PNIPAM及其共聚纳米凝胶的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米凝胶具有独特的优势:尺寸可调(从几十纳米到几百纳米)、大的比表面积(可连接多化合价的生物分子)、内部网络结构(有助与生物分子的内部结合)。因此纳米凝胶可作为靶向药物释放载体来物理包封生物活性分子,如药物、蛋白质、碳水化合物和DNA,实现其体外可控释放。在生物医学工程、药物应用和生物材料科学方面,越来越多的研究人员开始设计和制备纳米凝胶,其中最受人关注的是温度、pH敏感纳米凝胶。而采用简单工艺制备粒径可控的纳米凝胶成为其难点。
     本工作以N-异丙基丙烯酰胺(NIPAM)为温敏性聚合单体,丙烯酸(AA)和具有良好生物相容性的壳聚糖(CS)为pH敏感性聚合单体,采用无皂乳液聚合法(SFEP)制备了一系列温度、pH敏感纳米凝胶。研究了纳米凝胶的粒径和分布及其溶胀和释药性能。主要研究内容和结论如下:
     (1)采用SFEP制备的PNIPAM、P(NIPAM-co-AA)、P(NIPAM-co-AA)/CS纳米凝胶球形完整,粒径可控制在200nm以下且分散均匀;连续式比间歇式SFEP合成纳米凝胶的粒径要小,分散更均匀;调节共聚单体AA和CS的加入量,可使共聚凝胶的LCST提高到具有临床意义的37℃以上。
     (2)随交联剂含量的增加,PNIPAM纳米凝胶的粒径逐渐减小,溶胀性能变差;随乳化剂的增加,凝胶的粒径明显变小,但其溶胀率变化不大;采用SFEP制备纳米凝胶,交联剂和乳化剂的适宜用量分别为单体物质量的8%和0.4%。
     (3)随共聚单体AA含量的增加,P(NIPAM-co-AA)纳米凝胶的粒径逐渐增大,pH敏感性越来越明显;溶胀速率随着pH的增大而增大,在酸性介质中具有明显的温度敏感性,随着介质pH值的增大,凝胶的相转变温度越来越不明显;载药NL-a(7%)、NZ-a(7%)纳米凝胶的释药性受温度和pH的影响,37℃时的最大释药量大于25℃时的最大释药量,模拟胃液中的释药率明显小于模拟肠液中的释药率。
     (4) P(NIPAM-co-AA)/CS纳米凝胶的粒径随AA/CS含量的增加而增大;在偏中性介质中溶胀速率最小,在碱性介质中其溶胀速率最大;在模拟体温和肠液环境中,载药N-as(20%)纳米凝胶的药物释放量较小,而且随着时间的延长释药率持续稳定。这种双敏纳米凝胶有望在生物医药领域发挥重要作用。
The design and preparation of nanogels have attracted a great deal of interest in biomedical engineering, pharmaceutical applications, and biomaterials science because of their tunable advantage. Nanogels have tunable size from nanometers to several micrometers and a large surface area for multivalent bioconjugation. They also have an interior network for the incorporation of biorelated molecules. Physical entrapment of bioactive molecules such as drugs, proteins, carbohydrates, and DNA in the polymeric network, as well as their in vitro release behavior, have been extensively investigated as targeted drug delivery carriers for biomedical applications.
     N-isopropylacrylamide (NIPAM) was choosed as a temperature-sensitive monomer, acrylic acid (AA) and chitosan (CS) of biocompatibility as pH-sensitive monomers, a series of temperature-and pH-sensitive nanogels were prepared by surfactant-free emulsion polymerization (SFEP). The paricle size and distribution, swelling properties and drug release of nanogels were studied. The main contents and conclusions are as follows:
     (1) The nanogels of PNIPAM, P(NIPAM-co-AA), P(NIPAM-co-AA)/CS obtained by SFEP have perfect spherical structure and uniform distribution of particle size. The particle size of nanogels prepared by continuous SFEP is smaller and more homogeneous than intermittent SFEP, and it be controlled smaller than 200nm.
