基质辅助激光解析电离飞行时间质谱分析细菌方法的规范化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     基质辅助激光解析电离飞行时间质谱(matrix-assisted laser desorption ionization time of flight mass spectrometry,MALDI TOF MS)是最近发展起来的一种分析化学技术,能提供各具特征的细菌质量指纹图谱,实现检测和鉴定的目的。本研究通过对MALDI TOF MS分析细菌的方法进行系统的研究,阐明影响MALDI分析的重要实验因素的作用,并建立MALDI TOF MS分析细菌的标准实验方法,从而实现不同菌种和同一种内不同菌株的鉴定,为建立炭疽芽孢杆菌和鼠疫耶尔森氏菌的质量图谱数据库奠定基础,从而能够快速准确地检测和鉴定我国不同来源的炭疽芽孢杆菌和鼠疫耶尔森氏菌,在生物恐怖或传染性疾病爆发时,作为微生物法医学的一种重要技术,快速、准确地鉴定细菌,并追踪其来源。
     方法:
     根据研究目的,选择以下菌株进行试验:革兰氏阳性菌包括含芽孢的炭疽芽胞杆菌和不含芽孢的金黄色葡萄球菌;革兰氏阴性菌包括鼠疫耶尔森氏菌,大肠杆菌和胞外多糖含量高的洋葱伯克霍尔德氏菌;同一属内不同种的细菌(伯克霍尔德氏菌属的7个种);同一种内的不同菌株(11株大肠杆菌和20株金黄色葡萄球菌)。在试验中,以炭疽芽孢杆菌和鼠疫耶尔森氏菌为目标菌,试验了不同的样品处理方法包括直接分析,溶剂处理(单一溶剂处理和组合溶剂处理)和酶处理(溶菌酶和胰蛋白酶),及不同的实验因素包括基质、基质溶剂、处理用溶剂、菌体的量、点样方法,通过MALDI TOF MS分析提供的细菌各种成分的质量信息,应用Microbelynx软件进行比较分析,确定标准的实验方法和影响分析结果的重要实验因素。
     在标准实验方法建立后,对方法的重复性包括同一样品的重复性和批间样品的重复性,及方法的可行性包括安全性和稳定性进行了系统的试验,从而能够应用于分析我国不同来源的炭疽芽胞杆菌和鼠疫耶尔森氏菌。
     结果:
     本研究通过MALDI TOF MS分析细菌方法的研究,确定了影响分析结果的重要实验因素,建立了一种用于MALDI TOF MS的标准实验方法,具体的实验
    
    一一一一一一遭燮鲤鲤巡壑通竺型暨
    方案为4 mg的细菌依次采用。,1%TFA和氯仿:甲醇(l:l)处理后,沉淀的菌体
    重悬于0.1%TFA中,改进的干滴法点样。基质溶液为CHCA溶于乙睛:甲醇:水
    (l:l:l),含有0.1%甲酸和0.01 M 18一冠一6。
     应用此方法,在m/z 2 000一10 000范围内根据各自的特征图谱可区分不同特性
    的细菌(不同属内的细菌)包括炭疽芽抱杆菌、金黄色葡萄球菌、鼠疫耶尔森氏
    菌、大肠杆菌和洋葱伯克霍尔德氏菌;伯克霍尔德氏菌属的不同菌种;大肠杆菌
    和金黄色葡萄球菌的不同菌株。
     同一样品和批间样品的重复性较好;安全性试验中,鼠疫耶尔森氏菌采用建
    立的标准实验方法处理后即能完全灭活,但未能实现炭疽芽抱杆菌的灭活目的;
    稳定性实验中,样品处理后放置7天,能获得与样品处理后立即分析较为一致的
    结果。
    结论:
     本研究完成了MALDI TOF MS分析细菌方法的标准化,阐明了影响MALDI
    分析细菌的重要实验因素,建立了一种 MALDI分析细菌的标准实验方法,分析
    过程简单、快速、重复性较好。该方法能提供较多的质量信息区分不同特性的细
    菌(不同属内的细菌)包括含芽抱或不含芽抱的革兰氏阳性菌,及革兰氏阴性菌
    包括胞外多糖含量高和低的细菌,同一属内的不同菌种和同一种内的不同菌株。
    安全性试验和稳定性试验显示,采用标准方法处理细菌后,鼠疫耶尔森氏菌即能
    完全灭活,在7天内分析能得到稳定的实验结果;炭疽芽抱杆菌的灭活还需进一
    步试验,在7天内分析也能得到稳定的实验结果。基于建立的标准实验方法能够
    建立强大的质谱数据库系统,通过快速搜索实现细菌的鉴定,在微生物法医学的
    追踪鉴定中发挥重要作用。
Aim:
    MALDI TOF MS is a recently developed analytical chemistry technology. For bacterial detecting and identifying, MALDI TOF MS could provide mass spectra containing different biomarkers specific to various bacteria. The aim of this research is to find out the experimental parameters that affecting the results when analyzing bacteria by MALDI TOF MS, and to set up a general sample preparation protocol for establishing mass database of Bacillus anthracis and Yersinia pestis. It will play an important role in rapid identification of bacteria, and tracing its origin in the scenario of bioterrorism and outbreak of infectious disease for microbial forensic analysis. Methods:
    As for the universalness of sample preparation protocol for bacterial analysis by MALDI TOF MS, bacteria being investigated included: gram-positive bacteria including B. anthracis (spore-producing) and Staphylococcus aureus (non-spore-producing ); gram-negative bacteria such as Y. pestis, Escherichia coli and Burkholderia cepacia with high extracellular polysaccharides; different species of the same genus ( 7 species of Burkholderia ); different strains of the same species ( 20 strains of S. aureus and 11 strains of E. coli). The present study mainly employs three different sample preparation protocols: bacteria directly analyzing, treating bacteria by solvent (single treatment and combined treatment) and enzyme (lysozyme and trypsin). At the same time, different experimental factors such as matrix, solvent of matrix, solvent system used, bacterial quantities, sample application method, were investigated. The role of different factors in sample preparation was illuminated. By using the above protocols, spect
