关于聚丙烯酸钠絮凝剂生产现状综述[J].中小企业管理与科技, 2008, (6).
    [41]廖列文,尹国强,黎新明,等.水溶性聚丙烯酸钠的应用[J].化学世界, 2006, (3): 188-189.
    [42]杨南煌,谢德明,陈英.溶液聚合法制备交联聚苯乙烯磺酸钠[J].暨南大学学报(自然科学版), 2006, 27(5): 724-728.
    [43]杨建平,赵京波,张兴英.丙烯酰胺-丙烯酸钠共聚物絮凝剂的合成及性能研究[J].石油化工, 2005, 34(4): 338-342.
    [44]李颖,李瑞丽,徐春明,等.马来酸酐-丙烯酸十八醇酯-醋酸乙烯酯三元共聚物柴油降凝剂的合成及其性能评价[J].精细石油化工, 2009, 26(5): 77-80.
    [45]潘远凤,肖惠宁,何北海.温敏性缩醛化乙烯醇/丙烯酸钠共聚物的制备及表征[J].高分子材料科学与工程, 2009, 25(2): 31-34.
    [46]陈庆海,杨付林,刘英杰,等.低剪切速率下部分水解聚丙烯酰胺溶液的流变特性研究[J].大庆石油地质与开发. 2006, 25(1): 91-92.
    [47]中卫,熊蓉春,魏刚.两性聚丙烯酰胺的制备及其絮凝性能研究[J].北京化工大学学报, 2008, 35(6): 45-48.
    [48]孙潇,雷武,夏明珠,等.两性聚丙烯酰胺的合成及应用[J].工艺·试验, 2003, 17(2): 46-48.
    [49]黄志华,胡勇有,程建华.两性高分子污泥脱水剂PADA的合成与表征[J].高分子材料科学与工程, 2008, 24(6): 50-53.
    [50]陈密峰,杨健茂,石启增,等.两性絮凝剂P(AM/AMPS/DMDAAC)的合成及应用[J].工业水处理, 2005, 25(7): 1-4.
    [51]程建华,陈晟颖.两性型高分子絮凝脱PAM/AMPS/DMDAAC的合成与表征[J].工业水处理, 2009, 29(12): 31-33.
    [52]余颖,庄源益,邹其猛,等.凝剂PAN-DCD的结构和性质研究[J].城市环境与城市生态, 199912(3): 8-10.
    [53]范福海,郝艳玲.腈纶废丝改性水解物的制备及其絮凝效果[J].应用化工, 2004, 33(6): 28-30.
    [54]段旭琴,马剑,曲剑午.聚二烯丙基二甲基氯化铵-丙烯酰胺-丙烯酸助滤脱水的试验研究[J].选煤技术, 2003, 6: 70-73.
    [55]严瑞瑄.聚丙烯酰胺发展现状. 2009年全国功能高分子行业委员会第十二届年会论文集.中国无锡. 2009. 10. 1-9.
    [56]张跃军,顾学芳.二甲基二烯丙基氯化铵与丙烯酰胺共聚物的研究进展[J].精细化工, 2002, 19(9): 521-527.
    [57]汤心虎,黄秀微,刘佩漩,等.无机有机复合絮凝剂对印染废水脱色的研究[[J].水处理技术, 2001, 27(5): 267-270.
    [58]魏明娟,吴志良,汤胜利,等.聚合氧化铝与水解聚丙烯酰胺复合絮凝剂JX-3的制备及室内评价试验[J].油气田环境保护, 2003, 12(1): 20-21.
    [59]邵颖,叶玉汉.聚合铝-壳聚糖复合絮凝剂的絮凝性能及其在重金属废水中的应用[J]宁波大学学报, 2002, 15(1): 83-85.
    [60]高宝玉,王燕,岳钦燕,等. PAC与PDMDAAC复合絮凝剂中铝的形态分布[J].中国环境科学, 2002, 22(5): 472-476.
    [61]孙逊,高宝玉,张栋华,等.环氧氯丙烷-二甲胺聚合物和聚合氯化铝用于印染废水的处理.环境化学, 2007, 26 (1) : 51-54.