     (2) With a designed concentration of monomer, when the size and the swelling ratio of nanogels PNIPAM decrease with the content of crosslinking agent (MBA) increasing. Under the same polymerization conditions, the size of nanogels becomes significantly smaller with the content of sodium dodecyl sulfate (SDS) increase, but the swelling ratio changed little. The appropriate amount of crosslinking agent and emulsifier monomer amount of substance are 8% and 0.4% by SFEP.
     (3) The particle size of P(NIPAM-co-AA) nanogels became bigger with the increasing of the AA comonomer content. The swelling rate in acidic medium was slow, and increased with the increase of pH, went to maximum in alkaline medium. pH sensitivity of P(NIPAM-co-AA) hydrogels was more and more obvious with the increase of the AA monomer proportion. Nanogels have obvious temperature sensitivity in acidic media, the phase transition temperature becoming less distinct with the medium pH value increases. P(NIPAM-co-AA) nanogels NL-a (7%) and NZ-a (7%) which containing aspirin have temperature and pH sensitivity, Their maximum release were greater at 37℃than at 25℃. The release rate was significantly lower in simulated gastric juice than in the simulated intestinal fluid at 37℃.
     (4) The surface of P(NIPAM-co-AA)/CS gels was not smooth any more, nano-particle size became bigger with the comonomer AA/CS content increases. The swelling rate of P(NIPAM-co-AA)/CS gels was fast in acidic medium, slower in the neutral medium, fastest in the alkaline medium. At body temperature and intestinal fluid in the simulation environment, the drug release of N-as (20%) nanogel was less, and maintained with a stable release rate. This Double-Sensitive Nanogel is expected to play an important role in biomedical application.
引文
[1]阚思行,王晓文,唐劲天等.纳米药物控释系统研究进展[J].解放军药学学报,2009,25(2):169~171
    [2]Jung Kwon Oha, Ray Drumrighta, Daniel J Siegwartb, et al. The development of microgels/nanogels for drug delivery applications [J]. Prog Polym Sci,2008,33(4):448~477
    [3]Jung T, Kamm W, Breitenbach A, et al. Biodegradable nanoparticles for oral delivery of peptides:is theree a role for polymers to affect mucosal uptake[J]. Eur J Pharm Biopha,2000, 50(1):147~160
    [4]Raemdonck K, Demeester J, Smedt S D.Soft Matter.2009,5(4):707~715
    [5]Gupta Ajay K, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies [J]. IEEE Trans Nanobioscience,2004, 3(1):66~73
    [6]Das M, Sanson N, Fava D, et al. Microgels loaded with gold nanorods:photothermally triggered volume transitions under physiological conditions [J]. Langmuir,2007,23(1): 196~201
    [7]Maitra A. Determination of size parameters of water-Aerosol OT-oil reverse micelles from their nuclear magneticresonance data[J]. J Phys Chem,1984,88(21):5122~5125
    [8]Mitra S, Gaur U, Ghosh PC, et al. Tumor targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier [J]. J Control Release, 2001,74(1-3):317~323
    [9]Lee H, Mok H, Lee S, et al. Targetspecific intracellular delivery of siRNA using degradable hyaluronic acid nanogels[J]. J Control Release,2007,119(2):245~252
    [10]Omi S, Ma G-H, Nagai M. Membrane emulsification—a versatile tool for the synthesis of polymeric microspheres[J]. Macromol Symp,2000,151:319~330
