长隧道火灾湍流燃烧模拟及结构防火安全研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长隧道火灾造成的灾难性后果已引起各国学者的广泛关注。随着我国经济持续高速增长及隧道长大化发展,隧道火灾事故的发生几率将呈上升趋势。隧道火灾释放出大量的高温有毒烟气,不仅对人员造成巨大伤害,且会使隧道结构受损而降低隧道的整体稳定性。因此,研究长隧道火灾烟气的运动规律及结构防火安全性无疑具有重要的意义。
     本文在总结国内外隧道火灾研究成果和经验的基础上,应用多相湍流反应流体动力学、热分析动力学等学科交叉手段,通过理论分析、数值模拟、比尺模型试验、热重试验、红外光谱分析试验等方法对长隧道火灾过程及结构防火等问题进行深入地研究。取得主要成果如下:
     (1)本文基于湍流燃烧理论构建的隧道火灾三维数学模型弥补了传统体积热源模型未考虑火源燃烧过程、只能模拟低风速隧道火灾之不足。利用该模型首次揭示燃烧对隧道火灾流场结构的塑造作用,并定量分析烟气的脉动效应。LES能捕捉到受迫火焰的三个分区——连续火焰区、间歇火焰区和浮力羽流区,刻画出火源上方温度的大幅波动和烟气的脉动细节。对于复杂的湍流问题,LES优于k-ε模型。
     (2)通过数值模拟系统分析隧道火灾烟气的三维运动规律,在纵向排烟模式下,烟气羽流运动受浮力和强制对流的共同作用,可分为三维螺旋涡流区、二维均匀分层区和一维纵向蔓延区3个特征阶段:而集中排烟模式存在双向不对称、双向对称和单向3种排烟方式。
     (3)首次进行沥青材料燃烧的热重和红外光谱分析试验,揭示沥青及其胶浆的燃烧机理、特征,并对其燃烧气态产物成分、释放规律进行分析,发现:1)沥青胶浆的燃烧过程可分为稳定阶段、活泼挥发分燃烧、二次挥发分燃烧、残炭燃烧4个阶段;沥青的燃烧过程可分为稳定阶段、活泼挥发分燃烧、二次挥发分及残炭燃烧3个阶段:2)沥青及其胶浆燃烧的主要气态产物为CO_2、CO、NO、NO_2及SO_2。其中,CO主要在活泼挥发分析出燃烧阶段产生;SO_2的排放量主要取决于样品的含硫量;活泼挥发分含量和空气流量对沥青及其胶浆燃烧气态产物的释放规律有较大影响,增加空气流量虽能减少CO的产生,但会增加碳黑的排放量。
     热动力学分析表明,对于沥青胶浆燃烧的第二至四阶段,三维扩散模型的Z-L-T方程、Jander方程、一维相边界反应模型的Mampel Power法则分别是最概然的机理函数;而沥青燃烧的第二、三阶段的最概然机理函数则为三级反应级数模型和满足Mampel Power法则的一维相边界反应模型;
     (4)采用数值模拟与物理试验相结合的方法对隧道火灾过程中的结构安全性进行分析:1)热分析试验测得室温固化植筋胶的玻璃化转变温度为106.2℃,据此通过数值计算获得,当植筋位置与受火面之间的混凝土厚度超过22cm时,植筋胶用于隧道工程是安全的;2)低于10MW规模的隧道火灾基本不会引燃沥青混凝土路面,对20和50MW规模的隧道火灾,只要分别保持2和4m·s~(-1)的通风,也基本能确保沥青路面不被引燃。沥青混凝土路面发生燃烧对隧道火灾的影响是有限的,其最大释热率不超过火灾规模的1.7%;3)在集中排烟模式下,顶隔板上表面可能发生爆裂的区域要远大于其下表面,二者间差距随火灾规模的增大而增大。受混凝土不良导热性影响,顶隔板上下表面始终存在着较大温差,由此产生的巨大温度应力可能导致顶隔板在隧道火灾过程中发生破坏。
The disaster caused by long tunnel fires has aroused extensive attention. With the rapid growth of economy and the build of longer and longer tunnels, the risk of tunnel fires will increase consequentially. A mass of high-temperature toxic gas released by tunnel fires not only causes great harm to persons, but also damages the tunnel's structure which will reduce the overall stability of tunnel. Therefore, studies on the movement characteristics of smoke and the structure fire-resistant security of long tunnels are of great significance.
     Based on conclusion of tunnel fires researches, applying multi-discipline integration analysis, such as multiphase turbulent reacting fluid dynamics and thermal analysis kinetics, the processes of long tunnel fires and the structure fireproofing were studied through theoretical analysis, numerical simulation, scale model test, thermogravimetric experiment and infrared-spectrum analysis. A series of valuable achievements were got.
     (1) The three-dimensional mathematical model of tunnel fires based on the theory of turbulent combustion can make up for the traditional VHS model which ignores combustion effect and only simulate tunnel fires under low ventilation velocity. Based on the current model, the effect of combustion on the flow structure in tunnel fires was revealed for the first time, and the pulsation of smoke was quantitatively analyzed. LES can capture three zones of forced flames - continuous flame, intermittent flame and plume zone, and portray the large fluctuations of temperature and the detail pulse of the smoke flow at the top of the fire source. Therefore, LES has many advantages than k -εmodel for complex turbulent problem.
     (2) Three-dimensional movement characteristics of smoke were analyzed by numerical simulations. Under the longitudinal exhaust, the movement of smoke plume influenced by both buoyancy and forced convection can be divided into three special sections: 3D spiral vortex flow section, 2D stratified flow section and 1D longitudinal spreading section. While under the central exhaust, two-way asymmetric, two-way symmetric and one-way manner are existed.
     (3) It was the first time that the thermogravimetric experiment and infrared-spectrum analysis on combustion of asphalt and its cement were carried out, in order to reveal the mechanism and characteristics of samples combustion, and analyze the component and releasing law of its gaseous products, which showed as following:
     1) The combustion process of asphalt cement has four phases including heating, oxidation of primary volatiles, oxidation of secondary volatiles, and oxidation of residual carbon. The combustion process of asphalt typically has three phases, including heating, oxidation of primary volatiles, and oxidation of secondary volatiles and residual carbon.
     2) Main gaseous products of asphalt and its cement combustion are CO_2, CO, NO, NO_2 and SO_2. Among these species, CO is mainly produced during the oxidation of volatiles, and the emission of SO_2 is mostly related with the sulfur content in the sample. The active volatile content and the air flux have significant impacts on the releasing law of gaseous products. Increasing air flux could reduce CO emission, otherwise it would increase soot.
     Kinetic analysis shows that the most probable kinetic function describing the last three phases of asphalt cement combustion are Z-L-T equation, Jander equation of 3D diffusion model and Mampel Power law based on 1D surface reaction model respectively, and the model F3 and R1 are considered as the most suitable kinetic mechanisms respectively for the second and the third phases of asphalt combustion.
     (4) The security of structure in tunnel fires was analyzed through numerical simulations and experiments: 1) Thermal analysis tests found that the glass transition temperature of adhesive was 106.2℃. based on this the numerical calculations showed that applying adhesive to tunnel engineering was safe when the thickness of concrete between planting-bar and concrete surface facing fire was over 22 cm. 2) when the fire load is lower than 10 MW Asphalt pavement will almost not to be ignited which can also be basically insured when the fire load is 20 or 50 MW, as long as ventilation velocity is kept at 2 or 4 m·s~(-1) respectively. The influence of asphalt concrete pavement combustion is limited on tunnel fires and its heat release rate won't exceed 1.7 percent of fire load. 3) Under the central exhaust mode, the areas where could burst on the top surface of head clapboard are much larger than which on the bottom surface, consequently the difference between them would increase along with the increasing fire loads. Affected by weak conduction of concrete, the large temperature difference would be always existed between the top and bottom surface of head clapboard, thus the head clipboard may be destroyed in tunnel fires by the resulting huge temperature stress.
引文
[1]胡隆华.隧道火灾烟气蔓延的热物理特性研究[D].合肥:中国科学技术大学,2006.
    [2]阎治国.隧道衬砌结构火灾高温力学行为及耐火方法研究[D].上海:同济大学,2006.
    [3]凤懋润.中国公路和隧道建设[C].国际隧道研讨会暨公路建设技术交流大会.北京:人民交通出版社,2002.
    [4]仇玉良.公路隧道复杂通风网络分析技术研究[D].西安:长安大学,2004.
    [5]邓念兵.公路隧道防火救灾对策研究[D].西安:长安大学,2003.
    [6]周仁强.长大公路隧道火灾模式下通风及控制技术研究[D].成都:西南交通大学,2006.
    [7]Mashimo H.State of the Road Tunnel Safety Technology in Japan[J].Tunnelling and Underground Space Technology,2002,17(2):145-152.
    [8]Haack A.Welcome and Introduction[C].Proceeding of Second International Symposium on Safe & Reliable Tunnels.Innovative European Achievements,Lausanne,2006:1-5.
    [9]Pucher K,Pucher R.Fire in the Tauern tunnel[C].International Tunnel Fire & Safety Conference,Hilton Hotel,Rotterdam,Netherlands,2-3 December 1999.Organised by Brisk Events.Paper number 8.
    [10]Lacroix D.Fire in the Mont Blanc tunnel:facts and lessons[C].International Tunnel Fire &Safety Conference,Hilton Hotel,Rotterdam,Netherlands,2-3 December 1999.Organised by Brisk Events.Paper number 9.
    [11]Allison R.(Chair)Inquiry into the fire on heavy goods vehicle shuttle 7539 on 18 November 1996[C].HMSO,1997.ISBN:011-551931-9.
    [12]Hedefalk J,Wahlstrom B,Rohlen P.Lessons from the Baku subway fire[C].Third International Conference on Safety in Road and Rail Tunnels,Nice,France,9-11 March 1998:15-28.
    [13]云南省建设厅.公路隧道消防技术规程(DBJ 53-12-2004)[M].云南科技出版社,2004.
    [14]钱盛龄.上海延安东路越江隧道的消防系统[C].第四届隧道与地下工程动态会,1989(09).
    [15]吉田幸信.公路隧道的防火设备[J].隧道译丛,1989(08).
    [16]Alex Haeter通风:公路隧道的消防[J].隧道译丛,1989(08).
    [17]浙江省交通规划设计研究院.苍岭隧道通风排烟系统研究简本[R].2007.6.15.
    [18]Li J S M,Chow W K.Numerical studies on performance evaluation of tunnel ventilation safety systems[J].Tunnelling and Underground Space Technology,2003,18(3):435-452.
    [19]ITA.Fire and life safety for underground facilities:present status of fire and life safety principles related to underground facilities[J].Tunnelling and Underground Space Technology,1998,13(3):217-269.
    [20]蔡莉萍,徐浩良.浅谈城市隧道结构防火[J].消防科学与技术,2004,23(1):58-59.
    [21]霍然,胡源,李元洲.建筑火灾安全工程导论[M].中国科学技术大学出版社,1999.
    [22]龚延风,陈卫.建筑消防技术[M].科学出版社,2002.
    [23]范维澄,王清安,姜冯辉等.火灾简明教程[M].合肥:中国科技大学出版社,1995.
    [24]程小伟.隧道防火涂料的制备及表征[D].成都:四川大学,2005.
    [25]United Nations Economic and Social Council.Recommendations of the group of experts on safety in road tunnel[R].2001.
    [26]Yasushi Oka,Atkinson G T.Control of smoke flow in tunnel fires[J].Fire Safety Journal,1995,25(4):305-322
    [27]Rapport betreffende de beproeving van her gedrag van twee isolatiematerialen ter bescherming van tunnels tegen brand.Instituut TNO voor Bouwmaterialen en Bouwconstructies,Rapport B-80-33,1979.
    [28]Hitoshi Kurioka,Yasushi Oka,et al.Fire properties in near field of square fire source with longitudinal ventilation in tunnels[J].Fire Safety Journal,2003,38(4):319-340.
    [29]张宗碧,柴永模,涂文轩.隧道火灾风度燃烧状况的模型试验及研究[J].消防科学与技术,1994,(4):20-25.
    [30]闰治国,杨其新,朱合华.秦岭特长公路隧道火灾试验研究[J].土木工程学报,2005,38(11):96-101.
    [31]闫治国,杨其新,朱合华.火灾时隧道内烟流流动状态试验研究[J].土木工程学报,2006,39(4):94-98.
    [32]Yan Z G,Yang Q X,Zhu H H.Large-sealed fire testing for long-sized road tunnel[J].Tunnelling and Underground Space Technology,2006,21(3-4):282.
    [33]Malhotra H L.Goods vehicle fire test in a tunnel[C].2~(nd)Int.Conf.on Safety in Road and Rail Tunnels,Granada,Spain,1995:237-244.