    [62]陆雪良,曾小君,徐锐.双氰胺-甲醛聚合物-氯化铝复合絮凝剂的合成及应用[J].化工环保2008, 28(2): 169-172.
    [63]刘泉,石健.改性淀粉与聚合氯化铝复合絮凝剂处理污水的实验研究[J].南通大学学报(自然科学版)2009, 8(2): 43-46.
    [64]郑怀礼,舒型武.新型高效复合絮凝剂PFCNS的制备与性能研究[J].现代化工, 2001, 21(11): 28-30.
    [65]龚竹青,刘立华,郑雅杰.聚二甲基二烯丙基氯化铵-聚合硫酸铁复合絮凝剂的制备及应用研究[J].环境污染治理技术与设备, 2004, 5(10): 35-39.
    [66]刘立华,龚竹青.聚二甲基二烯丙基氯化铵-聚合硫酸铁复合絮凝剂对污泥的脱水性能[J].环境污染治理技术与设备, 2006, 7(7): 77-82.
    [67]刘立华,龚竹青. PDMDAAC-PFS复合絮凝剂处理硅藻土悬浊液的絮体分形特征[J].湖南科技大学学报, 2007, 22(1): 107-110.
    [68]周维芝,王燕,高宝玉.聚合氯化铁(PFC)与有机高分子聚合物(JY201)复合絮凝剂中铁的形态分布[J].山东大学学报(理学版), 2005, 40(5): 102-106.
    [69]魏锦程,高宝玉,王燕,等.聚合铁复合絮凝剂用于城镇纳污河河水化学强化处理的性能及机理研究[J].精细化工, 2008, 25(2): 171-176.
    [70]李丽,商宏涛,孔浩. CTS-PFS复合型絮凝剂的制备与应用研究[J].水处理技术, 2005, 31(9): 13-16.
    [71]樊丽华,程俊.羧甲基壳聚糖复合絮凝剂的制备及其应用研究[J].工业水处理, 2009, 29(12): 28-30.
    [72]肖锦,杞永亮.我国絮凝剂发展现状与对策[J].现代化工, 1997, 17(12): 6-9.
    [73]栗兆坤,汤鸿霄.我国无机高分子絮凝剂产业发展现状与规划[J].工业水处理, 2000, 20(11): 1-6.
    [74]江山,王立,俞豪杰,等.新型有机高分子抗菌剂[J].高分子通报, 2002, 12(6): 57-62.
    [75]赵天波,李凤艳,汪燮卿,等.带长链烷基季钱盐杀菌活性官能团树脂的合成[J].环境污染治理技术与设备, 2002, 3(10): 68-71.
    [76]刘魁元.硫酸盐还原菌抑制剂的研究与应用概况.工业水处理, 1984, 5(4): 19-23.
    [77] Franklin T J, Snow G A. Biochemistry of Antimicrobial Action [M]. London: Chapman and Hall, 1981.
    [78]黄奇然,汤小燕,陈小丹.新型双季铵盐杀菌剂的合成和杀菌性能研究[J].广东化工, 2007, 34(3): 9-19.
    [79]李杰,秦秀芬,马淑杰.双季铵盐杀菌剂的合成[J].化学工程师, 2005, 1: 59-60.
    [80]梅平,段明峰,袁谷.新型杀菌剂双季铵盐BQAS性能试验研究[J].油气田环境保护, 2005, 15(4): 32-34.
    [81]史志琴,王冀生,王绍嵩.双季铵型杀菌剂的合成及其性能研究[J].工业水处理, 2003, 23(10): 47-49.
    [82]孟琳,周丽萍,葛双启,等.双季铵盐杀菌剂的合成及其杀菌性能研究[J].化学工程师, 2005, 4: 59-60.
    [83] Peter J S. Advances in Quaternary Ammonium Biocides [J]. Am Oil Chem Soc, 1984, 61(2): 387.
    [84]段明峰,梅平,孙勇,等.新型缓蚀杀菌剂双季铵盐在油田中的应用[J].石油化工腐蚀与防护, 2005, 22(2): 11-14.
    [85]王冀生,刘光华. TS-838杀菌剂的性能和应用[J].工业水处理, 2003, 23(9): 61-62.