    [11]Drioli E, Curcio E, Di Profio G. State of the art and recent progresses in membrane contactors[J]. Chem Eng Res Des,2005,83(3):223~233
    [12]Charcosset C, Fessi H. Membrane emulsification and microchannel emulsification processes[J]. Rev Chem Eng,2005,21:1~32
    [13]Wang L-Y, Gu Y-H, Zhou Q-Z, et al. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process[J]. Colloids Surf B:Biointerfaces,2006,50(2):126~135
    [14]Shen X, Zhang L, Jiang X, et al. Reversible surface switching of nanogel triggered by external stimuli[J]. Angew Chem Int Ed,2007,46(37):7104~7107
    [15]Boissiere M, Meadows PJ, Brayner R, et al. Turning biopolymer particles into hybrid capsules:the example of silica/alginate nanocomposites[J]. J Mater Chem,2006,16: 1178~1182
    [16]Van Thienen TG, Lucas B, Flesch FM, et al. On the synthesis and characterization of biodegradable dextran nanogels with tunable degradation properties[J]. Macromolecules, 2005,38(20):8503~8511
    [17]李培,朱爱梅,刘庆林.沉淀聚合法制备壳聚糖磁性微球[J].化工时报,2008,22(7):1~5
    [18]Okano, A Kikuchi, Y Sakurai, et al. Temperature responsive poly (N2isopropylacrylamide) as a modulatorfor alteration of hydrophilic/hydrophobic surface [J]. J Controlled Release,1995, 36(1):125~133
    [19]顾雪蓉,朱育平.凝胶化学[M].北京:化学工业出版社,2005.1
    [20]吴季怀,林建明,魏月琳等.高吸水保水材料[M].北京:化学工业出版社,2005.1
    [21]H Cicek, A Tuncel.Immobilization of chymot rypsin inthermally reversible isopropylacrylamide-hydroxyethyl-methacrylate copolymer gel[J]. J Polym Sci, Part A: Polym Chem,1998,36(4):543~552
    [22]Valuev Levi, Lefirovaolga N. Targeted Delivery of Drugs Provided by Water-soluble Polymeric Systems with Low Critical Solution Temperature (LCST)[J]. Journal of Bioactive and Compatible Polymers,1994, (9):55~65
    [23]Tanaka T, Hirokawa Y. Volume-phase transitions of ionized N-isopropylacrylamide gels[J]. Chem Phys,1987,81(2):1392~1395
    [24]Tanaka T, Fillmore D, Sun S, et al. Phase transition in ionic gelsl[J]. Phase Rev Lett,1980, 45(20):636~639
    [25]程秀莲,刘瑛,贺燕.pH敏感聚丙烯酸水凝胶合成的实验研究[J].沈阳工业学院学报,2003,22(2):51~53
    [26]G. Kong, R.D.Braun, M.Wdewhirst. Hyperthermia enables tumor-specific nanoparticles delivery:efect of particle sizes[J]. Cancer Research,2000,60:4440~4445
    [27]Unger MA, Chou H-P, Thorsen T, et al. Monolithic microfabricated valves and pumps by multilayer soft lithography [J]. Science,2000,288:113~116
    [28]Xia Y, Whitesides GM. Soft lithography[J]. Annu Rev Mater Sci,1998,28:153~184
    [29]Xia Y, Whitesides GM. Soft lithography [J]. Angew Chem Int Ed,1998,37:550~575
    [30]Rolland JP, Maynor BW, Euliss LE, et al. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials[J]. J Am Chem Soc,2005,127(28):10096~10100
    [31]刘建平,郭斌,何平笙等.微模塑法制备PMMA/SiO2二氧化硅杂化材料微结构[J].化学物理学报,2004,17(6):769~772
    [32]Yeh J, Ling Y, Karp JM, et al. Micromolding of shape-controlled, harvestable cell-laden hydrogels[J]. Biomaterials,2006,27(31):5391~5398
    [33]金付强,黎钢,郝立根等.沉淀聚合法制备丙烯酰胺类聚电解质研究进展[J].应用化工,2004,33(6):1~5
    [34]Hazot P,Chapel JP,Pichot C,et al. Preparation of poly(N-ethyl methacrylamide) particles via an emulsion/precipitation process:the role of the crosslinker[J]. J Polym Sci A:Polym Chem,2002,40(11):1808~1817
    [35]Duracher D,Elaissari A, Pichot C. Preparation of poly(N-isopropylmethacrylamide) latexes kinetic studies and characterization[J]. J Polym Sci A:Polym Chem,1999,37(12): 1823~1837