    [34]Richter E.Smoke and temperature development in tunnels - experimental results of full scale fire tests[C].2~(nd)Int.Conf.on Safety in Road and Rail Tunnels,Granada,Spain,1995:295-302.
    [35]Sehlussbedcht der Versuche im Ofenegg Tunnel von 17.5-31.5,1965.Kommission fur Sieherheitsmassnahmen in Strassentunneln,1965.
    [36]Pucher K.Fire tests in the Zwenberg tunnel(Austria)[C].In:Ivarson E,editor.International conference on fires in tunnels.Boras,Sweden:SP Swedish National Testing and Research Institute,1994.
    [37]State of the Road Tunnel Equipment in Japan - Ventilation,Lighting,Safety Equipment.Public Works Research Institute,Technical note,vol.61,1993.
    [38]Haaek A.Fire protection in traffic tunnels:general aspects and results of the EUREKA project [J].Tunnelling and Underground Space Technology,1998,13(4):377-381.
    [39]Bechtel/parsons Brinckerhoff.Memorical tunnel fire ventilation test program.Comprehensive test report,Massachusetts Highway Department,November,2005.
    [40]Knikane Y,Kawabata N,Ishikawa T,et al.Thermal fumes and smoke induced by bus fire accident in large cross sectional tunnel[C].Proc.5~(th)JSME-KSME Fluids Engineering Conference,Nov.17-21,2002,Nagoya,Japan.
    [41]Lemaire A,van de Leur PHE,Kenyon YM,Safety Proef:TNO Metingen Beneluxtunnel-Meetrapport,TNO,TNO-Rapport 2002-CVB-R05572,2002.
    [42]Lonnermark A,Ingason H.Gas temperature in heavy goods vehicle fires in tunnels[J].Fire Safety Journal,2005,40(6):506-527.
    [43]胡隆华,霍然,王浩波,杨瑞新.公路隧道内火灾烟气温度及层化高度分布特征试验[J].中国公路学报,2006,19(6):79-82.
    [44]Hu L H,Huo R,Peng w,et al.On the maximum smoke temperature under the ceiling in tunnel fires[J].Tunnelling and Underground Space Technology,2006,21(6):650-655.
    [45]Hu L H,Huo R,Li Y Z,et al.Full-scale burning tests on studying smoke temperature and velocity along a corridor[J].Tunnelling and Underground Space Technology,2005,20(3):223-229.
    [46]Carvel R O,Marlair G.A history of tunnel fire experiments[M].In:Beard AN,Carvel RO,editors.The handbook of tunnel fire safety.London:Thomas Telford Publishing,2005(Chapter 10).
    [47]Friedman R.An international survey of computer models for fire and smoke[J].Journal of Fire Protection Engineering,1992,4(3):81-92.
    [48]Olenick S M.Carpenter D J.An updated international survey of computer models for fire and smoke[J].Journal of Fire Protection Engineering,2003,13(5):87-110.
    [49]Nady M,Said A.A review of smoke control models[J].ASHRAE Journal,1988,30(4):36-40.
    [50]Walton W D.Zone computer fire models for enclosures[M].SFPE hand book of fire protection engineering.2nd ed.National Fire Protection Association,1995:148-151.
    [51]Jones W W.A review of compartment fire models[R].Gaithersburg:Building and Fire Research Laboratory,NBSIR 83-2684,1983.
    [52]Jones W W,Forney G P,Peacock R D,et al.A technical reference for CFAST:an engineering tool for estimating fire and smoke transport JR].Gaithersburg:Building and Fire Research Laboratory,NIST TN 1431,2000.
    [53]Cooper L Y,Forney G P.The consolidation compartment fire model(CCFM)computer code application CCFM.VENTS - Part I:physical basis.N1STIR 4342,National Institude of Standards and Technology.Gaithersburg,Md:NIST.1990.
    [54]Cooper L Y,Forney G P.The consolidation compartment fire model(CCFM)computer code application CCFM.VENTS - Part Ⅱ:Software Reference Guide.NISTIR 4343,National lnstitude of Standards and Technology.Gaithersburg,Md:NIST.1990.
    [55] Nelson H E, Deal S. Comparing compartment fires with compartment fire models [C]. Fire Safety Science Proceedings of the Third International Symposium, 1991:719-728.
    [56] Chow W K. Simulation of tunnel fires using a zone model [J]. Tunnelling and Underground Space Technology, 1996,11(2): 221-236.
    [57] Kumar S, Cox G Mathematical modeling of fires in road tunnels[A]. In: Proceedings of the 5th Internationa] Symposium on Aerodynamics and Ventilation of Vehicle Tunnels[C]. Lille, France, 1985: 61-76.
    [58] Cox G, Kumar S. A numerical model of fire in road tunnels [J]. Tunnels & Tunnelling, 1987, 19(3): 55-60.
    [59] Gao P Z, Liu S L, Chow W K, Fong N K. Large eddy simulation for studying tunnel smoke ventilation [J]. Tunnelling and Underground Space Technology, 2004,19(6): 577-586.
    [60] Woodburn P J, Britter R E. CFD simulation of a tunnel fire - Part 1 [J]. Fire Safety Journal, 1996, 26(1): 35-62.
    [61] Woodburn P J, Britter R E. CFD simulation of a tunnel fire - Part 2 [J]. Fire Safety Journal, 1996, 26(1): 63-90.
    [62] Bari S, Naser J. Simulation of smoke from a burning vehicle and pollution levels caused by traffic jam in a road tunnel [J]. Tunnelling and Underground Space Technology, 2005, 20(3): 281-290.
    [63] Chow W K. On smoke control for tunnels by longitudinal ventilation [J]. Tunnelling and Underground Space Technology, 1998, 13(3): 271-275.
    [64] Chow W K, Li J S M. Safety requirement and regulations reviewson ventilation and fire for tunnels in the Hong Kong Special Administrative Region [J]. Tunnelling and Underground Space Technology, 1999,14(1): 13-21.
    [65] Wu Y, Bakar M Z A. Control of smoke flow in tunnel fires using longitudinal ventilation systems - a study of critical velocity [J]. Fire Safety Journal, 2000,35(4): 363-390.
    
    [66] McGrattan K B, Hamins A. Numerical simulation of the Howard street tunnel fire, Baltimore, Maryland, July 2001 [R]. NISTIR 6902,2002.
    [67] Hwang C C, Edwards J C. The critical ventilation velocity in tunnel fires-a computer simulation [J]. Fire Safety Journal, 2005,40(3): 213-244.
    [68] Sung R L, Hong S R. A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio [J]. Building and Environment, 2006,41(6): 719-725.
    [69] Chassé P. Sensitivity study of different modelling techniques for the computer simulation of tunnel fires, comparison with experimental measures [C]. In C.F.D.S. International Users Conference. AEA Technology, UK, 1993.
    [70] Brandeis J, Bergmann D J. A numerical study of tunnel fires [J]. Combustion Science and Technology,1983,35:133-155.
    [71]Fletcher D F,Kent J H,Apte V P,Green A R.Numerical simulations of smoke movement from a pool fire in a ventilated tunnel[J].Fire Safety Journal,1994,23(3):305-325.
    [72]McGrattan K B,Baum H R,Rehm R G.Numerical simulation of smoke plumes from large oil fires[J].Atmospheric Environment,1996,30(24):4125-4136.
    [73]McGrattan K B,Baum H It,Rehm R G Large eddy simulation of smoke movement[J].Fire Safety Journal,1998,30(2):161-178.
    [74]Simcox S,Wilkes N S,Jones I P.Computer simulation of the flows of hot gases from the fire at King's Cross Underground Station.In I.Mech.E.Seminar:The King's Cross Underground Fire:Fire Dynamics and Organization of Safety.MEP Publishing,Leamington Spa,UK,1989.
    [75]Bettis R J,Hambleton R T,Macmillan A J R.Interim validation of tunnel fire consequence models:data from phase 1 test 4[R].Technical Report,Health and Safety Executive Research and Laboratory Services Division,Harpur Hill,Buxton,Derbyshire,UK,1994.
    [76]Kumar S,Cox G.Radiant heat and surface roughness effects in the numerical modelling of tunnel fires[C].In 6th Int.Syrup.on Aerodynamics and Ventilation of Vehicle Tunnels.BMRA,the Fluid Engineering Centre,1988.
    [77]Apte V B,Green A R,Kent J H.Pool fire plume flow in a large-scale wind tunnel[C].In Fire Safety Science Proceedings of 3rd International Symposium.New York:Hemisphere,1991.
    [78]Holman J P.Heat Transfer[M].6th Edn.McGraw-Hill,Scarborough,CA,1986.
    [79]Jaluria Y.Natural Convection Heat and Mass Transfer[M].Pergamon,Oxford,1980.
    [80]Atkinson G T,Drysdale D D.Convective heat transfer from fire gases[J].Fire Safety Journal,1992,19:217-245.
    [81]姚建达,范维澄,佐藤晃由等.建筑火灾中场区网数值模型的应用[J].中国科学技术大学学报,1 997,27(3):304-308.
    [82]杨锐,蒋勇,纪杰等.建筑火灾中基于大涡模拟的场区复合数值模型及其应用[J].自然科学进展,2003,13(6):637-641.
    [83]邱旭东.高层建筑火灾过程的数值模拟[D].哈尔滨:哈尔滨工业大学,2004.
    [84]Bendelius A G.Tunnel fire and life safety within the World Road Association(PIARC)[J].Tunnelling and Underground Space Technology,2002,17(2):159-161.
    [85]Both C,Haaek A,Laeroix D.Upgrading the fire safety of existing tunnels in Europe:A 13 M EUR European research project[C].Proceedings of ITA World Tunnel Congress,Amsterdram,2003:239-244.
    [86]Takekuni K,Shimoda A,Yokota M.The characteristics of fires in large-scale tunnels on fire experiments inside the Shimizu No.3 tunnel on the new Tomei expressway[C].Proceedings of ITA World Tunnel Congress,Amsterdam,2003:179-184.
    [87]Ono K,Fire design Requirements for various types of tunnel[M].Keynote Lecture oflTA WTC,Seoul,Korea,2006.
    [88]UPTUN.UPTUN description.Europe:www.uptun.net,2003.
    [89]Kratzmeir S.New approaches for tunnel fire safety - the SOLIT project[C].Proceeding of ITA World Tunnel Congress and 32nd ITA Assembly,Seoul,2006.
    [90]张硕生,张庆明,毛朝君.隧道防火保护的现状及发展趋势[J].消防技术与产品信息,2003,(7):6-9.
    [91]FIT.FIT European thematic network:fire safe design,road tunnels - listing of guidelines[R].Dratt Contribution to FIT WP3 report,2002.
    [92]Thomas P H.The movement of smoke in horizontal passages against an air flow[R].Fire Research Note,No.723,Fire research Station,Watford,UK,1968.
    [93]Lee C K,Chaiken R F,Singer J M.Interaction between duet fires and ventilation flow:an experimental study[J].Combust Science and Technology,1979a,20:59-72.
    [94]Hinkley P L.The flow of hot gases along an enclosed shopping mall,a tentative theory.Fire Research Note No.807,March 1970.
    [95]Kennedy W D,Gonzales J A,Sanchez J G.Derivation and application of the SES critical velocity equations[J].ASHRAE Trans:Research,1996,102(2):40-44.
    [96]Heselden A J M.Studies of fire and smoke behavior relevant to tunnels[C].In:Proceedings of the 2nd International Symposium of Aerodynamics and Ventilation of Vehicle Tunnels.Cambridge,UK,23-25 March 1976.
    [97]Danziger N H,Kennedy W D.Longitudinal ventilation analysis for the Glenwood canyon tunnels[C].In:Proceedings of the 4th International Symposium Aerodynamics and Ventilation of Vehicle Tunnels.York,UK,1982:169-186.
    [98]Bettis R J,Jagger S F,Wu Y.Interim validation of tunnel fire consequence models:summary of phase 2 tests[R].The Health and Safety Laboratory Report IR/L/FR/93/! 1,The Health and Safety Executive,UK,1993.
    [99]Bettis R J,Jagger S F,Macmillan A J R,Hambleton R T.Interim validation of tunnel fire consequence models:summary of phase I tests[R].The Health and Safety Laboratory Report IR/L/FR/94/2,The Health and Safety Executive,UK,1994.
    [100]Grant G B,Jagger S F,Lea G J.Fires in tunnels.Philos Trans R Soc London A,1998:2873-2906.
    [101]Bendelius A.Memorial tunnel fire ventilation test program[C].In:One Day Seminar of Smoke and Critical Velocity in Tunnel,London,1996.
    [102]Hwang C C,Wargo J D.Experimental study of thermally generated reverse stratified layers in a fire tunnel[J].Combust Flame,1986,66:171-180.
    [103]Atkinson G T,Wu Y.Smoke control in sloping tunnels[J].Fire Safety Journal,1996,27(4):335-341.
    [104]Kunsch J P.Simple model for control of fire gases in a ventilated tunnel[J].Fire Safety Journal,2002,37(1):67-81.