    [86]黄金营,魏慧芳.硫酸盐还原菌杀菌剂的合成及机理探讨[J].石油化工腐蚀与防护, 2004, 21(1): 6-8.
    [87] Li G J, Shen J R, Zhu Y L . A study of pyridinium-type functional polymers. III. preparation and characterization of insoluble pyridinium-type polymers[J]. Appl Polym Sci, 2000, 78: 668-675.
    [88] Kamazawa A, Ikeda T, Endo T. Phosphonium Salts as a Novel Class of Cationic Biocides. VIII. : Synergistic Effecton Antibacterial Activity of Polymeric Phosphonium and Ammonium Salts[J] . Apply Polym Sci , 1994, 53: 1245-1249.
    [89] Nayef S A, Salem S A, Ali A A, et al. Synthesis and characterization of novel organotin monomers and copolymers and their antibacterial activity [J]. Appl Polym Sci, 2000, 70: 740.
    [90] SunYuyu, SunGang. Novel Regenerable N-Halamine Polymeric Biocides.Ⅰ. Synthesis, Characterization, andAntibacterial Activity of Hydantoin-Containing Polymers[J]. Journal of Applied Polymer Science, 2001, 80(6): 2460-2467.
    [91] Zhang Y M, Jiang J M, Chen Y M. Synthesis and Antimicrobial Activity of Polymeric Guanidine and Biguanidine Salts[J]. Polymer, 1999, 40: 6189.
    [92] Huh M W, Kang I K, Lee D H, et al. Surface characterization and antibacterial activity of chitosan-grafted poly(ethylene terephthalate) prepared by plasma glow discharge[J]. Appl Polym Sci, 2001, 81(11): 2769-2778.
    [93] Ikeda T, Tazuke S, et al. Polycationic biocides with pendant active groups:molecular weight dependence of antibacterial activity[J]. Antimicrob Agents Chemother, 1986, 30(1)132-136.
    [94] Sun Yuyu, Sun Gang. Synthesis, Characterization and Antibacterial Activities of Novel N-halamine Polymer Beads Prepared by Suspension Copolymerization[J]. Macromolecules, 2002, 35: 8909-8912.
    [95] Sauvet G, Dupond S, Znierski, et al. Biocidal Polymers Active by Contact V: Synthesis of Polysiloxanes with Biocidal Activity[J]. Apply Polym Sci, 2000, 75: 1005-1012.
    [96] Nudel R, Janauer G E, Schrier E E, et al. Water in soluble disinfectant composition[P]. US: 4349646. 1980.
    [97]卢滇楠,周轩榕,邢晓东,等.表面接枝季铵盐型聚合物的纤维素纤维-灭菌机理研究[J].高分子学报, 2004, (1): 107-113.
    [98]谭绍早,李光吉,沈家瑞,等. PP无纺布预辐射接枝4-乙烯基吡啶的研究[J].高分子材料科学与工程, 2000, (3): 112-114.
    [99]谭绍早,李光吉,沈家瑞,等.改性PP非织造布的抗菌机理探讨[J].华南理工大学学报(自然科学版), 2000, (9): 62-68.
    [100] Chris Zhisheng Chen, Nora C Beck-Tan, Prasad Dhurjati, et al. Quaternary Ammonium Functionalized Poly(propyleneimine) Dendrimers as Effective Antimicrobials Structure-activity Studies[J]. Bio-macromolecules, 2000, (1): 473-480.
    [101] Tamio Asai, Yoshitsuqu Maruhashi, et al. Method of preparing an antibacterial polymer and its application[P]. US: 5137957, Aug. 11, 1992.
    [102]黄黎中,王瑛.银杀菌材料及其应用[J].化学世界, 1996, 37(11): 566-568.
    [103]张欣,徐海珍,王瑾玲,等.酰基吡唑啉酮配合物的合成、结构量化计算及生物活性[J].无机化学学报, 2001, (4): 551-556.
    [104] Takamasa N, Yasuko U, KoichiroE, etal. Antibacterial activity of resin-containing triethylenetetramine side chains and/or thiol group-metal complexes[J]. Appl Polym Sci, 1996, 62: 1651-1659.
    [105] Lalloz L, Damas C, et al. Coplymerrization study of 4-vinylpyridine with N-dodecylacrylamide [J]. European Polymer Journal, 1997, 33(7): 1099-1103.