    [36]Huang G, Gao J, Hu Z, et al. Controlled drug release from hydrogel nanoparticle networks[J]. J Control Release,2004,94(2-3):303~311
    [37]Leobandung W, Ichikawa H, Fukumori Y,et al. Monodisperse nanoparticles of poly(ethylene glycol) macromers and N-isopropylacrylamide for biomedical applications[J]. J Appl Polym Sci,2003,87:1678~1684
    [38]Berndt I, Pedersen JS, Lindner P, et al. Influence of shell thickness and cross-link density on thestructure of temperature-sensitive poly-N-isopropylacrylamide-poly-N-isopropylmethacrylamide core-shell microgels investigated by small-angle neutron scattering[J]. Langmuir,2006,22(1):459~468
    [39]Kim J, Nayak S, Lyon LA. Bioresponsive hydrogel microlenses[J]. J Am Chem Soc,2005, 127:9588~9592
    [40]严艳,刘莲英,杨万泰.光引发丙烯酰胺沉淀聚合研究[J].北京化工大学学报.2007,34(4):393~397
    [41]Song J-S, Tronc F, Winnik MA. Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particles[J]. J Am Chem Soc,2004,126(21): 6562~6563
    [42]Woods HM, Nouvel C, Licence P, et al. Dispersion polymerization of methyl methacrylate in supercritical carbon dioxide:an investigation into Stabilizer Anchor Group[J]. Macromolecules,2005,38(8):3271~3282
    [43]惠泉,刘福胜,于世涛等.反相乳液聚合制备阳离子聚丙烯酰胺微粒的研究[J].化学工业与工程技术,2008,29(3):28~31
    [44]屈沅治,孙金声,苏义脑.聚丙烯酰胺类纳米材料的研究进展[J].油田化学,2006,23(3):273~277
    [45]Nagarajan R, Wang C-C. Theory of surfactant aggregation in water/ethylene glycol mixed solvents. Langmuir,2000,16(12):5243~5252
    [46]Sun Q, Deng Y. In situ synthesis of temperature-sensitive hollow microspheres via interfacial polymerization[J]. J Am Chem Soc,2005,127(23):8274~8275
    [47]Kriwet B, Walter E, Kissel T. Synthesis of bioadhesive poly(acrylic acid) nano-and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates [J]. J Control Release,1998,56(1-3):149~158
    [48]Landfester K, Willert M, Antonietti M. Preparation of polymer particles in nonaqueous direct and inverse miniemulsions[J]. Macromolecules,2000,33(7):2370~2376
    [49]Wormuth K. Superparamagnetic latex via inverse emulsion polymerization[J]. J Colloid Interface Sci,2001,241(2):366~377
    [50]Xu ZZ, Wang CC, Yang WL, et al. Encapsulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization[J]. J Magn Magn Mater,2004, 277(1-2):136~143
    [51]Voom DJ, Ming W, Van Herk AM. Polymer-clay nanocomposite latex particles by inverse pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets[J]. Macromolecules,2006,39(6):2137~2143
    [52]Craparo EF, Cavallaro G, Bondi ML, et al. Gylated nanoparticles based on a polyaspartamide. Preparation, physico-chemical characterization, and intracellular uptake[J]. Biomacromolecules,2006,7(11):3083~3092
    [53]李威,王文锋,钱素萍等.纳米聚N-异丙基丙烯酰胺微凝胶的光引发聚合[J].辐射研究与辐射工艺学报,2002,20(2):118~122
    [54]陈庆德,沈兴海,高宏成.γ辐照引发无皂乳液聚合法一步合成Ag-聚4-乙烯基吡啶杂化微凝胶[J].高分子学报,2006,5:722~726
    [55]Tsarevsky NV, Matyjaszewski K. "Green"atom transfer radical polymerization:from process design to preparation of well-defined environmentally friendly polymeric materials[J]. Chem Rev,2007,107(6):2270~2299
    [56]Braunecker WA, Matyjaszewski K. Controlled/living radical polymerization:features, developments, and perspectives[J]. Prog Polym Sci,2007,32(1):93~146
