高温炉管数字化超声检测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温炉管是应用于石油化工等领域的重要设备或构件,按用途主要分为转化炉用、裂解炉用、输送管道和集合管道用。高温炉管的服役条件非常恶劣,常需要承受高温(800℃左右)、高压(1MPa以上)、应力、腐蚀介质等的作用。其中,在高温低应力的作用下,蠕变裂纹极易在炉管近内壁处产生,并逐渐向管外壁扩展最终导致炉管失效。因此,对高温炉管管壁内蠕变裂纹的检测就显得非常重要。超声检测法凭借其优越性被广泛地应用于工业实际生产中高温炉管的检测。但是,目前的超声检测结果局限于用纸记录,检测结果不能经进一步处理以得到更多与材料相关的信息,不能满足无损检测技术向数字化、自动化方向发展的要求,需要进一步的研究和完善。
     针对以上超声检测的不足,本文对高温炉管的数字化超声检测系统进行了研究。硬件部分主要改进的地方有:1、超声波的发射和接收采用超声发射卡和采集卡来实现,摒除了超声探伤仪、记录仪等设备,实现了检测结果数字化的目的。2、设计了一款探头架,该探头架适用于管外径在110mm≤D≤152mm范围内任意管径和壁厚的炉管。所设计的探头架适用于一发一收式超声检测,操作者可以根据显示屏上透射信号的幅度特征来判断蠕变裂纹的情况。利用所设计的探头架可对距离管内壁径向长度超过2.5mm的蠕变裂纹进行检测。此外,该探头架还解决了薄壁管超声检测面积太小的问题。3、超声检测系统中测距器的引入,实现了对超声检测位置信号的记录。软件部分主要是以VC6.0为平台编写了数字化超声检测程序和上位机用户操作显示界面,实现了检测结果实时显示和数字化存储的目的。
     为了验证该数字化超声检测系统的可行性,对HP型转化炉炉管进行了双通道超声检测验证性实验。实验结果表明,按照设计要求制作的探头架可以顺利实现透射信号的接收和显示,透射波波形清晰完整;超声检测系统显示的“幅值—距离”记录曲线稳定可靠。初步实现了超声检测数字化的目的。由于时间关系,对炉管管壁内径向分布蠕变裂纹的检测实验及炉管的蠕胀测量实验等都没有进行,其实验验证有待进一步的研究。
As vital equipment or component in petrochemical industry, high temperature tube has been widely used as reforming furnace tube, cracking furnace tube, pipeline tube and aggregation pipe. Suffering from critical service environment, like high temperature (800oC), high pressure (above IMPa), stress, aggressive medium and so on, creep cracks can easily generate nearby the inner wall and grow toward the outer wall, which will finally leads to the fail of tube. It is of vital importance to testing the creep cracks in tube wall. Ultrasonic nondestructive testing (UNDT) has been used in industrial practical production frequently. Nevertheless, UNDT is restricted to paper records at present, which means results can't reveal more information of materials tested.
     The design of digital ultrasonic testing system of high temperature tube is proceed in this paper. The improved aspects of hardware:1、 The transmission and reception of ultrasonic signal are achieved by ultrasonic launch and acquisition card, which abandons the flaw detector and recorder, meanwhile fulfill the digitization of ultrasonic testing results.2、 A probe frame is designed for tubes with outer diameter D between110mm≤D≤152mm. The probe frame is designed for ultrasonic pitch and catch technique. The designed probe frame is used to detect creep cracks with length more than2.5mm, and successfully solves the shortage of testing area.3、 The optical rangefinder is introduced into the testing system to record the position signal. The designed aspects of software:the ultrasonic testing program and upper computer operation interface is wrote based on VC6.0to realizes the digitization of ultrasonic testing.
     Double channel ultrasonic experimental research is taken on HP ethylene cracking tube to verify the feasibility of the system. Experimental results show that the transmitting signals can be successfully received by the receiving probe and waveforms are clear and complete;"amplitude-distance" recording curves are stable and reliable. The digitization of ultrasonic testing is preliminarily accomplished. Due to time reasons, experimental research on creep cracks and creep expansion are left for future study.
引文
[1]黄世民.高温炉用奥氏体耐热钢的新成份设计探讨[J].上海铁道学院学报.1990,11(1):19-26.
    [2]戴起勋.金属材料学[M].北京:化学工业出版社,2005.
    [3]蔡镇,李玉民.裂解炉用高温合金炉管[J].乙烯工业.2004(1):40-43.
    [5]裴耀先.国外近年高温炉管发展综述[J].乙烯工业.1991(Z1):337-342.
    [4]夏代永.高温合金炉管的选用[J].石油化工设备技术.1989,10(5):36-40.