    [106] YI Chang-Feng, XU Zu-Shun, CHENG Shi-Yuan, et al. Study on the inverse emulsion copolymerization of acrylamide and N, N-Dimethyl N-Butyl N-methacrylamidino propyl ammonium bromide[J]. Acta Polym Sin, 1999, (3): 291.
    [107]周轩榕,卢滇楠,邵曼君等.表面接枝季铵盐型高分子材料抗菌过程的特性研究[J].高等学校化学学报, 2003, 24(6): 1131-1135.
    [108]张葵花等.有机抗菌剂研究现状及发展趋势[J].涂料工业, 2005, 35(5)45-49.
    [109]刘楠,陈西广,刘成圣,等.壳聚糖抑菌性能研究进展[J].海洋科学, 2005, (10): 90-92.
    [110]叶筠,蔡伟民,沈雄飞.壳聚糖季铵盐的合成及其对炼油废水的絮凝和灭菌性能[J].福州大学学报(自然科学版), 2000, 28(4): 108-111.
    [111]梁荣森,莫广亮,林一伟.利用造纸黑液木素制备乳化剂的研究[J].环境工程, 1995, 13(6): 35-37.
    [112]王琛,李硕文,王惠丰,等.阳离子淀粉絮凝剂的合成及应用[J].精细石油化工进展, 2001, (8): 13-16.
    [113]邱学青,杨东杰,肖锦.絮凝-缓蚀-阻垢剂GMT-A缓蚀、阻垢机理[J].水处理技术, 1995, 21(3): 179-182.
    [114]张学军,肖锦.天然改性阳离子絮凝-杀菌剂CG-C处理油田废水[J].重庆环境科学, 1997, 19(1): 23-25
    [115]潘碌亭,肖锦.天然高分子改性多功能水处理剂FIQ-C的制备及应用[J].工业水处理, 2001, 21(1): 13-16.
    [116]赵晓蕾,张跃军,朱玲玲.特征黏度系列化聚二甲基二烯丙基氯化铵的杀菌性能[J].应用化学, 2009, 26(1): 27-31.
    [117]赵晓蕾,张跃军,朱玲玲.聚二甲基二烯丙基氯化铵的静态杀菌性能[J].精细化工, 2007, 24(4): 392-396.
    [118]赵晓蕾,刘程,张跃军.聚二甲基二烯丙基氯化铵的静态灭藻性能[J].精细化工, 2007, 24(6): 604-616.
    [119]王蕊欣,高保娇,郭建峰,等.聚(4-乙烯基吡啶季铵盐-丙烯酰胺)的抗菌性能与机理研究[J].高等学校化学学报, 2005, 26(9): 1774-1776.
    [120]王蕊欣,郭建峰,高保娇.高分子吡啶季铵盐的抗菌性能及机理的探讨[J].应用化学, 2006, 23(2): 184-187.
    [121]张昕,高保娇,申艳玲.季铵化聚乙烯亚胺的缓蚀与杀菌性能研究[J].胶体与聚合物, 2007, 25(2): 18-20.
    [122]张昕,高保娇,朱勇,等.季铵化聚乙烯亚胺的抗菌性能研究[J].高分子学报, 2007, (7): 627-631.
    [123]张长荣,金聪玲.阳离子活性杀菌剂的合成进展及其结构与杀菌力的关系[J].陕西化工, 1997, (9): 1-7.
    [124]刘立华,肖体乐,吴俊,等. N, N-二烯丙基-N-羰丁氧甲基氯化铵的合成与表征[J].精细化工, 2009, 26(7): 702-706, 710.
    [125]赵华章,高宝玉,岳钦艳,等.二甲基二烯丙基氯化铵及其聚合物的合成及分析[J].油田化学, 2000, 17(2): 184-186.
    [126]肖毅,兰支利,尹笃林,等. N, N-二烯丙基甲基胺的相转移催化合成[J].应用化学, 2004, 21(8): 818-820.
    [127]周群英,高廷耀.环境工程微生物学(第二版).北京:高等教育出版社, 2002: 26.