    [105]Massachusetts Highway Department,Boston.MA:Memorial tunnel fire ventilation test program [R],Test Report,1995.
    [106]Wu Y,Bakar MZA,Atkinson GT,Jagger S.A study of the effect of tunnel aspect ratio on control of smoke flow in tunnel fires[C].9th International Conference on Aerodynamics and Ventilation of Vehicle Tunnels,Aosta Valley,Italy,6-8 October 1997:573-587.
    [107]Nordmark A.Fire and life safety for underground facilities:present status of fire and life safety principles related to underground facilities[J].Tunnelling and Underground Space Technology,1998,13(3):217-269.
    [108]夏永旭,王永东,赵峰.秦岭终南山公路隧道通风方案讨论[J].长安大学学报(自然科学版),2002,22(5):48-50.
    [109]Benedict L,Zukoski E E.Buoyant flows in shafts[R].NIST,1996.
    [110]Edward E,Zukoski E E.A review of flows driven by natural convection in adiabatic shafts[C],NIST-GCR-95-679,1995.
    [111]Klote J H.A general routine for analysis of stack effect[C].NISTNR 4588.1991.
    [112]Vauquelin O,Megret O.Smoke extraction experiments in case of fire in a tunnel[J].Fire Safety Journal,2002,37(5):525-533.
    [113]Vauquelin O,Telle D.Definition and experimental evaluation of the smoke "confinement velocity" in tunnel fires[J].Fire Safety Journal,2005,40(4):320-330.
    [114]Cooper L Y.Calculation combined bouyanc-and pressure-driven flow through a shallow,horizontal,circular vent:application to a problem of steady burning in a ceiling-vented enclosure [J].Fire Safety Journal,1996,27(1):23-35.
    [115]张靖岩,霍然,王浩波,冯瑞.烟囱效应形成机理的实验[J].中国科学技术大学学报,2006,36(1):73-76.
    [116]Bundesamt fur Strassen:Richtlinite Systemwalh,Dimensionierung und Betrieb von Tunneluftungsanlage n,Draft V 5.0.September 2000.
    [117]Opstad K,Aune P,Henning J E.Fire emergency ventilation capacity for road tunnels with considerable slope[J].ICAVVT,Aosta,October 1997:535-543.
    [118]过增元.热流体学[M].北京:清华大学出版社,1992.
    [119]阎治国,朱合华,杨其新.火灾时隧道火风压及其对通风影响的试验研究[J].同济大学学报(自然科学版),2006,34(12):1592.1596.
    [120]阎治国,朱合华,彭芳乐.隧道火灾场景设计及衬砌结构防火研究[J].地下空间与工程学 报,2006,2(8):1320-1325.
    [121]杨昀,曹丽英.地铁火灾场景设计探讨[J].自然灾害学报,2006,15(4):121-125.
    [122]Babrauskas V,Peacock RD.Heat release rate:the single most important variable in fire hazard [J].Fire Safety Journal,1992,18(3):255-272.
    [123]Australasian Fire Authorities Council.Fire safety guidelines for road tunnels[R].Issue 1,2001.
    [124]Shipp M,Spearpoint M.Measurements of the severity of fires involving private motor vehicles [J].Fire and Materials,1995,19:143-151.
    [125]Mangs J,Keski-Rahkonen O.Characterisation of the fire behaviour of a burning passenger car,Part Ⅰ:car fire experiments[J].Fire Safety Journal,1994,23(1):17-35.
    [126]Mangs J,Keski-Rahkonen O.Characterisation of the fire behaviour of a burning passenger car,Part Ⅱ:parametedsation of measures rate of heat release curves[J].Fire Safety Journal,1994,23(1):37-49.
    [127]程远平,John R.小汽车火灾试验研究[J].中国矿业大学学报,2002,6(31):557-560.
    [128]PIARC.21th World Road Congress,Technical Committee on Road Tunnels Report,Brussels,1987.
    [129]Lacroix D.The new PIARC report on fire and smoke control in road tunnels[C].Third International Conference on Safety in Road and Rail Tunnels,Nice,France,1998:185-197.
    [130]NFPA.NFPA 502 Standards for Road Tunnels,Bridges,and Other Limited Access Highways[S].National Fire Protection Association,1998.
    [131]Ang A H S,Tang W H.The Bayesian Approach.In.Probability concepts in engineering planning and design.Volume I.John Wiley & Sons,New York 1975:284-291.
    [132]Saito N,Yamada T,Sekizawa A,Yanai E,Watanabe Y,Miyazaki S.2nd Int.Conf.Safety in Road and Rail Tunnels.Granada,Spain,1995:303-310.
    [133]Grant G B,Drysdale D D.Estimating heat release rates from large scale tunnel fires[C].Proceedings of the Fifth International Symposium on Fire Safety Science,Melbourne,Australia,3-7 March 1997:1213-1224.
    [134]Carrel R O,Beard A N,Jowitt P W,etc.Variation of heart release rate with forced longitudinal ventilation for vehicle fires in tunnels[J].Fire Safety Journal,2001,36(6):569-596.
    [135]Carvel R O,Beard A N,Jowitt P W.The influence of longitudinal ventilation systems on fires in tunnels[J].Tunnelling and Underground Space Technology,2001,16(1):3-21.
    [136]EUREKA.Fires in transport tunnels:report on full-scale tests[R].EUREKA-Project EU499:FIRETUN Studiengesellschaft Stahlanwendung e.V.D-40213 Dusseldorf,1995.
    [137]Steinert C.Smoke and heat production in tunnel fires[C].Proceedings of the International Conference on Fires in Tunnels,Boras,10-11 October 1994:123-137.
    [138]Bettis R J,Jagger SF,Moodie K.Reduced scale simulations of fires in partially blocked tunnels [C]. Proceedings of the International Conference on Fires in Tunnels, Boras, Sweden, 10-11 October 1994: 163-186.
    [139] Perard M. Organization of fire trials in an operated road tunnel [C]. First International Conference on Safety in Road and Rail Tunnels, Basel, Switzerland, 23-25 November 1992: 161-170.
    [140] Keski-Rahkonen O, Holmjund C, Loikkanen P, Ludvigsen H, Mikkola E. Two full scale pilot experiments in a tunnel [R]. VTT Research Report 453. VTT, Finland, 1986.
    [141] Ingason H, Nireus K, Werling P. Fire tests in a blasted rock tunnel [R]. Report FOA-R-97-00581-990-SE. FOA, Sweden, 1997.
    [142] Bettis RJ, Wu Y, Hambleton RT. Interim validation of tunnel fire consequence models: data from phase 2, Test 5 [R]. Section paper IR/L/93/09 (part 5), HSE, Buxton, 1993.
    [143]Haerter A. Fire Tests in the Ofenegg Tunnel in 1965 [C]. Proceedings of the International Conference on Fires in Tunnels, Boras, Sweden, 10-11 October 1994: 195-214.
    [144] Memorial Tunnel Fire Ventilation Test Programme. Interactive CD-ROM & Comprehensive Test Report. Parsons Brinckerhoff 4D Imaging, 1996.
    [145] Simon E. Eureka499 HGV Fire test (Nov. 1992) [C]. In Proceeding of the In. Corf. On Fires in Tunnels. Boras, Sweden, October 10-11,1994:63-85.
    [146] Haukur I, So|¨ren G, Martin D. Heat release rate measurements in tunnel fires [R] SP-Swedish National Testing and Research Institute, Report 1994.
    [147] Haukur I, Kjell N, Per W. Fire tests in a blasted rock tunnel [R]. Report FOA-R. 97-00581-990.SE. FOA, Sweden, 1997.
    
    [148] Khoury G A. Passive fire protection in tunnels [J]. Concrete, 2003b, 37(2): 31-36.
    [149] PIARC. Fire and smoke control in road tunnels, 05.05.B [R], Paris, 1999.
    [150] CETU. Abstracts on breakdowns, accidents and fire in the tunnels [R]. Lyon, 1993.
    [151] Lacroix D. New French recommendations for fire ventilation in road tunnels [C]. In Proceeding of 9th International Conference on Aerodynamics and Ventilation of Vehicle Tunnels. Aosta Valley, Italy, 1997.
    [152] Mégret O, Vauquelin O. A model to evaluate tunnel fire characteristics [J]. Fire Safety Journal, 2000, 34(4): 393-401.
    [153] ISO 834. Fire resistance tests - elements of building construction - Part 1: General requirements, first ed. 1999-09-15 [S]. International Organization for Standardization, 1999.
    [154] Olst D V, Bosch R V D. Behaviour of electrical cables during fire in tunnels [C]. Proceedings of 1TA World Tunnel Congress 2003. Amsterdam, 2003:991-992.
    [155] EN 1363-2. Fire resistance tests - Part 2: Alternative and additional procedures, first ed. 1999-09-24. European Committee for Standardization, 1999.
    [156]Richter E.Propagation and development of temperature from tests with railway and road vehicles - comparison between test data and temperature time curves of regulations[C].Proceedings of the international conference on fire in tunnels.Boris,1994.
    [157]Richtlinien fur Ausstattung und Betrieb von Tunneln(RABT),Ausgabe 1985,Forschungs-gesellschafl fur StraBen- und Verkehrswesen,1985.
    [158]Both C,Haar P W,Wolsink G M.Evaluation of passive fire protection measures for concrete tunnel linings JR].TNO Report,2003.
    [159]Purser D A.Toxicity assessment of combustion products[M].SFPE Handbook of Fire Protection Engineering,National Fire Protection Association,Quincy,Massachusetts,Third edition 2002,Chapter 2-6.
    [160]李民政,董希琳.隧道火灾中热烟气的产生及其危害[J].消防科技,1997(1):10-11.
    [161]Butcher E G,Parnell A c.防火设计中的烟控[M].北京:中国建筑工业出版社,1990.
    [162]Klingsch W,Witthecker F W.Burning characteristics of building products in the light of European hannonimtion[J].Fire and Materials,2000,24:253-258.
    [163]Hakkarsinen T,Mikkola E,et al.Smoke gas analysis by Fourier transform-infrared spectroscopy - summary of the SAFlR project results[J].Fire end Materials,2000,24(1):101-112.
    [164]邱榕,范维澄.火灾常见有害燃烧产物的生物毒理Ⅰ:一氧化碳、氰化氢[J].火灾科学,2001,10(3):154-158.
    [165]Hebgen H.房屋安全手册[M].北京:中国建筑工业出版社,1991.
    [166]邱榕,范维澄.火灾常见有害燃烧产物的生物毒理Ⅱ:一氧化氮、二氧化氮[J].火灾科学,2001,10(4):200-203,208.
    [167]Elomaa M,Sarvaranta L,Mikkola E,et al.Combustion of polymeric materials[J].Critical Reviews in Biochem and Molecular Boil,1997,27(3):137-197.
    [168]Liu Yingju,Yang Junqing,Zhou Qixin,et al.Neuronal apoptosis and expression of Fas and FasL protein induced by acute carbon monoxide poisoning in mice[J].Industrial Health and Occupational Diseases,200,26(5):257-260.
    [169]黎强,刘清辉,张慧等.火灾烟气中有毒气体的体积分数分布与危害[J].自然灾害学报,2003,12(3):69-74.
    [170]Guian S K.Fire and life safety provisions for a long vehicular tunnel[J].Tunnelling and Underground Space Technology,2004,19(4-5):316.
    [171]Schrefler B A,Brunello P,Gawin D,Majorana C E,Pesavento F.Concrete at high temperature with application to tunnel fire[J].Computational Mechanics,2002,29(1):43-51.
    [172]Scott T S,Ronald G B,Anthony E F.Fire endurance of high-strength concrete slabs[J].ACI Materials Journal,1988,85(2):102-108.
    [173]Carlos C,Durrani A J.Effect of transient high temperature on high-strength concrete[J].ACI Materials Journal,1990,87(1):47-53.
    [174]张大长,吕志涛.火灾对RC、PC构件材料性能的影响[J].南京建筑工程学院学报,1998,(2):25-31.
    [175]彭立敏,刘小兵,杜思村.不同燃烧温度量级对隧道衬砌强度损伤程度的试验研究[J].铁道学报,1997,17(5):87-94.
    [176]肖建庄,王平,朱伯龙.我国钢筋混凝土材料抗火性能研究回顾与分析[J].建筑材料学报,2003,6(2):182-189.
    [177]Yasuda F.Ono K.Otsuka T.Fire protection for TBM shield tunnel lining[J].Tunnelling and Underground Space Technology,2004,19(4-5):317.
    [178]郭鹏,张洪源,董毓利,谢启国.高温加热循环下混凝土强度变化的机理[J].青岛建筑工程学院学报,2000,21(4):80-86.
    [179]Schrefler B A,Khoury G A,Gawin D,Majorana C E.Thermo-hydro-mechanical modeling of high performance concrete at high temperatures[J].Engineering Computations,2002,19(7):787-819.