    ra acquired by MALDI TOF MS with mass information will be selected for evaluating the ability to differentiate bacteria of different origins.
    The reproducibility of the established protocol was evaluated by repeating analysis of same sample and different batches of culture. In addition, safety and
    
    
    stability of the protocol were tested in order to analyze different virulent strains of B.
    anthracis and Y. pestis deposited in other institutes outside Beijing.
    Results:
    In the present research, bacterial analysis was studied systematically through testing different sample preparation protocols and experimental factors by MALDI TOF MS. A universal sample preparation protocol for MALDI TOF MS was established. The protocol is listed as follows. Bacterial cells (4 mg) were washed by 0.1% TFA and chloroform: methanol (1:1) in turn and the pellet was applied to the plate using improved dried droplet method. Matrix CHCA was prepared in ACN: methanol: water (1:1:1) with 0.1 % formic acid and 0.01 M 18-crown-6.
    This protocol could be used to differentiate B. anthracis, S. aureus, E. coli, Y. pestis and B. cepacia; different species of Burkholderia and different strains of E. coli and 5. aureus according to the typical peak profiles in mass range from 2 000 to 10 000 Da, respectively.
    The reproducibility was proved perfect using this protocol. Y. pestis was inactivated entirely using established protocol, while B. anthracis was not killed even using additional methods. The results acquired from samples of B. anthracis and Y. pestis, which placed for 7 d after treatment using the established method, is well consistent with results obtained immediately after treatment. Conclusions:
    Protocols of bacterial analysis by MALDI TOF MS were described systematically. A novel sample preparation protocol was developed for rapid and accurate analysis of bacteria by MALDI TOF MS. This protocol was simple, rapid and easy to perform with excellent reproducibility. It can product enough peaks to identify both gram-positive bacteria, including spore-producing bacteria (B. anthracis) and non-spore-producing bacteria (S. aureus), and gram-negative bacteria such as Y. pestis, E. coli and B. cepacia with high content of extracellular polysaccharides. This protocol was also applied to analyze different species of the same genus and different strains of the same species. Th
引文
[1] 刘锡光.现代诊断微生物学.人民卫生出版社 2002
    [2] R W, HJ F, HG S, P S. Simple and rapid detection of candida albicans DNA in serum by PCR for diagnosis of invasive candidiasis. J Clin Microbiol 2000; 164 (2): 3016-21.