    [6]车俊铁,李玉珠.HK40和HP40高温炉管材料性能对比分析[J].工业炉.2004,26(4):4-6.
    [7]张厚登.一段转化炉炉管的材料选择和国产化问题[J].石油化工设备技术.1988,3:12-16.
    [8]王根启,F. PONS,康树春.转化炉管的新材料及其制造中的质量提高[J].大氮肥.2000,23(1):70-72.
    [9]Schwind M, Kallqvist J, Nillson J. σ-phase precipitation in stabilized austenitic stainless steels[J]. Acta Mater,2000,48(10):2473-2481.
    [10]Jack D H. The orientation relationships of interstitial phases in iron[J]. Mater Sci Eng,1974,13(1):19-27.
    [11]Erneman J, Schwind M, Lin P. Precipitation reactions caused by nitrogen uptake during service at high temperatures of niobium stabilized austenitic stainless steel [J]. Acta Mater,2004,52(14):4337-4350.
    [12]温建萍,康志强,顾大群.HP40奥氏体耐热钢炉管长期高温时效的安全性分析[J].南京航空航天大学学报.2005,37(5):616-620.
    [13]王勇,孔令新.转化炉炉管检查方法的探讨[A].第三届全国管道技术学术会议压力管道技术研究进展精选集[C].北京:机械工业出版社,2006.
    [14]沈复中,丁毅,董泰斌,等.高温炉管断裂的两种机制[J].材料工程.2003(10):46-48.
    [15]马言,何颜红,薛雷,等.当前电站锅炉高温管道的蠕变检测[J].锅炉制造.2001(2):4-5.
    [16]李俊林,杨兴博,汪东明,等.锅炉用钢及其焊接[M].哈尔滨:黑龙江科技出版社,1998.
    [17]王江源,张树萍,王杜娟.裂解炉炉管开裂失效分析[J].石油化工设备技术.2007,28(3):54-57.
    [18]丁晓非,谢忠东,林艾光,等.裂解炉管焊缝开裂原因分析[J].失效分析与预防.2008,3(2):48-52.
    [19]武俊伟,李明,李晓刚,等.HK40钢制氢转化炉炉管失效分析[J].理化检验-物理分册.2003,39(6):318-320.
    [20]王印培,柳曾典.HK40高温炉管长期服役后的性能[J].华东理工大学学报.2001,27(3):323-328.
    [21]丁毅,沈复中,吕勇.不同服役期的HK40炉管显微组织分析[J].机械工程材料.2002,26(7):7-9.
    [22]陈军,李喜孟,林莉.HK40炉管的蠕变损伤及检测方法[J].无损探伤.1999,(4):43-44.
    [23]郝丽丽,侯淑娥.HP40裂解炉管组织及裂纹产生原因分析[J].失效分析与预防.2007,2(4):45-49.
    [24]王富岗,王焕庭.石油化工高温装置材料及其损伤[M].辽宁:大连理工大学出版社,1991.
    [25]王来,等.HK40转化炉管螺旋状裂纹分析[J].大连理工大学学报.1986年01期.
    [26]刘崇明.天津乙烯装置2#炉管破裂原因分析及对策[J].乙烯工业.1998,10(3):18-21.
    [27]孙国豪.乙烯裂解炉管性能及失效分析研究[D].辽宁:大连理工大学,2001.
    [28]谭家隆,李军辉,于永泗,等.乙烯裂解反应管的渗碳损伤及其原因[A].石油化工装置失效分析论文选集[C].大连:大连理工大学出版社,1990.
    [29]王富岗,谭毅.长期运行乙烯裂解炉管损伤原因分析[A].石油化工装置失效分析论文选集[C].大连:大连理工大学出版社,1990.
    [30]季新生,戴煜.乙烯装置裂解炉管高温断裂失效分析[J].乙烯工业.1999,11(2):34-37.
    [31]王汉军,薄锦航,张国良,等.制氢转化炉炉管失效分析[J].石油化工腐蚀与防护.2004,21(3):23-26.
    [32]胡赓祥,徐乾豹,唐建毅,等.高温碳化环境对镍-铬-铁基耐蚀耐热合金的组织和性能的作用[J].材料开发与应用.1996,11(5):11-16.
    [33]俞茂德,宋诚一.铈对奥氏体耐热钢高温氧化腐蚀性能的影响[J].中国稀土学报.1986,4(3):39-44.
    [34]金杰,高增梁,张康达,等.制氢转化炉管应力腐蚀失效分析[J].压力容器.1998,(2):66-73.
    [35]陈军,李喜孟,林莉.HK40转化炉管超声检测中的影响因素[J].无损探伤.2000,(3):42-43.