    [180]EI-Hawary M M,Hamoush S A.Bond shear modulus of reinforced concrete at high temperatures [J].Engineering Fracture Mechanics,1996,55(6):991-999.
    [181]Chiang C H,Tsai C L.Time-temperature analysis of bond strength ofa rebar after fire exposure [J].Cement and Concrete Research,2003,33:1651-1654.
    [182]Short N R,Purkiss J A,Guise S E.Assessment of fire damaged concrete using colour image analysis[J].Construction and Building Materials,2001,15(1):9-15.
    [183]Nassif A Y,Rigden S,Burley E.Effects of rapid cooling by water quenching on the stiffness properties of fire-damaged concrete[J].Magazine of Concrete Research,1999,51(4):255-261.
    [184]Hertz K D.Limits of spalling of fire-exposed concrete[J].Fire Safety,2003,38(2):103-116.
    [185]Both C,Wolsink G M,Breunese A J.Spalling of concrete tunnel linings in fire[C].Proceedings of ITA World Tunnel Congress,Amsterdam,2003:227-231.
    [186]朋改非,陈延年,Anson M.高性能硅灰混凝土的高温爆裂与抗火性[J].建筑材料学报,1999,2(3):193-198.
    [187]郑吉诚.高温下高流动性钢纤维混凝土爆裂现象研究[D].台湾:国立台湾大学,1986.
    [188]肖建庄,李杰,孙振平.高性能混凝土结构抗火研究最新进展[J].工业建筑,2001,31(6):53-56.
    [189]Kalifa P,Menneteau F D,Quenard D.Spalling and pore pressure in HPC at high temperatures[J].Cement and Concrete Research,2000,30:1915-1927.
    [190]Noumowe A N,Clastres P,Debicki G,Costaz J L.Transient heating effect on high strength concrete[J].Nuclear Engineering and Design,1996,166(1):99-108.
    [191]Yabuki M,Abo E A M,Ayano T,Sakata K.Fire resistance of polypropylene fiber reinforce concrete[J].Journal of the Society of Materials Science,2002,51(10):1123-1128.
    [192]Ulm F J,Coussy O,Bazant Z P.The "Channel" fire,Ⅰ:Chemoplastic softening in rapidly heated concrete[J].Journal of Engineering Mechanics,1999,125(3):272-282.
    [193]UIm F J,Acker P,Levy M.The "Channel" fire,Ⅱ:Analysis of concrete damage[J].Journal of Engineering Mechanics,1999,125(3):283-289.
    [194]Sanjayan G,Stocks L J.Spalling of high strength silica fume concrete in fire[J].ACI Materials Journal,1993,90(2):170-173.
    [195]Savov K.Lackner R.Mang H.A.Stability assessment of shallow tunnels subjected to fire load [J].Fire Safety Journal,2005,40(8):745-763.
    [196]彭立敏,刘小兵,韩玉华.隧道火灾后衬砌承载能力的可靠度评估方法[J].中国铁道科学,1998,19(4):88-94.
    [197]施微,高甫生.建筑火灾烟气运动的数值模型综述[J].暖通空调,2006,36(5):26-32.
    [198]阎治国.长大公路隧道火灾研究[D].成都:西南交通大学,2002.
    [199]张伟,张卫国.城市地下交通隧道火灾的防护[J].地下空间,2002,22(3):268-270.
    [200]张祉道.公路隧道的火灾事故通风[J].现代隧道技术,2003,40(1):34-43,49.
    [201]倪照鹏,陈海云.国内外隧道防火技术现状及发展趋势[J].交通世界,2003,(2-3):28-31.
    [202]Wetzig V.Reality-based training for tire brigades in tunnels-first experience report[J].Tunnelling and Underground Space Technology,2004,19(4-5):315.
    [203]张云明,马宏伟.秦岭终南山特长公路隧道消防问题浅析[J].消防科学与技术,2005,24(5):577-580.
    [204]Lupton B.Unprotected long road tunnels:can least cost be justified or are such tunnels an accident waiting to happen?[C].International Conference on Tunnel and Underground Station Fires,3-4 May 2000,Hong Kong:21-32.
    [205]徐琳,张旭.水平隧道火灾通风纵向控制风速的合理确定[J].中国公路学报,2007,20(2):92-97.
    [206]徐琳,张旭.超大断面水平隧道纵向通风临界风速CFD分析[J].地下空间与工程学报,2007,3(1):124-127,131.
    [207]顾闻,乔宗昭,沈婕青.隧道通风设计中火灾释热量的取用[J].地下工程与隧道,2005,(4):58-62.
    [208]倪照鹏,王志刚,沈奕辉.性能化消防设计中人员安全疏散的确证[J].消防科学与技术,2003,22(5):375-378.
    [209]Gwynne S,Galea E R.A review of the methodologies and critical appraisal of computer models used in the simulation of evacuation from the built environment[R].Fire Safety Engineering Group,University of Greenwich,London SE186PF,UK.
    [1]路春森.建筑结构耐火设计[M].北京:中国建材工业出版社,1995.
    [2]是勋刚.湍流[M].天津大学出版社,1994.
    [3]Corrsin S.Investigation of flow in an axially symmetric heated jet of air[R].NACA Advis,1943.
    [4]Townsend A A.Measurement in the turbulent wake of a cylinder[C].Proc.R.Soc.London Ser.A,1947,190:551-561
    [5]Townsend A A.The structure of turbulent shear flow[M].Cambridge Univ.Press,1956.
    [6]Grant H L.The large eddied of turbulent motion[J].J.Fluid Mech.,1958,4:149-190.
    [7]Kline S J,Reynolds W C,Schraub F A,Rundstadler P W.The structure of turbulent boundary layer[J].J.Fluid Mech.,1967,30:741-773.
    [8]Crow S C,Champagne.Orderly structure in jet turbulence[J].J.Fluid Mech.,1971,48:567.
    [9]Brown G L,Roshko A.On density effects and large structure in turbulent mixing layers[J].J.Fluid Mech.,1974,64:775-816.
    [10]林建忠.湍流的拟序结构[M].北京:机械工业出版社,1995.
    [11]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988.
    [12]Boussinesq J.Theoris de I'e coulement tourbillant,Mem Acad Sci,1877,23(46).
    [13]Kolmogorov A N.Equations of turbulent motion of an incompressible fluid I Akad Nauk,SSSR Ser Phys,1942,6(1/2):56-58.
    [14]Prandti L.Uber ein neues Formelsystem fur die ausgebiidete Turbulentz,Nachr.Akad der Wissenschaft in Gpttingen,Gotingen:Van den Loeck und Ruprecht,1945:6-9.
    [15]Harlow F H.Transport of anisotropic or low- intensity turbulence[R].Los Alamos Sci.Laboratory,University of Cali.LA-3947,1968.
    [16]Launder B E.Spalding D B.The numerical computation of turbulent flows[J].Computational Methods and Applied Mechanics,1974,3:269-289.
    [17]Bradshaw P.Understanding and prediction of turbulent flow[J].Int.J.Heat and Fluid Flow,1997,18:45-54.
    [18]Leschziner M A,Rodi W.Computation of strongly swirling axisymmetrie free jets[J].AIAA Journal,1984,22(12):1742- ! 749.
    [19]Rodi W.Influence of buoyancy and rotation on equations for the turbulent length scale[C].In:2nd Int.Symp.on Turbulent shear flows,Imperial College,London.1979,10:37-42.
    [20]Launder B E,Priddin C H,Sharma B !.The calculation of turbulent boundary layers on spinning and curved surfaces[J].J.Fluids Engineering,1979,99:363-374.
    [21]Speziale C G.On nonlinear k-I and k-ε models of turbulence[J].J.Fluid Mech.,1987,178: 450-475.
    [22]Wilcox.Multiscale model for turbulent flows[J].AIAA Journal,1988,26:1311-1320.
    [23]Yakhot V,Orszag S A.Renormalization group analysis of turbulence[J].J.Sei.Compt.,1988,1:3-51.
    [24]Jones W P,Launder B E.The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence[J].Int.J.Heat Mass Transfer,1973,16:1119-1130.
    [25]Hanjalic K,Launder B E.A Reynolds stress model of turbulence and its application to thin shear flows[J].J.Fluid Mech.,1972,52(4):609.
    [26]Launder B E,Reece G J,Rodi W.Progress in the development of a Reynolds-stress turbulence closure[J].J.Fluid Mech.,1975,68:537.
    [27]Chou P Y.On velocity correction and the solution of the equation of turbulent fluctuation.Quart.J.Appl.Math,1945,3:38-54.
    [28]Rodi W.A new algebraic relation for calculating Reynolds stresses[J].ZAMM,1976,56:T219.
    [29]Demuren A O,Rodi W.Calculation of turbulence-driven secondary motion in non-circular duct [J].J.Fluid Mechanics,1984,140:189-222.
    [30]Bergles G,Gosman A D,Launder B E.The turbulent jet in a cross stream at low injection rates:a three-dimensional numerical treatment[J].Numerieal Heat Transfer,1978,1:2 ! 7-242.
    [31]Nikjooy M,Mongia H C.A second-order modeling study of confined swirling flow[J].Int.J.Heat Fluid Flow,1991,12(1):12-19.
    [32]Ladyzhenskaya O A.粘性不可压缩流体动力学的数学问题[M].张开明译,上海:上海科学技术出版社.1961.
    [33]Lorenz E N.Deterministic non-periodic flow[J].J.Atmospheric Sciences,1963,20:130-140.
    [34]Orszag S A.Patterson G S.Numerical simulation of three-dimensional homogeneous isotropic turbulence[J].Phys.Rev.Lett.,1972,28:76-79.
    [35]Rogallo R S.Numerical experiments in homogeneous turbulence[R].NASA,TM-81315,1981.
    [36]Kim J,Moin P,Moser R D.Turbulence statistics in fully-developed channel flow at low Reynolds number[J].J.Fluid Mech.,1987,177:133-166.
    [37]Moser R D,Moin P.The effects of curvature in wall-boundary turbulent flows[J].J.Fluid Mech.,1987,175:479-510.
    [38]Spalart P R.Numerical study of sink-flow boundary layers[J].J.Fluid Mech.,1986,172:307-28.
    [39]Spalart P R.Direct numerical simulation of a turbulent boundary layer up to Re=1410[J].J.Fluid Mech.,1988,187:61-98.
    [40]Le H,Moin P,Kim J.Direct numerical simulation of turbulent flow over a backward-facing step [J].J.Fluid Mech.,1997,330:349-374.
    [41]Na Y,Moin P.Direct numerical simulation of a separated turbulent boundary layer[J].J.Fluid Mech.,1998,374:379-405.
    [42]Blaisdell G A,Mansour N N,Reynolds W C.Compressibility effects on the growth and structure of homogeneous turbulent[J].J.Fluid Mech.,1993,256:443-485.
    [43]Coleman G N,Kim J,Moser R D.A numerical study of turbulent supersonic isothermal-wall channel flow[J].J.Fluid Mech.,1995,305:159-183
    [44]Vreman A W,Sandham N D,Luo K H.Compressible mixing layer growth rate and turbulence characteristics[J].J.Fluid Mech.,1996,320:235-258.
    [45]Mahesh K,Lele S K,Moin P.The influence of entropy fluctuations on the interaction of turbulence with a shock wave[J].J.Fluid Mech.,1997,334:353-379.
    [46]Lele S K,Moin P.Interaction of isotropic turbulence with shock waves:effect of shock strength [J].J.Fluid Mech.,1997,340:225-247.
    [47]Lele S K.Computational aeroacoustics:a review[J].A IAA Paper,1997,97-0018
    [48]Godeferd F S,Loilini L.Direct numerical simulations of turbulence with confinement and rotation[J].J.Fluid Mech.,1999,393:257-308
    [49]Kollmann W,Ooi A S H,Chong M S,Sofia J.Direct numerical simulations of vortex breakdown in swirling jets[J].Journal of Turbulence,2001,2,005.
    [50]Metcalfe R W,Orszag S A.Secondary instability of a temporally growing mixing layer[J].J.Fluid Mech.,1987,184:207-244.
    [51]Robinson S K.Coherent motions in the turbulent boundary layer[J].Annu.Rev.Fluid Mech.,1991,23:601-639.
    [52]Kravcbenko A G,Choi H,Moin P.On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers[J].Phys.Fluids A,1993,5:3307.
    [53]Fox D G,Lilly D K.Numerical simulation of turbulent flows[J].Rev.Geophys.Space.Phys.,1972,10:51-72.
    [54]是勋刚.湍流直接数值模拟的进展与前景[J].水动力学研究与进展,1992,7(1):103-109.
    [55]Leseur M,Metais O.New trends in large-eddy simulation of turbulence[J].Annu.Rev.Fluid Mech.,1996,28:45-82.
    [56]Smagorinsky J.General circulation experiments with the primitive equation[J].Mon.Weather Rev.,1963,91(3):99-164.