    [3] K D, RJ S, AJ M. Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria. Microbiology 2000; 146 (pt 7): 1693-705.
    [4] Burtscher C, Wuertz S. Evaluation of the use of PCR and reverse transcriptase PCR for detection of pathogenic bacteria in biosolids from anaerobic digestors and aerobic composters. Appl Environ Microbiol 2003;69 (8): 4618-27.
    [5] Carroll NM, Jaeger EE, Choudhury S, et al. Detection of and discrimination between gram-positive and gram-negative bacteria in intraocular samples by using nested PCR. J Clin Microbiol 2000;38 (5): 1753-7.
    [6] Castellanos MI, Chauvet A, Deschamps A, et al. PCR methods for identification and specific detection of probiotic lactic acid bacteria. Curr Microbiol 1996;33 (2): 100-3.
    [7] 马立人,蒋中华.生物芯片.化学工业出版社 2000
    [8] Ivnitski D,Abdel-Hamid A,Ataanasov P, et al. biosensors for detection of pathogenetic bacterial.Biosen Bioelectron 1999,14: 599
    [9] 翟俊辉,杨瑞馥.生物芯片、生物传感器和生物信息学.生物技术通讯2002;13(3):209-13.
    [10] Elhanany E, Barak R, Fisher M, et al. Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2001; 15: 2110-6.
    [11] Goodacre R, Shann B, Gilbert RJ, et al. Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal Chem 2000;72: 119-27.
    [12] Beverly MB, Basile F, Voorhees KJ, et al. A rapid approach for the detection of dipicolinic acid in bacterial spores using pyrolysis/mass spectrometry. Rapid Commun Mass Spectrom 1996; 10: 455-8.
    [13] Inc M. Operating Manual of Sherlock Microbial Identification System. 1997. pp. 37-58.
    [14] Kaneda T. Iso-and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 1991 ;55: 288-302.
    [15] Welch DF. Application of cellular fatty acids analysis. Clin Microbiol Rev 1991; 4: 422-38.
    [16] Mania KS, Kaul RK, Rao KM. Gas chromatographic detection of anaerobic bacteria from environment. Indian J Exp Biol 1992;30 (9): 823-5.
    [17] 宋亚军.气相色谱方法在细菌学研究中的应用.预防医学微生物学及检验技术,人民出版社 2002;1104-1112.
    [18] Alugupalli S, Larsson L, Slosarek M, et al. Application of gas chromatography-mass
    
    spectrometry for rapid detection of Mycobacterium xenopi in drinking water. Appl Environ Microbiol 1992;58: 3538-41.
    [19] Murray S, Bliss P, Karim N, et al. Analysis of N(alpha)-methylhistamine by gas chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 2000; 739: 337-44.
    [20] Opiteck GJ, Ramirez SM, Jorgenson JW, et al. Comprehensive two-dimensional high-performance liquid chromatography for the isolation of overexpressed proteins and proteome mapping. Anal Biochem 1998; 258: 349-61.
    [21] Talbot HM, Watson DF, Murrell JC, et al. Analysis of intact baeteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A 2001; 921: 175-85.
    [22] Brondz I, Nordbo H, Scheie AA. Detection of microbial-derived fatty acids in carious dentin by gas chromatography and gas chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 1997; 700: 255-60.
    [23] Cho S, Goo YM, Kim KJ. Identification of actinomycins by high performance liquid chromatography and fast atom bombardment mass spectrometry. Arch Pharm Res 1994;17: 424-7.