    [128]张光华,李俊国,郭炎,等.三苯环咪唑啉季铵盐的合成与缓蚀性能[J].腐蚀科学与防护技术, 2002, (3): 95-97.
    [129]王锦堂.我国工业用水新杀菌剂结构特点与合成方法[J].现代化工, 2001, 21(10)9-12.
    [130]徐群,曹明丽,马文辉,等.非对称双子季铵盐阳离子表面活性剂的合成及性能[J].日用化学工业, 2004, 34(5): 280-282.
    [131]王香爱,阎国新.羟丙基季铵盐含量分析[J].氯碱工业, 2003(4): 36-38.
    [132]何铁林.水处理絮凝剂产业发展现状与趋势[C].中国水污染防治技术装备论文集2002年第八期224-234.
    [133]倪安华.疏水改性阳离子高分子絮凝剂P(AM-DMC-CnDMB)的合成与性能研究[J].广州化工, 2009, 37(5).
    [134]马永生,乔万昌.有机高分子絮凝剂的研究进展[J].黑龙江造纸, 2009, (2)35-38.
    [135]永泽满,淹泽章.高分子水处理剂(下)(陈振兴译)[M].北京:化学工业出版社, 1985: 239-242.
    [136]唐亮,乌锡康,徐寿昌.聚季铵盐絮凝剂的合成及其性能的研究[J].华东化工学院学报, 1988, 14(2): 199-204.
    [137] Chen Yi-Ben, Ou-Yang You-Sheng, Huang Xiao-Mo, et al, Peng Hong. Industry Bactericide[M]. Beijing: Chemical Industry Press, 2001: 44.
    [138] Cao Cheng-Xi. Analytical Biochemistry Techniques [M]. Beijing: Chemical Industry Press, 2008: 195.
    [139] T. D.布洛克(<微生物生物学>翻译组译).微生物生物学[M].北京:人民教育出版社, 1980.
    [140] Lin J, Qiu SY, Lewis K, Klibanov AM. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine[J]. Biotechnol Bioeng, 2003, 83(2): 168.
    [141] Milovi? N M, Wang J, Lewis K, Klibanov AM. Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. [J]. Biotechnol Bioeng, 2005, 90(6): 715-722.
    [142] Ikeda T, Tazuke S, Suzuki Y. Biologically active polycations: synthesis and antimicrobial activity of poly(trialkylvinylbenzyl ammonium chloride)s[J]. Makromol Chem, 1984, 185: 869-876.
    [143] Zhang Jian-Rong, Qi Ling, Fang Hui-Qun. Instrumental Analysis Experiments [M]. Beijing: Science Press , 1999: 148.
    [144] Ohta Y, Kondo Y, Kawada K, Teranaka T, Yoshino N.J. Synthesis of new UV-B light absorbents: (Acethylphenyl)glycosides with antioxidant activities [J]. Oleo Sci, 2008, 57(8): 445.
    [145]田文龙,刘瑶环.我国污水处理事业的现状和发展趋势[J]·中国科技信息, 2006, (3): 110-111.
    [146]彭胜华.我国城市污水集中处理的主要问题及对策[J].水利发展研究, 2005, 5 (10): 33-34, 50.
    [147]方路乡,杜波,牟义军,等.浙江省污水处理厂现状、存在问题及对策建议[J].环境污染与防治, 2005, 27 (4): 305-308.
    [148]柯崇宜,石淑倩,潘宁,等.现有污水处理厂存在的若干问题探讨[J].环境保护, 2000, (2): 21-22.
    [149]孙振芳,陆芳.我国城市污水处理厂运行状况及加强监管对策[J].中国环境管理, 2003, 22 (5): 1-2.
    [150]龚玲,钟成华,邓春光,等.三峡库区重庆段污水处理厂运行现状研究[J].安徽农业科学, 2006, 34 (18): 4714-4715.
    [151] EI-Gohary F. A. , Abo-Elela S. I. , Shuhata S. A. , etal. Physico-Chemico-Biological Treatment of Municpal Sewage[J]. Wat. Sci, Tech. , 1991, 24(7): 285-292.
    [152]马丽丽,解庆林,王敦球,等.制浆造纸中段废水的混凝处理[J].桂林工学院学报, 2006, 26(2): 247-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700