    [57]DeardoffJ W.A numerical study of three-dimensional turbulence channel flow at/arge Reynolds number[J].J.Fluid Mech.,1970,41:380-453.
    [58]Germano M,Piomelli U,Moin P,Cabot W H.A dynamic subgrid-seale eddy viscosity model[J].Phys.Fluids A,1991,3:1760.
    [59]Moin P,Squires K,Cabot W,Lee S.A dynamic subgrid-scale model for compressible turbulence and scalar transport [J]. Phys. Fluids A, 1991, 3(11): 2746-2757.
    [60] Chollet J P, Lesieur M. Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closure [J]. J. Atmos. Sci., 1981, 38:2747-2757.
    [61] MéTais O, Lesieur M. Statistical predictability of decaying turbulence [J]. J. Atmos. Sci., 1986, 43: 857-870.
    [62] Thomas T G, Wiliams J J R. Simulation of Skewed turbulent flow past a surface mounted cube [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 81: 347-360.
    [63] Conway S, Caraeni D, Fuchs L. Large eddy simulation of the flow through the blades of a swirl generator [J]. Int. J. Heat and Mass Transfer, 2000,21:664-673.
    [64] Boris D, Bergeles G. 2D LES of vortex shedding from a square cylinder [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999,80: 31-46.
    
    [65] Moin P. Progress in large eddy simulation of turbulent flows [J]. AIAA Paper, 1997-0749.
    [66] Leonard A. Vortex method for flow simulation [J]. J. Comput. Phys., 1980,37: 289-335.
    [67] Perlman M. On the accuracy of vortex methods [J]. J. Comput. Phys., 1985, 59(2): 200-223
    [68] Ploumhans P, Winckelmans G. S. Vortex Methods for High-Resolution Simulations of Viscous Flow Past Bluff Bodies of General Geometry [J]. J. Comput. Phys., 2000, 165: 354-406.
    [69] Marshall J S, Grant J R. A Lagrangian vortex method for viscous axisymmetric fluid flows, with and without swirl [J]. J. Comput. Phys., 1997, 138: 302.
    [70] Akbari M H, Price S J. Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method [J]. Journal of Fluids and Structures, 2003,17(6): 855-874.
    [71] Frish U, Hasslacher B, Pomeau Y. Lattice-gas automata for Navier-Stokes equation [J]. Phys. Rev. Lett., 1986, 56: 1505-1508.
    [72] McNamara G., Zanetti G. Use of the Boltzmann equation to simulate Lattice-Gas automata [J]. Phys. Rev. Lett., 1988,61: 23-32.
    [73] Amati G, Succi S, Benzi R. Turbulent method by means of the discrete ordinate method for the Boltzmann equation. J channel flow simulation using a coarse-grained extension of the lattice Boltzmann method. Fluid Dynamics Res., 1997, 19:289-302.
    [74] Cao N, Chen S, Jin S, Martinez D. Physical symmetry and lattice symmetry in lattice Boltzmann method [J]. Phys. Rev. E., 1997, 55: 21-24.
    [75] Hou S, Zou Q, Chen S, Doolen G, Cogley A C. Simulation of cavity flow by the lattice Boltzmann method [J]. J. Comp. Phys., 1995, 118:329-347.
    [76] Martinez D O, Matthaeus W H, Chen S, et al. Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics [J]. Phys. Fluids, 1994, 6: 1285-1298,
    [77] Somers J A. Direct simulation of fluid flow with cellular automata and the lattice-BoItzmann equation[J].Applied Sci.Res.,1993,51:127-133.
    [78]Bekri S,Adler P M.Dispersion in multiphase flow through porous media[J].Int.J.Muitiphase flow,2002,28:665-697.
    [79]山冈望.化学史传[M].上海:商务印书馆,1995.
    [80]Launder B E,Spalding D B.Mathematical models of turbulence[M].London & New York,Academic Press,1972.
    [81]Harlow F H,Nakayama P T.Turbulence transport equations[J].Physics of fluids,1967,10(11):2323-2332.
    [82]岑可法,樊建人.工程气固多相流动的理论与计算[M].杭州:浙江大学出版社,1990.
    [83]Pope S B.Computations of turbulent combustion:progress and challenges[C].In:23~(rd)Symposium on Combustion,1990:591-612.
    [84]Dopazo C.Recent developments in PDF methods[C].In:Libby P A,Williams F A,ed.Turbulent Reacting Flows Academic Press,1993:375-474.
    [85]Anand M S,Pope S B.Calculations of premixed turbulent flames by PDF methods[J].Combustion and Flame,1987,67:127-142.
    [86]Pope S B,Cheng W K.Statistical calculations of spherical turbulent flames[C].In:21~(st)Symposium on Combustion,1986:1473-1481.
    [87]Pope S B,Cheng W K.The stochastic flamelet model of turbulent premixed combustion[C].In:22~(nd)Symposium on Combustion,1988:781-789.
    [88]Chen J Y,Kollmann W.Chemical models for PDF modeling of hydrogen-air non-premixed turbulent flames[J].Combustion and Flame,1990,79:75-99.
    [89]Pope S B.New developments in PDF modeling of non-reactive and reactive turbulent flows[C].In:Proceedings of the Second International Symposium on Turbulent,Heat and Mass Transfer,Delft,Netherlands,June,1997:35-45.
    [90]Swaminathan N,Bilger R W.Assessment of combustion sub-models for turbulent non-premixed hydrocarbon flames[J].Combustion and Flame,1998,116(4):519-545.
    [91]Swaminathan N,Dally B B.Cross stream dependence of conditional average in elliptic region of flows behind a bluff-body[J].Physics of Fluids,1998,10(9):2424-2426.
    [92]Klimenko A Y,Bilger R W.Conditional moment closure for turbulent combustion[J].Progress in Energy and Combustion Science,1999.
    [93]Klimenko A Y.Multi-component diffusion of various admixtures in turbulent flow[J].Fluid Dynamics,1990,25:327-343.
    [94]Bilger R W.Conditional moment closure for turbulent reacting flow[J].Phys.Fluids,1993,5(2):436-473.
    [95]Kronenburg A,Bilger R W,Kent J H.Second-order conditional moment closure for turbulent jet diffusion flames[C].In:27~(th)Symposium on Combustion,1998.
    [96]Spalding D B.Mathematical models of turbulent flames:a review[J].Combustion Science and Technology,1976,13:3-25.
    [97]Lockwood F C,Naguib A S.The prediction of the fluctuation in the properties of free,round-jet,turbulent diffusion flame[J].Combustion and flame,1975,24:109-124.
    [98]Richardson J M,Howard H C,Smith R W.The relation between sampling-tube measurements and concentration fluctuations in a turbulent gas jet[C].In:4~(th)Symposium on Combustion,1952:814-817.
    [99]Jones W P,Whitelaw J H.Calculation methods for reacting turbulent flows:a review[J].Combustion and Flame,1982,48:1-26.
    [100]Chen Ching-Shun,Chang Keh-Chin,Chen Jyh-Yuan.Application of a robust β-PDF treatment to analysis of thermal NO forms formation in non-premixed hydrogen-air flame[J].Combustion and Flame,1994,98:375-390.
    [101]Peters N.Laminar diffusion flamelet models in non-premixed turbulent combustion[J].Progress in Energy and Combustion Science,1984,10:319-339.
    [102]Givi P.Model free simulations of turbulent reactive flows[J].Progress in Energy and Combustion Science,1989,15:1-107.
    [103]Bray K N C,Moss J B.A unified statistical model of the premixed turbulent flame[J].Acta Astronautica,1977,4:291-319.
    [104]Bray K N C,Libby P A,Moss J B.Unified modeling approach for premixed turbulent combustion-PartⅠ:general formulation[J].Combustion and Frame,1985,61:87-102.
    [105]Bray K N C,Libby P A.Passage times and flamelet crossing frequencies in premixed turbulent combustion[J].Combustion Science and Technology,1986,47:283-274.
    [106]Maly R R,Bray K N C,Chew T C.An integral time scale of evolution for non-stationary turbulent premixed flames[J].Combustion Science and Technology,1989,66:139-147.
    [107]Pratt D T.Mixing and chemical reaction in continuous combustion[J].Progress in Energy and Combustion Science,1976,1:73-86.
    [108]Liao C,Liu Z,Zheng X.NO_x prediction in 3-D diffusion flames by using implicit multi-grid methods[J].Combustion Science and Technology,1996,119:219-260.
    [109]Zhou L X.Theory and numerical modeling of turbulent gas-particle flow and combustion[M].Beijing:Science Press and CRC Press Inc.,1993
    [110]Khalil E E.On the prediction of reaction rates in turbulent premixed confined flames[J].AIAA Paper,80-0015,1980.
    [111]周力行.湍流燃烧的新二阶矩模型[J].工程热物理学报,1996,17(3):353-356.
    [112]Spalding D B.Mixing and chemical reaction in steady confined turbulent flames[C].13~(th) Symposium on Combustion,1971:649-657.
    [113]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991.
    [114]赵坚行,易勇.紊流燃烧模型数值模拟与实验研究[J].工程热物理学报,1994,15(1):99-103.
    [115]范维澄.平面管道内钝体后湍流预混火焰的数值分折[J].中国科技大学学报,1982,12:13-16.
    [116]Magnussen B F.On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion[C].16~(th)Symposium(Int.)on Combustion,1976:719-729.
    [117]Magnussen B F.On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow[C].19~(th)AIAA Aerospace Meeting,The American Institute of Aeronautics and Astronautics,New York,1981.
    [118]Magnussen B F.Modeling of pollutant formation in gas turbine combustors based on the eddy dissipation concept[C].18~(th)International Congress on Combustion Engines,Tianjin,China,1989.
    [119]Spalding D B.A general theory of turbulent combustion[C].AIAA Paper:77-141,AIAA 15~(th)Aerospace Meeting,Los Angeles,January,1977.
    [120]Spalding D B.The influence of laminar transport and chemical kinetics on the time-mean reaction rate in a turbulent flow[C].In:17~(th)Symposium(Int.)on Combustion,1978:431-440.
    [121]Ma SAC,Spalding D B.Application of ESCIMO to the turbulent hydrogen-air diffusion flame [C].19~(th)Symposium(Int.)on Combustion,1982.
    [122]Ma SAC,Nosier M A,Spalding D B.An application of the ESCIMO theory of turbulent combustion[C].AIAA Meeting,Pasadena,California,USA,1980.
    [123]王应时,范维澄,周力行,徐旭常.燃烧过程数值计算[M].科学出版社,1986.
    [124]Lockwood F C,Spalding D B.Prediction of a turbulent dust flow with significant radiation[C].Proc.Thermodynamics colloquium,1971.
    [125]Hottel H C,Sarofim A M.Radiative Transfer[M].McGraw-Hill Book Corp,1967.
    [126]范维澄,万跃鹏.流动及燃烧的模型计算[M].合肥:中国科学技术大学出版社,1992.
    [127]Howell J R.Application of Monte-Carlo to heat transfer problems[J].Adv Heat Transfer,1968.
    [128]Sreward F R,Canon P.The calculation of radiative heat flux in a cylindrical furnace using the Monte-Carlo method[J].Int.J.Heat Mass Transfer,1971,14(2).
    [129]Docherty P,Fairweather M.Prediction of radiative transfer from non-homogeneous combustion products using the discrete transfer method[J].Combustion and Flame,1988,71:79-81.
    [130]Cheng P.Two dimensional radiating gas flow by a moment method[J].AIAA Journal,1964.
    [131]Siegel R,Howell J R.Thermal radiation heat transfer[M].Hemisphere Publishing Corporation,Washington D.C.,1992.
    [132]Orszag S A.Spectral methods for problems in complex geometries[J].J.Comput.Phys.,1980,37:70-92.
    [133]Orszag S A.Numerical simulation of incompressible flows within simple boundaries:Accuracy [J].J.Fluid Mech.,1971,49:75.
    [134]Orszag S A.Numerical simulation of incompressible flows within simple boundaries:Galerkin representations[J].Studies in Appl.Math.,1971,50:395.
    [135]Spalart P R.Moser R D,Rogers M M.Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions[J].J.Comp.Phys.,1991,96:297-324.
    [136]杨曜根.流体力学有限元[M].哈尔滨:哈尔滨工程大学出版社,1995年.
    [137]chung T J.流体动力学的有限元分析[M].电力工业出版社,1980年.
    [138]曹祖德,王运洪.水动力泥沙数值模拟[M].天津:天津大学出版社,1989.
    [139]Leendertse J J.A water quality simulation model for well-mixed estuaries and coastal seas[J].Principle of Computation,The Rand Corporation RM-6230,1970,1.
    [140]Harlow F,Welch E.Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[J].Physics of Fluids,1965,8:2182-2189.
    [141]Rai M M,Moin P.Direct simulation of turbulent flow using finite-difference schemes[J].J.Comput.Phys.,1991,96:15-53.