    [24] Van Baar BL. Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry, FEMS Microbiol Rev. 2000,24(2): 193-219.
    [25] Walker JT, Sonesson A, Keevil CW, et al. Detection of Legionella pneumophila in biofilms containing a complex microbial consortium by gas chromatography-mass spectrometry analysis of genus-specific hydroxy fatty acids. FEMS Microbiol Lett 1993; 113: 139-44.
    [26] Lay JO, Jr. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 2001; 20: 172-94.
    [27] Osipov GA, Demina AM. Chromatographic mass spectrometry detection of microorganisms in anaerobic infectious processes. Vestn Ross Akad Med Nauk 1996; 52-9.
    [28] Marvin LF, Roberts MA, Fay LB. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin Chim Acta 2003;337: 11-21.
    [29] Murch RS. Microbial Forensics: Building a National Capacity to Investigate Bioterrorism. Biosecurity and bioterrorism: biodefence strategy, practice, and science 2003; 1 (2): 117-22.
    [30] Layne SP. Virtually assured detection and response: Utilizing science, technology and policy against bioterrorism. In: Knobler SL, Mahmoud AA.F, Pray LA, eds. Biological Threats and Terrorism. Washington, DC: National Academy Press 2002; 211-7.
    [31] Read TD, Peterson SN, Tourasse N, et al. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 2003; 423: 82-6.
    [32] CBS News. Year In Review: 2001. U.S. anxious after anthrax attack. 2001. www.cbsnews.com/2001/12/20/2001/main322000.shtml
    [33] Keim P. Microbial Forensics: A Scientific Assessment. Washington, DC: American Academy of
    
    Microbiology 2003.
    [34] Budowle B. Defining a new forensic discipline: microbial forensics. 2001. www.promega.com/geneticidproc/ussymp13proc/contents/budowle.pdf
    [35] Layne SP, Beugelsdijk TJ. High-Throughput Laboratories for Homeland and National Security. Biosecurity and bioterrorism: biodefence strategy, practice, and science 2003; 1(2): 123-30.
    [36] Budowle B, Schutzer SE, Einseln A, et al. Building Microbial Forensics as a Response to Bioterrorism. Science 2003; 301: 1852-3.
    [37] Layne SP, Beugelsdijk TJ, Patel CKN. Tackling grand challenges with powerful technologies. In: Layne SP, Beugelsdijk TJ, Patel CKN, eds. Firepower in the Lab: Automation in the Fight Against Infectious Diseases and Bioterrorism. Washington, DC: Joseph Henry Press 2001; 5-28.
    [38] Keim P, Price LB, Klevytska AM, et al. Multiple-locus, variable-number tandem repeat analysis reveals genetic relationship within Bacillus anthracis. J Bacteriol 2000; 182(10): 2928-36.
    [39] Read TM, Salzberg SL, Pop M, et al. Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 2002; 296: 2028-33.
    [40] Klevyska AM, Price LB, Schupp JM, et al. Identification and characterization of variable number tandem repeats in the Yersinia pestis genome. J Clin Microbiol 2001; 39(9): 3179-85.
    [41] Popovi T, Glass M. Laboratory Aspects of Bioterrorism-related Anthrax - from Identification to Molecular Subtyping to Microbial Forensics. Forensic sciences 2003;44(3): 336-41.
    [42] Busch U, Nitschko H. Methods for the differentiation of microorganisms. Journal of Chromatography B 1999; 722: 263-78.
    [43] Fox A. Carbohydrate profiling of bacteria by gas chromatography-mass spectrometry and their trace detection in complex matrices by gas chromatography-tandem mass spectrometry. J Chromatogr A 1999;843: 287-300.
    [44] Madonna AJ, Voorhees KJ, Taranenko NI, et al. Detection of cyclic lipopeptide biomarkers from Bacillus species using atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 2003;75: 1628-37.