    [36]耿荣生.新千年的无损检测技术——从罗马会议看无损检测技术的发展方向[J].无损检测.2001,23(1):2-5.
    [37]郑中兴.微电脑技术在无损检测仪器设备的智能化和自动化及其结果评价中的应用[J].无损探伤.2001,25(6):1-5.
    [38]陈秉忠,朱立春.关于数字化探伤仪的讨论[A].无损检测专业委员会第七届年会论文集[C].陕西省:陕西省机械工程学会,2000.
    [39]蒋危平.超声波探伤仪及数字化超声波探伤仪[J].无损检测.1997,19(2):55-59.
    [40]芮华.全数字超声波自动探伤设备的研制[D].南京:南京航空航天大学,2002.
    [41]胡超.日本冶金工业中的自动化无损检测技术[A].第三届中国复合材料学会性能测试专业委员会[C].北京:北京航空工艺研究所,2000.
    [42]张旭辉,马宏伟.超声无损检测技术的现状和发展趋势[J].机械制造,2002,40(7):24-26.
    [43]蒋危平,田建新,王子诚.数字化超声波探伤仪十五年技术进展[J].无损检测.2004,26(3):145-148.
    [44]吴乘波.环形电子束焊缝超声自动检测系统研制[D].杭州:浙江大学,2005.
    [45]Szilard, J. Ultrasonic testing:non-conventional testing techniques[M]. London:John Wiley& Sons,1982.
    [46]刘凯.正确选择和使用纵波双晶探头[J].无损探伤,2005,29(2):29-32.
    [47]张正.超声波探伤信号的数字处理技术的研究[D].天津:天津大学,2007.
    [48]北京市技术交流站.超声波探伤原理及其应用[M].北京:机械工业出版社,1982.
    [49]P. Mattila, M. Luukkala, FET pulse generator for ultrasonic pulse echo applications[J]. ULTRASONICS,1981:235-237.
    [50]吴朝晖.超声无损检测的应用与探讨[J].宁波工程学院学报,2005,17(4):22-23.
    [51]张旭辉.管道对接焊缝自动超声检测系统的研究[D].西安:西安科技大学,2002.
    [52]张红涛.超声检测数控水浸扫描系统与缺陷分类研究[D].西安:西安科技大学,2009.
    [53]Fitting DW, Adler L. Ultrasonic Spectral Analysis for Nondestructive Evaluation[M]. New York:Plenum Press,1981.
    [54]Chen JZ, Shi YW, Shi S. Noise Analysis of Digital Ultrasonic Nondestructive Evaluation System [J]. International Journal of Pressure Vessels and Piping,1999,76(9):619-630.
    [55]Saniie J, Wang T, Bilgutay NM. Statistical Evaluation of Backscattered Ultrasonic Grain Signals [J]. Journal of Acoustics Society of American,1988,84(4):400-408.
    [56]Li X, Bilgutay NM, Murthy R. Spectral Histogram Using the Minimization Algorithm Theory and Applications to Flaw Detection[J]. IEEE Transactions on Ultrasonics, Ferroelectric and Frequency Control,1992,39 (2):279-284.
    [57]Chen JZ, Shi YW, Shi S. Noise Analysis of Digital Ultrasonic System and the Elimination of Pulse Noise [J]. International Journal of Pressure Vessels and Piping,1998,75(12): 887-890.
    [58]Chen, Y. J. Detection of weak bonding in friction welds by ultrasound [J]. Ultrasonics, 1998,36 (5):141-146.
    [59]Fitting D W, Adler L. Ultrasonic spectral analysis for nondestructive evaluation[M]. New York:Plenum Press,1981.
    [60]Lee D A, Crane R L. A practical method for viewing resolution-noise-bandwidth trade-offs in NDE data reduction[C]. Review of progress in quantitative nondestructive evaluation. New York:Plenum,1984:907-915.
    [61]Bilgutay, NM, Saniie, J, Furgason, E S, et al. Flaw-to-grain echo enhancement,1979[C]. England:IPC Science and Technology Press,1979:152-157.
    [62]Amir I, Bilgutay N M, Newhouse V L. Analysis and comparison of some frequency compounding algorithms for the reduction of ultrasonic clutter [J]. IEEE Trans. UFFC, 1986,33(4):402-411.
    [63]Saniie Jafar, Tao Wang, Xiaomei Jin. Performance evaluation of frequency diverse Bayesian ultrasonic flaw dection[J]. J. Acoust. Sco. Am,1992,91(4):34-41.
    [64]Chen C H, Tzu-Hung Cheng. Time-frequency analysis in ultrasonic NDT[C].14th World Conference on NDT, India:1996.
    [65]曹立文,刘琳,翟晓东,等SolidWorks2011实例教程,北京:机械工业出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700