    [57]Georges MK, Veregin RPN, Kazmaier PM, et al. Narrow molecular weight resins by a free-radical polymerization process[J]. Macromolecules 1993,26(11):2987-2988
    [58]Hawker CJ, Bosman AW, Harth E. New polymer synthesis by nitroxide mediated living radical polymerization[J]. Chem Rev,2001,101(12):3661~3688
    [59]Perrier S, Takolpuckdee P. Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization[J]. J Polym Sci A:Polym Chem, 2005,43(22):5347~5393
    [60]Barner L, Davis TP, Stenzel MH, Barner-Kowollik C. Complex macromolecular architectures by reversible addition fragmentation chain transfer chemistry:theory and practice[J]. Macromol Rapid Commun,2007,28(5):539~559
    [61]Oh JK, Tang C, Gao H, et al. Inverse miniemulsion ATRP:a new method for synthesis and functionalization of well-defined water-soluble/crosslinked polymeric particles[J]. J Am Chem Soc,2006,128(16):5578~5584
    [62]Siegwart D J, Oh J K, Gao H, et al. Macromolecules [J],2008,209(21):2179~2193
    [63]E.Esposito, S.Sebben, R.Cortesi, et al. preparation and characterization of cationic microspheres for gene delivery[J]. International journal of pharmaceutics,1999,189(1): 29~41
    [64]Seymour LW, Duncan R, Strohalm J, et al. Effect of molecular weight (Mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats[J]. J Biomed Mater Res,1987,21(11):1341~1358
    [65]Kohler N, Sun C, Wang J, et al. Methotrexatemodified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells[J]. Langmuir,2005,21(19):8858~8864
    [66]Zhang H, Oh M, Allen C, et al. Monodisperse chitosan nanoparticles for mucosal drug delivery[J]. Biomacromolecules,2004,5(6):2461~2468
    [67]Zhang H, Mardyani S, Chan WCW, et al. Design of biocompatible chitosan microgels for targeted pHmediated intracellular release of cancer therapeutics[J]. Biomacromolecules, 2006,7(5):1568~1572
    [68]钱倩,王伯瑶.纳米药物载体在医药领域中的研究进展[J],济宁医学院学报,2006,29(2)82~84
    [69]Damage C, Michel C, Aprahamian M, et al. New approach for oral administration of insulin with polyalkycyanoacrylate nanoparticles as drug carrier[J]. Diabe2tes,1988,37:246~251
    [70]Christiane D, Philippe M, Nathalie U. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats[J]. J Controlled Release,2007,117(2):163~170
    [71]Sun W, Xie C, Wang H, et al. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain[J]. Biomaterials,2004,25(15):3065~3071
    [72]VinogTadov S V, Bmnich T K, Kabanov A V. Nanosiz∞cl cationic hydrogels for drug delivery:preparation, properties and interactions with ceils [J]. Adv Drug Deliv Rev,2002, 54(1):135~147
    [73]Vinogradov S V, Bronieb T K, KabgBov A V. NunngeLs for oligonueleotide deliverytothe brain[J]. BiceonjugChem,2004,15(1):50~60
    [74]Yang Jing, Song Cunxian, Sun Hongfan, et al. A new type gene delivery system gene nanoparticle [J]. Key Eng Mater,2005,288:143~147
    [75]Petersen H, Kunath A L. Degradable dextran hydrogels:controlled release of a model protein from cylinders and microspheres[J]. Biomacromolecules,2002,3(5):926~936
    [76]徐冬梅,洪军,孙汉文等.以光诱导Fenton反应控制M-PEIs纳米凝胶的粒径[J].高分子学报,2007,(4):389~393
    [77]Gao D, Xu H, Philbert MA, et al. Ultrafine hydrogel nanoparticles:synthetic approach and therapeutic application in living cells[J]. Angew Chem hit Ed,2007,46:2224~2227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700