    [142]Lele S K.Compact finite difference schemes with spectral-like resolution[J].J.Comput.Phys.,1992,103:16-42.
    [143]Fu D X,Ma Y W.A high order accurate difference scheme for complex flow fields[J].J.Comput.Phys.,1997,134:1-15.
    [144]Rudy D H,Strikwerda J C.A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations[J].J.Comput.Phys.,1980,36:55-70.
    [145]Poinsot T J,Lele S K.Boundary conditions for direct simulations of compressible viscous flows [J].J.Comput.Phys.,1992,101:104-129.
    [146]Patankar S V.Numerical Heat Transfer and Fluid Flow[M].New York:McGraw-Hill Book Co.,1980.
    [147]Versteeg H K,Malalasekera W.An introduction to computational fluid dynamics:the finite volume method.1995.
    [148]Jennings A,McKeown J J.Matrix computation[M].Chichester:John Wiley & Sons,1992:294.
    [149]Sebben S,Baliga B R.Some extensions of tri-diagonal and pentadiagonal matrix algorithm[J].Numer Heat Transfer,1995,28:323-357.
    [150]Ames W F.Numerical methods for partial differential equations[M].New York:Academic Press,1977.
    [151]Patankar S V,Spalding D B.A calculation procedure for heat,mass and momentum transfer in three-dimensional parabolic flows[J].Int.J Heat mass Transfer,1972,15:1787-1806.
    [152]Patankar S V.A calculation procedure for two-dimensional elliptic situations[J].Numer Heat Transfer,1981,4:409-425.
    [153]Spalding D B.A general purpose computer program for multi-dimensional one-and-two phase flow[J].Math Comput Simulation,1981,23:267-276.
    [154]Van Doormaal J P,Raithby G D.Enhancement of the SIMPLE method for predicting incompressible fluid flow[J].Numer Heat Transfer,1984,7:147-163.
    [155]Raithby G D,Schneider G E.Elliptic systems:finite difference methods Ⅱ[M].In:W J Minkowyez,E M Sparrow,R H Pletcher,G E Schneider,eds.Handbook of numerical heat transfer.New York:John Wiley & Sons,1988:214-289.
    [156]Date A W.Numerical prediction of natural convection heat transfer in horizontal annulus[J].Int.J Heat Transfer,1986,29:1457-1464.
    [157]Thompson J F,Warsi Z U A,Nastin C W.Numerical grid generation foundations and applications[M].North Holland,1985.
    [158]陶文铨.计算传热学的近代进展[M].科学出版社,2000.
    [159]Smith R E,Edkssion L E.Algebraic grid generation[J].J.Computer Methods in Applied Mechanics and Engineering,1987,64:285-300.
    [160]Thompson J F.A general three-dimensional elliptic grid generation system on a composite block structure[J].J.Computer Methods in Applied Mechanics and Engineering,1987,64:377-411.
    [161]Akamura S.Marching grid generation using parabolic partial differential equations[M].In:Thompson J F ed.Numerical grid generation.New York:Elsevier,1982:79-105.
    [162]George P L,Seveno E.the advancing-front mesh generation method revisited[J].International Journal for Numerical Methods in Engineering,1994,37(21):3605-3619.
    [163]Lohner R,Parikh P.Generation of three-dimensional unstructured grids by the Advancing-Front Method[J].International Journal for Numerical Methods in Fluids,1988,8:1135-1149.
    [164]Weatherill N P.A method for generating irregular computational grids in multiply connected planner domains[J].International Journal of numerical Methods in Fluids,1988,8(2):180-197.
    [165]David F W.Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation[J].Engineering with Computers,1981,5(99):161-175.
    [166]Yerry M A,Shephard M S.A modified quadtree approach to finite element meshes generation[J].IEEE Computer Graphics & Applications,1983,3(1):39-46.
    [167]Schneiders R,Schindler R,Weilder F.Octree-based generation of hexahedral element meshes [C].In:Proceedings of the 5~(th)International Meshing Roundtable,Pittsburgh,1996:205-216.
    [168]Shyy W,Ouyang H,Blosch E,et al.Computational techniques for complex transport phenomena [M].Cambridge:Cambridge University Press,1998:122-162.
    [1]王婉娣,冯炼.公路隧道火灾三维数值模拟[J].制冷与空调,2004(1):20-23.
    [2]Jurij Modic.Fire simulation in road tunnels[J].Tunnelling and Underground Space Technology,2003,18(5):525-530.
    [3]Woodburn P J,Britter R E.CFD simulation of a tunnel fire-Part Ⅱ[J].Fire Safety Journal,1996,26(1):63-90.
    [4]王泽宇,冯炼,张发勇.竖井烟囱效应作用下的隧道火灾通风数值模拟[J].地下空间与工程学报,1995,2(3):485-487,503.
    [5]Gao P Z,Liu S L,Chow W K,Fong N K.Large eddy simulation for studying tunnel smoke ventilation[J].Tunnelling and Underground Space Technology,2004,19(6):577-586.
    [6]王泽宇.带竖井特长公路隧道的火灾通风数值模拟[D].成都:西南交通大学,2006.
    [7]黄志义,吴珂.考虑燃烧作用的隧道火灾三维数学模型[J].自然灾害学报,2007,In press.
    [8]Rodi W,Spalding D B.A two parameter model of turbulence and its application to free jet[J].Warme-Stoffubertrag,1970,3:85-95.
    [9]Rodi W.Prediction methods for turbulent flows[M].New York:McGraw-Hill Book Co,1980.
    [10]Launder B E.Spalding D B.The numerical computation of turbulent flow[J].Computational Methods and Applied Mechanics,1974,3:269-289.
    [11]Woodbum P J,Bdtter R E.CFD simulation of a tunnel fire-Part Ⅰ[J].Fire Safety Journal,1996,26(1):35-62.
    [12]Spalding D B.Combustion and mass transfer[M].[S.l.]:Pergaman Press,1979.
    [13]Spalding D B.Concentration fluctuations in a round turbulent free jet[J].Chemical Engineering Science,1971,26:95-107.
    [14]Spalding D B.Mathematical models of turbulent flames:a review[J].Combustion Science and Technology,1976,13:3-25.
    [15]Lockwood F C,Naguib A S.The prediction of the fluctuation in the properties of free,round-jet,turbulent diffusion flame[J].Combustion and flame,1975,24:109-124.
    [16]Lundgren T S.Phys.Fluids,1969,12:485.
    [17]Dapa C,O'Brien E E.Combustion Science and technology,1976,13:99.
    [18]Pope S B.18~(th)Symposium(Int.)on Combustion.The Combustion Institute,1981:1001-1010.
    [19]Spalding D B.The influence of laminar transport and chemical kinetics on the time-mean reaction rate in a turbulent flow[C].In:17~(th)Symposium(Int.)on Combustion,1978:431-440.
    [20]Ma SAC,Spalding D B.Application of ESCIMO to the turbulent hydrogen-air diffusion flame [C].19~(th)Symposium(Int.)on Combustion,1982.
    [21]Ma SAC,Nosier M A,Spalding D B.An application of the ESCIMO theory of turbulent combustion[C].AIAA Meeting,Pasadena,California,USA,1980.
    [22]Richardson J M,Howard H C,Smith R W.The relation between sampling-tube measurements and concentration fluctuations in a turbulent gas jet[C].In:4~(th)Symposium on Combustion,1952:814-817.
    [23]Siegel R,Howell J R.Thermal radiation heat transfer[M].Washington D.C.:Hemisphere Publishing Corporation,1992.
    [24]Rouse H,Macagno E O.On the ues of models in fluid research[C].Proceeding of the 1~(st)International Conference on Hemorheology,1968.
    [25]黄志义等.长大隧道隧道沥青混凝土路面的防灾安全性能研究[R].杭州:浙江大学,2007.
    [26]徐薇,谢水波,李仕友,吕继成.公路隧道通风临界风速模拟研究[J].科技咨询导报,2007,(6):130-132.
    [27]杨昀,曹丽英.地铁火灾场景设计探讨[J].自然灾害学报,2006,15(4):121-125.
    [28]Lonnermark A,lngason H.Gas temperature in heavy goods vehicle fires in tunnels[J].Fire Safety Journal,2005,40(6):506-527.
    [29]Lonnermark A,Persson B,Ingason H.Pulsations during large-scale fire tests in the Runehamar tunnel[J].Fire Safety Journal,2006,41(5):377-389.
    [30]Moin P,Kim J.Numerical investigation of turbulent channel flow[J].J.Fluid Mech.,1982,118:341-377.
    [31]Sohankar A,Norberg C,Davidson L.Simulation of unsteady three-dimensional flow around a square cylinder at moderate Reynolds number[J].Phys.Fluids,1999,11(2):99-165.
    [32]Sohankar A,Norberg C,Davidson L.Low Reynolds number flow around a square cylinder at incidence:Study of blockage,onset of vortex shedding and outlet boundary condition[J].Int.J.Numer.Methods Fluids.1998,26:39.
    [33]McCaffrey B J.Purely buoyant diffusion flames:some experimental results.National Bureau of Standards,1979,NBSIR:79-1910.
    [34]Baum H R,McCaffrey B J.Fire induced flow field-theory and experiment[C].In Fire Safety Science,Proc.2~(nd)Int.Syrup.Hemisphere,New York,1989:129-148.
    [35]Gao P Z,Liu S L,Chow W K,Fong N K.Large eddy simulation for studying tunnel smoke ventilation[J].Tunnelling and Underground Space Technology,2004,19(6):577-586.
    [36]Mc Grattan K B,Baum H R,Rehm R G.Numerical simulation of smoke plumes from large oil fires[J].Atmospheric Environment,1996,30(24):4125-4136.
    [37]Mc Grattan K B,Baum H lt,Rehm R G.Large eddy simulation of smoke movement[J].Fire Safety Journal,1998,30(2):161-178.
    [38]邱旭东,高甫生,王砚玲.建筑火灾烟气运动数值模拟方法的回顾与评价[J].自然灾害学报,2005,14(1):132-138.
    [1]Leitner A.The fire catastrophe in the Tauern tunnel:experience and conclusions for the Austrian guidelines[J].Tunnelling and Underground Space Technology,2001,16(3):217-223.
    [2]虞利强.城市公路隧道防火设计的探讨[J].消防技术与产品信息,2002,(12):39-43.
    [3]倪照鹏,陈海云.国内外隧道防火技术现状及发展趋势[J].交通世界,2003,(2-3):28-31.
    [4]刘立政,毛军.地铁区间隧道火灾排烟通风模式分析[J].工程建设与设计,2005(11):5-7.
    [5]Schlussbericht der Versuche im Ofenegg Tunnel yon 17.5-31.5,1965.Kommission fur Sicherheitsmassnahmen in Strassentunneln,1965.
    [6]Pucher K.Fire tests in the Zwenberg tunnel(Austria)[C].In:lvarson E,editor.International conference on fires in tunnels.Boras,Sweden:SP Swedish National Testing and Research Institute,1994.
    [7]Knikane Y,Kawabata N,Ishikawa T,et al.Thermal fumes and smoke induced by bus fire accident in large cross sectional tunnel[C].Proc.5~(th)JSME-KSME Fluids Engineering Conference,Nov.17-21,2002,Nagoya,Japan.
    [8]Lonnermark A,Ingason H.Gas temperature in heavy goods vehicle fires in tunnels[J].Fire Safety Journal,2005,40(6):506-527.
    [9]胡隆华,霍然,王浩波,杨瑞新.公路隧道内火灾烟气温度及层化高度分布特征试验[J].中国公路学报,2006,19(6):79-82.
    [10]Hu L H,Huo R,Peng w,et al.On the maximum smoke temperature under the ceiling in tunnel fires[J].Tunnelling and Underground Space Technology,2006,21(6):650-655.
    [11]Yasushi Oka,Atkinson G T.Control of smoke flow in tunnel fires[J].Fire Safety Journal,1995,25(4):305-322.
    [12]Hitoshi Kurioka,Yasushi Oka,et al.Fire properties in near field of square fire source with longitudinal ventilation in tunnels[J].Fire Safety Journal,2003,38(4):319-340.
    [13]闫治国,杨其新,朱合华.火灾时隧道内烟流流动状态试验研究[J].土木工程学报,2006,39(4):94-98.
    [14]Yan Z G,Yang Q X,Zhu H H.Large-scaled fire testing for long-sized road tunnel[J].Tunnelling and Underground Space Technology,2006,21(3-4):282.
    [15]王永东,夏永旭.公路隧道纵向通风数值模拟[J].中国公路学报,2002,15(1):82-85.
    [16]夏永旭,赵峰.特长公路隧道纵向-半横向混合通风方式研究[J].中国公路学报,2005,18(3):80-83.
    [17]Gaillot S,Revell A,Blay D.纵向通风隧道内火灾烟气流动的控制[J].消防理论研究,2006,25(3):315-323.
    [18]Vardy A.On semi-transverse ventilation systems[C].7~(th)ISAVVT.Brighton UK,BHRA,1991.
    [19]Maevski I,Barsky A.The improvement of the semi-transverse ventilation system of road tunnels [C].7~(th)ISAVVT.Brighton UK,BHRA,1991.
    [20]Kawamura R.Study on semi-transverse ventilation of automobile tunnels[C].1~(st)ISAVVT.Canterbury,BHRA,1973.
    [21]郭小红.雪峰山公路隧道——完善解决通风问题的公路隧道[J].中国公路建设市场,2004,(11):48-49.
    [22]Carrel R O,Beard A N,Jowitt P W.The influence ofturmel geometry and ventilation on the heat release rate of fire[J].Fire Technology,2004,40(1):5-26.
    [23]罗衍俭.长大公路隧道通风系统的选择[J].公路,1998,(8):38-41.
    [24]张祉道.公路隧道的火灾事故通风[J].现代隧道技术,2003,40(1):34-43.
    [25]阎治国.长大公路隧道火灾研究[D].成都:西南交通大学,2002.
    [26]Kunsch J P.Critical velocity and range of a fire-gas plume in a ventilated tunnel[J].Atmospheric Environment,1999,33(1):13-24.
    [27]霍然,胡源,李元洲.建筑火灾安全工程导论[M].合肥:中国科学技术大学出版社,1999.
    [28]Karlsson B,Quintiere J G.Enclosure Fire Dynamics[M].CRC Press,1999.
    [29]李开源,霍然,刘洋.隧道火灾纵向通风下羽流触顶区温度变化研究[J].安全与环境学报,2006,6(3):38-41.
    [30]王婉娣,冯炼.公路隧道火灾三维数值模拟[J].制冷与空调,2004,(1):20-23.
    [31]Tritton D J.Physical fluid dynamics[M].2nd ed.New York:Oxford University Press,1988:150-152.
    [32]洪丽娟,刘传聚.隧道火灾研究现状综述[J].地下空间与工程学报,2005,1(1):149-155.
    [33]Wu Y,Bakar M Z A.Control of smoke flow in tunnel fires using longitudinal ventilation systems -a study of critical velocity[J].Fire Safety Journal,2000,35(4):363-390.
    [34]Grant G B,Jagger S F,Lea C J.Fires in tunnels[J].Phil.Trans.R.Soe.Theme Issue on Fire Dynamics,1998,356:2873-2906.
    [35]Li S M Jojo,Chow W K.Numerical studies on performance evaluation of tunnel ventilation safety systems[J].Tunnelling and Underground Space Technology,2003,18(5):435-452.
    [36]胡隆华.隧道火灾烟气蔓延的热物理特性研究[D].合肥:中国科学技术大学,2006.
    [37]Lee C K,Chaiken R F,Singer J M.Interaction between duct fires and ventilation flow:an experimental study[J].Combust Science and Technology,1979a,20:59-72.
    [38]Atkinson G T,Wu Y.Smoke control in sloping tunnels[J].Fire Safety Journal,1996,27(4):335-341.
    [39]Kunsch J P.Simple model for control of fire gases in a ventilated tunnel[J].Fire Safety Journal,2002,37(1):67-81.
    [40]易家训.分层流[M].北京:科学出版社,1983.
    [41]Miles J W.On the stability of heterogeneous shear flow[J].J.Fluid Mech.,1961,10:496-508.
    [42]Howard L N.Note on a paper of John.W.Miles[J].J.Fluid Mech.,1961,10:509-512.
    [43]Van De Leur P H E,Kleijn C R,Hoogendoorn C J.Numerical study of the stratified smoke flow in a corridor:full-scale calculations[J].Fire Safety Journal,1989,14(4):287-302.
    [44]易亮,霍然,李元洲,彭磊.单侧不对称补气对大空间火灾机械排烟的影响[J].中国科学技术大学学报,2003,33(5):579-585.
    [45]叶瑞标,潘关新,陈小军,贡祥蕾.地下建筑公共娱乐场所火灾烟气防治[J].消防技术与产品信息,1996,(2):21-26.
    [46]涂耘.厦门东通道海底隧道通风系统及防灾技术研究[J].公路隧道,2006,(1):39-43.
    [47]卢平,廖光煊,范维澄.火灾对地铁隧道排烟风机能力的影响研究[J].铁道学报,2005,27(2):90-95
    [48]M Law.Fire and smoke models:Their use on the design of some large buildings[J].ASHRAE Transactions,1990,96(1):963-971.
    [49]Chow W.K.On the "cabin" fire safety design concept in the new Hong Kong airport terminal building[J].Journal of Fire Sciences,1997,15(4):404-423.
    [50]Vauquelin O,Megret O.Smoke extraction experiments in case of fire in a tunnel[J].Fire Safety Journal,2002,37(5):525-533.
    [51]谢宁,冯炼,王婉娣等.隧道火灾三维数值模拟的瞬态分析[J].中国铁道科学,2005,26(6):89-92.
    [52]闫治国,杨其新,朱合华.秦岭特长公路隧道火灾试验研究[J].土木工程学报,2005,38(11):96-101.
    [53]徐琳,张旭.集中排烟水平隧道排风诱导风速CFD分析[J].地下空间与工程学报,2007,3(3):555-558.
    [54]苏立勇.对公路隧道通风设计中几个问题的探讨[J].西部探矿工程,1995,(11):140-142.
    [1]杨良,郭忠印,丁志勇等.公路隧道路面工作环境调研与分析[J].交通科技,2004,(1):27-30.
    [2]扬群,郭忠印,蔺习雄.隧道路面阻燃多孔沥青混凝土性能研究[J].同济大学学报(自然科学版),2005,33(3):316-320.
    [3]赵治国,王维宇.浅谈高等级沥青混凝土路面抗滑性能对交通安全的影响[J].林业科技情报,2006,38(3):83-84.
    [4]罗小锋,余见英,吴少鹏,丛培良.阻燃沥青的制备与性能研究[J].石油沥青,2005,19(4):11-13
    [5]Jolitz R J,Kirk D R.Flame Retardant Asphalt Composition.U.S.Patent,4 804 696.1989.
    [6]Yasuo I.Covered Highway Structure With Means for Easy and Quick Access to Tunnel Interior.U.S.Patent,752 563.2004.
    [7]吕显智,恭开森.公路隧道消防安全隐患及对策[J].云南消防,2001,(2):39-40.
    [8]沈金安.改性沥青与SMA路面[M].北京:人民交通出版社,1999.
    [9]张卫军,葛折圣.阻燃沥青在隧道路面工程中的应用[J].市政技术,2007,25(1):76-78.
    [10]陈辉强,陈仕周.沥青阻燃改性技术研究[J].公路交通技术.2003,(2):19-20,39.
    [11]李祖伟,陈辉强,牟建波,陈仕周.沥青阻燃改性技术研究及其阻燃机理[J].长沙交通学院学报.2002,18(4):44-47
    [12]郭进存,廖克俭,戴跃玲.阻燃沥青的研制[J].辽宁石油化工大学学报,2005,25(2):5-8.
    [13]刘冬,卢久富,袁德明,廖克俭.隧道用阻燃沥青德研制[J].石化技术与应用,2006,24(6):459-461.
    [14]武德珍,毛立新,谭新华.阻燃剂共混体系的力学性能与阻燃性能的研究[J].北京化工大学学报,1999,26(2):27-29.
    [15]La Rosa A D,Recca A,Carter A T,et al.An oxygen index evaluation of flame ability on modified epoxy/polyester systerm[J].Polymer,1999,40:4093-4098.
    [16]Tirthankar Jana,Bidhan C R,Sukumar Maiti.Biodegradable films:modification of the biodegradable film for fire retardancy[J].Polymer degradation and stability,2000,69:79-82.
    [17]付永然,林元奎.阻燃沥青的研究进展与建议[J].石油沥青,2006,20(6):69-71.
    [18]余剑英等.阻燃沥青的制备与性能研究[J].石油沥青,2005,19(4):11-13.
    [19]龚景松,傅维镳.沥青燃料的热解特性研究[J].冶金能源,2002,21(4):36-38,58.
    [20]傅维标,张燕屏等.煤粒热解通用模型[J].中国科学,1988,12:1283.
    [21]龚景松,傅维镳.单滴沥青燃料燃烧特性的初步研究[J].冶金能源,2000,19(3):43-45,51.
    [22]张登良.沥青与沥青混合料[M].北京:人民交通出版社,1993.
    [23]王志奇,李保庆.利用热重法研究减压渣油、延迟焦及其混合物的燃烧反应特性[J].燃料化学学报,2000,28(3):193-197.
    [24]许敏,邹滢,翁惠新.乙烯装置裂解炉管焦炭燃烧特性的研究[J].燃料化学学报,2001,29(5):474-476.
    [25]龚景松,傅维镳.沥青热解残炭的燃烧特性[J].燃料化学学报,Vol-31,No.2:181-184,2003.
    [26]FU Wei-biao,ZHANG Bai-li,ZHENG Shuang-ming.A relationship between the kinetic parameters of char combustion and the coal's properties[J].Combust Flame,1997,109(4):587-598.
    [27]Burnham L,Dollimorel D,Alexander K S.Kinetic study of the drug acetazolamide using thermogravimetry[J].Thermochimica Acta,2002,392-393:127-133.
    [28]罗鸣,张建民,高梅杉等.程序升温热重法研究活性焦气化反应特性[J].洁净煤技术,2006,12(1):42-46.
    [29]Kasprzycka G T,Jarosz J M,Litwinienko G.Specific heats and kinetic parameters of thermo-oxidative decomposition of peanut oil[J].Thermochimica Acta,1995,250:197-205.
    [30]Gangavatib P B,Safia M J,Singha A,et al.Pyrolysis and thermal oxidation kinetics of sugar mill press mud[J].Thermochimica Acta,2005,428:63-70.
    [31]Campisi L R,Bourbigot S,Le Bras M.Thermal behavior of cotton-modacrylic fibre blends:kinetic study using the invariant kinetic parameters method[J].Thermochimica Acta,1996,275:37-49.
    [32]Rodante F,Marrosu G,Catalani G.Thermal analysis and kinetic study of decomposition processes of some pesticides[J].Journal of Thermal analysis,1992,38:2669-2682.
    [33]Vlaev L T,Markovska I G,Lyubchev LA.Non-isothermal kinetics of pyrolysis of rice husk[J].Thermochimica Acta,2003,406.:1-7.
    [34]Garcia A N,Marcilla A,Font R.Thermogravimetric kinetic study of the pyrolysis of municipal solid waste[J].Thermochimica Acta,1995,254:277-304.
    [35]Min-Hao Yuan,Chi-Min Shu,Kossoy A A.Kinetics and hazards of thermal decomposition of methyl ethyl ketone peroxide by DSC[J].Thermoehimiea Acta,2005,430:67-71.
    [36]闵凡飞,张明旭.热分析在煤燃烧和热解及气化动力学研究中的应用[J].煤炭转化,2004,27(1):9-12.
    [37]徐朝芬.烟煤与无烟煤混燃特性的热分析试验研究[J].华北电力大学学报,2005,32(6):29-32.
    [38]何启林,王德明.煤德氧化何热解反应的动力学研究[J]。北京科技大学学报,2006,28(1):1-5
    [39]Wu Yuan-wen,Dollimore D.Kinetic studies of thermal degradation of natural cellulosic materials [J].Thermochimica Acta,1998,324:49-57.
    [40]Litwinienko G,Guttman T K.A DSC study on thermoxidation kinetics of mustard oil[J].ThermochimicaActa,1998,319:185-191.
    [41]Slaghuis J H,Raijmakers N.The use of thermogravimetry in establishing the Fischer tar of a series of South African coal types[J].Fuel,2004,83:533-536.
    [42]Areniilas A,Rubiera F,Pevida C,Pis J J.Thermogravimetric-mass spectrometric study on the evolution of nitrogen compounds during coal devolatilisation[J].Journal of Analytical and Applied Pyrolysis,2002,65,57-70.
    [43]王永征,路春美,刘汉涛等.山东动力用煤掺混燃烧特性的热分析[J].山东大学学报(工学版),2006,36(2):26-31,57.
    [44]闵凡飞,张明旭,朱惠臣.煤工业分析和燃烧特性的TG-DTG-DTA研究[J].煤炭科学技术,2004,32(11):51-54.
    [45]Pyne M T,Strathdee G,Hansen L D.Water vapor sorption by potash fertilizers studied by a kinetic method[J].Thermoehimica Acta,1996,273:277-285.
    [46]Janotka I,Mojumdar S C.Thermal analysis at the evaluation of concrete damage by high temperatures[J].Journal of Thermal Analysis and Calorimetry,2005,81:197-203.
    [47]Coats A W,Redfern J P.Analyst,1963,88(1052):906-924.
    [48]Belichmeier J A,Cammenga H K,Schneider P B,et al.Thermochimica Acta,1998,310:147-151.
    [49]Brown M E,Brown R E.Thermochimica Acta,2000,357-358:133-140.
    [50]Vyazovkin S.Int.Reviews in Physical chemistry,2000,19(1):45-60.
    [51]Yyazovkin S,Wight C A.Int.Reviews in Physical chemistry,1998,17(3):407-433.
    [52]Flynn J H.Thermochimica Acta,1997,300:83-92.
    [53]Vyazovkin S.Thermochimica Acta,1992,211(1):181-187.
    [54]Sestak J,Berggren G..Thermochimica Acta,1971,3:1.
    [55]Brown M E,et al.Reaction in the Solid-state[M].Elsevier:Amsterdam,1980.
    [56]Sestak J.Thermophysical properties of Solids[M].Elsevier:Amsterdam,1984.
    [57]Galwey A K,Brown B E.Thermal Decomposition of Ionic Solid[M].Elsevier:Amsterdam,1999.
    [58]Tanaka H.Thermochimica Acta,1995,267(1):29-44.
    [59]Koga N,et al.Netsu Sokutei,1993,20(4):210.
    [60]Sestak J,Malek J.Solid State Ionics,1993,63-63:245.
    [61]Koga N,Tanaka H.J.Thermal Anal.,1994,41(2-3):455-469.
    [62]Ortega A.ThermochimicaActa,1996,284(2):379-387.
    [63]Sestak J.J.Therm.Anal.,1990,36(6):1997-2007.
    [64]Gorbatchev V M.J.Therm.Anal.,1980,18:194.
    [65]Popescu C.Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions:a variant on the Ozawa-Flynn-Wall method[J].Thermochim ACTA,1996,285(2):309-323.
    [66]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社.2001:127-131.
    [67]钟海庆.红外光谱法入门[M].北京:化学工业出版社,1984.
    [68]克利夫特 K J.工业过程分析手册[M].北京:石油工业出版社,1981.
    [69]邵如根,何大玉,柳德娴.沥青的难燃化[J].阻燃材料与技术,1991,(1):57-59.
    [70]王永强.阻燃材料及应用技术[M].北京:化学工业出版社,2003.
    [71]史翎,段雪.我国阻燃剂的研究与发展[J].中国科技成果,2003,(8):43-46.
    [1]Guian S K.Fire and Life Safety Provisions for a Long Vehicular Tunnel[J].Tunnelling and Underground Space Technology,2004,19(4-5):316.
    [2]Schrefler B A,Brunello P,Gawin D,Majorana C E,Pesavento F.Concrete at High Temperature with Application to Tunnel Fire[J].Computational Mechanics,2002,29(1):43-51.
    [3]Leitner A.The fire catastrophe in the Tauern tunnel:experience and conclusions for the Austrian guidelines[J].Tunneling and Underground Space Technology.2001,16(3):217-223.
    [4]马天文.盘陀岭第二公路隧道烧损衬砌的整治技术[J].铁路标准设计,2002,(8):36-37.
    [5]Kirkland C J.The fire in the Channel tunnel[J].Tunnelling and Underground Space Technology,2002,17(2):129-132.
    [6]Khoury G A.Effect of fire on concrete and concrete Structures[J].Progress of Structure Engineering Material,2000,(2):429-447.
    [7]Mashimo H.State of the road tunnel safety technology in Japan[J].Tunnelling and Underground Space Technology,2002,17(2):145-152.
    [8]卿光全 译.沉埋隧道内的车辆火灾对策[J].世界隧道,2001,(2):1-9.
    [9]Anon.Passive protection against fire[J].Tunnels and Tunnelling International,2002,34(11):40-42.
    [10]Khoury G A.Passive fire protection in tunnels[J].Concrete,2003,37(2):31-36.
    [11]Olst D V,Bosch R V D.Behaviour of electrical cables during fire in tunnels[C].Proceedings of ITA World Tunnel Congress 2003.Amsterdam,2003:991-992.
    [12]Both C,Haar P W,Wolsink G M.Evaluation of passive fire protection measures for concrete tunnel linings[R].TNO Report,2003.
    [13]Richter E.Propagation and development of temperature from tests with railway and road vehicles -comparison between test data and temperature time curves of regulations[C].Proceedings of the international conference on fire in tunnels.Boris,1994.
    [14]M Law.Fire and smoke models:Their use on the design of some large buildings[J].ASHRAE Transactions,1990,96(1):963-971.
    [15]Chow W.K.On the "cabin" fire safety design concept in the new Hong Kong airport terminal building[J].Journal of Fire Sciences,1997,15(4):404-423.
    [16]Scott T S,Ronald G B,Anthony E F.Fire endurance of high-strength concrete slabs[J].ACI Materials Journal,1988,85(2):102-108.
    [17]Carlos C,Durrani A J.Effect of transient high temperature on high-strength concrete[J].ACI Materials Journal,1990,87(1):47-53.
    [18]彭立敏,刘小兵,杜思村.不同燃烧温度量级对隧道衬砌强度损伤程度的试验研究[J].铁道 学报,1997,17(5):87-94.
    [19]蔡莉萍,徐浩良.浅谈城市隧道结构防火[J].消防科学与技术,2004,23(1):58-59.
    [20]程小伟.隧道防火涂料的制备及表征[D].成都:四川大学,2005.
    [21]赵伟,牛少军,解觉洲.公路隧道的消防安全对策[J].消防科学与技术,2005,24:43-46.
    [22]阎治国,朱合华,彭芳乐.隧道火灾场景设计及衬砌结构防火研究[J].地下空间与工程学报,2006,2(8):1320-1325.
    [23]阎治国.隧道衬砌结构火灾高温力学行为及耐火方法研究[D].上海:同济大学,2006.
    [24]Andrew K.Improving concrete performance in fires[J].Concrete,2004,38(8):40-41.
    [25]Hertz K D.Limits of spalling of fire-exposed concrete[J].Fire Safety,2003,38(2):103-116.
    [26]Both C,Wolsink G M,Breunese A J.Spalling of concrete tunnel linings in fire[C].Proceedings of ITA World Tunnel Congress,Amsterdam,2003:227-231.
    [27]郭鹏,张洪源,董毓利,谢启国.高温加热循环下混凝土强度变化的机理[J].青岛建筑工程学院学报,2000,21(4):80-86.
    [28]Chiang C H,Tsai C L.Time-temperature analysis of bond strength of a rebar after fire exposure [J].Cement and Concrete Research,2003,33:1651-1654.
    [29]周静贤 译.铁路和公路隧洞的防火:火灾时混凝土性状-研究,试验及解决方法[J].水电技术信息,1996,(1):50-57.
    [30]过镇海,李卫.混凝土耐热力学性能的试验研究总结[R].北京:清华大学,1991:9-20.
    [31]Savov K.Lackner R.Mang H.A.Stability assessment of shallow tunnels subjected to fire load[J].Fire Safety Journal.2005,40(8):745-763.
    [32]徐飞.植筋在房屋加固、改造中的应用实例研究[J].工业安全与环保.2003,29(4):20-21.
    [33]赵景丽,李河清.国内提高环氧树脂耐热性的研究进展[J].工程塑料应用.2005,33(8):68-70.
    [34]Fuchs W,Eligehausen R,Breen J E.Concrete capacity design(CCD)approach for fastening to concrete[J].ACI Structural Journal,American Concrete Institute.1995,92(1).
    [35]张建荣,黄河军,吴进等.植筋胶拉伸抗剪本构关系的研究[J].结构工程师.2006,22(3):72-75.
    [36]陈维君,张恩天.室温固化环氧胶粘剂的研究现状与发展趋势[J].化学与粘合.2000,22(3):127-129,133.
    [37]刘守贵,甘国华,王家贵.环氧树脂胺系固化剂改性综述[J].热固性树脂.1996,(4):46-52.
    [38]Wise C W,Cook W D,Goodwin A A.CTBN rubber phase precipitaltation on model epoxy resins [J].Polymer.2000,41:4625-4633
    [39]刘沛然,李树材.室温固化耐热环氧胶粘剂的制备与性能研究[J].中国胶粘剂.2007,16(3):31-33.
    [40]Dchi M,Takashima H.Bonding properties of epoxy resin containing mesogenic group[J]. Polymer.2001,42:2379-2385.
    [41]余英丰,刘小云,李善君.航空航天用环氧耐高温胶粘剂研究[J].粘接.2005,26(5):4-7.
    [42]Chiang C L,Ma C C.Synthesis,characterization and thermal properties of novel epoxy containing silicon and phosphorus nano-composites by sol-gel method[J].European Polymer Journal.2002,38:19-22.
    [43]Wu C S,Hsu K Y.Maleimide-epoxy resins:preparation,thermal properties,and flame retardance [J].Polymer.2003,44(4):565-566.
    [44]白宗武,张秋红,汪晓东.耐高温改性环氧树脂粘接剂的制备及改性机理研究[J].功能高分子学报.1996,Vol.9(3):437-444.
    [45]黄帆,刘轶群,张晓红.弹性纳米粒子改性环氧树脂的研究[J].中国科学B辑.2004,34(5):432-440.
    [46]时旭东,过镇海.钢筋混凝土结构的温度场[J].工程力学,1996,13(1):35-43.
    [47]时旭东,过镇海.不同混凝土保护层厚度钢筋混凝土梁的耐火性能[J].工业建筑,1996,26(9):12-14,19.
    [48]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.
    [49]陆洲导,朱伯龙.一种预测钢筋混凝土梁耐火时间的方法[J].建筑结构学报,1997,18(1):41-48.
    [50]路春森,屈立军,薛武平.建筑结构耐火设计[M].北京:中国建材工业出版社,1995.
    [51]Lie T T.A procedure to calculate fire resistance of structural members[C].Proceeding of International Seminar of Three Decades of Structural Fire Safety.1983:139-153.
    [52]段文玺.建筑结构的火灾分析和处理(二)-火灾温度场计算之一[J].工业建筑,1985,15(8):51-54.
    [53]杨泽安.火灾温度作用下钢筋混凝土构件温度场计算方法及应用[J].消防技术,与产品信息,1999,(3):12-19.
    [54]章熙民,任泽霈,梅飞鸣.传热学[M].北京:中国建筑工业出版社,2001.
    [55]麦继婷,陈春光.秦岭特长隧道内温度预测[J].西南交通大学学报,1998,33(2):153-157.
    [56]马建新,李永林,谢红强,何川.高寒地区隧道保温隔热层设防厚度的研究[J].铁道建筑技术,2003,(6):20-22.
    [57]付祥钊,高志明.地下水电站主变压器室排烟计算[J].暖通空调,1994,4:19-22.
    [58]Lonnermark A,Ingason H.Gas temperature in heavy goods vehicle fires in tunnels[J].Fire Safety Journal,2005,40(6):506-527.
    [59]王廷伯.应对交通隧道火灾预防措施[J].现代隧道技术,2004增刊,192-193.
    [60]中华人民共和国铁道部.铁路工程设计防火规范(TB10063-99)[S].北京:中国铁道出版社,2000.
    [61]NFPA.NFPA 502 Standard for Road Tunnels,Bridges,and Other Limited Access Highways[S]. National Fire Protection Association,1998.
    [62]Haack A.Fire protection in traffic tunnels:general aspects and results of the EUREKA project[J].Tunnelling and Underground Space Technology.1998,13(4):377-381.
    [63]HU Shu-guang,ZHANG Hou-jin,Wang Jiao-lan.Research on alkaline filler flame-retarded asphalt pavement[J].Journal of Wuhan University of Technology-Mater.Sci.Ed.2006,21(3):146-148.
    [64]杨群,郭忠印,蔺习雄.隧道路面阻燃多孔沥青混凝土性能研究[J].同济大学学报,2005,Vol.33(3):316-320.
    [65]黄志义.长大隧道沥青混凝土路面的防灾安全性能研究[R].杭州:浙江大学,浙江省交通投资集团有限公司等,2007.2.
    [66]黄志义,吴珂.长大隧道沥青混凝土路面的防火安全性能[J].浙江大学学报(工学版),2007,41(8):1427-1428.
    [67]闫治国,杨其新,朱合华.秦岭特长公路隧道火灾试验研究[J].土木工程学报,2005,38(11):96-101
    [68]Markatos NC,Malin MR,Cox G.Mathematical modeling of buoyancy-induced smoke flow in enclosure[J].J.Heat Mass Transfer,1982,25(1):63-75.
    [69]涂耘.厦门东通道海底隧道通风系统及防灾技术研究[J].公路隧道,2006,(1):39-43.
    [70]Harmathy T.Fire safety design and concrete[M].Harlow:Longman Group UK Limited;1993.
    [71]Bazant Z.Kaplan M.Concrete at high temperatures-material properties and mathematical models [M].Harlow:Longman Group UK Limited;1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700