    [45]. Demirev PA, Ramirez J, Fenselau C. Tandem mass spectrometry of intact proteins for characterization of biomarkers from Bacillus cereus T spores. Anal Chem 2001;73: 5725-31.
    [46] Pineda FJ, Antoine MD, Demirev PA, et al. Microorganism identification by matrix-assisted laser/desorption ionization mass spectrometry and model-derived ribosomal protein biomarkers. Anal Chem 2003;75: 3817-22.
    [47] Kreuzer-Martin HW. Forensic and ecological applications of stable isotope ratio analysis. http://www.w3c.org/TR/1999/REC-htm1401-19991224/loose.dtd
    [48] Kreuzer-Martin HW, Lott MJ, Dorigan J,et al. Microbe forensics: Oxygen and hydrogen stable isotope ratios in Bacillus subtilis cells and spores. PNAS 2003;100(3): 815-19.
    [49] Relman DA, Strauss E.Microbial genomes: blueprints for life. A report from American academy of microbiology. 1-24.
    
    
    [50] Van Belkum A, Struelens M, DE Visser A, et al. Role of Genomic Typing in Taxonomy, Evolutionary Genetics, and Microbial Epidemiology. Clinical microbiology reviews 2001; 14(3): 547-60.
    [51] Zhou JH. Microarrays for bacterial detection and microbial community analysis. Current Opinion in Microbiology 2003; 6: 288-94.
    [52] Godovac-Zimmermann J, Brown LR. Perspectives for mass spectrometry and functional proteomics. Mass Spectrometry Reviews 2001; 20: 1-57.
    [53] Jackson PE, Scholl PF, Groopman JD. Mass spectrometry for genotyping: an emerging tool for molecular medicine. Molecular medicine today 2000; 6: 271-6.
    [54] Fraser CM, Dando MR. Genomics and future of biological weapons: The need for preventive action by the biomedical community. Nature Genetics 2001; 29: 253-6.
    [55] Gilchrist M JR. The progress, priorities, and concerns of public health laboratories. In: Knobler SL, Mahmoud AAF, Pray LA, eds. Biological Threats and Terrorism. Washington, DC: National Academy Press 2002; 160-5.
    [56] Ross, M.M., Neihof, R.A. and Campana, J.E. Direct fatty acid profiling of complex lipids in intact algae by fast atom bombardment mass spectrometry. Anal. Chim. Acta 1986; 181: 149-57.
    [57] Heller, D.N., Fenselau, C., Cotter, R.J., Demirev, P., Olthoff, J.K., Honovich, J., Uy, O.M., Tanaka, T. and Kishimoto, Y., 1987. Mass spectral analysis of complex lipids desorbed directly from lyophilized membranes and cells. Biochem. Biophys. Res. Commun. 142, 194-9.
    [58] Heller, D.N., Cotter, R.J., Fenselau, C. and Uy, O.M. Profiling of bacteria by fast atom bombardment mass spectrometry. Anal. Chem 1987; 59: 2806-9.
    [59] Caroff, M., Deprun, C. and Karibian, D. 252Cf plasma desorption mass spectrometry applied to the analysis of underivatized rough-type endotoxin preparations. J. Biol. Chem 1993; 268: 12321-4.
    [60] Zarrouk, H., Karibian, D., Bodie, S. et al. Structural characterization of the Lipids A of three Bordetella Bronchiseptica strains: variability of fatty acid substitution. J. Bacteriol 1997; 179: 3756-60.
    [61] Moore WT.Laser desorption mass spectrometry. Methods Enzymol 1997; 289: 5203
    [62] Twerenbold D, Netuschill A,de Rooij N, et al.Detecting single molecules launched from liquid surfaces in a time-of-flight mass spectrometer using ultraviolet and infrared lasers. Proteomics 2002; 2(4): 436-40.
    [63] Easterling ML, Colangelo CM, Scott RA, et al. Monitoring protein expression in whole bacterial cells with MALDI time-of-flight mass spectrometry. Anal Chem 1998; 70(13): 2704-9.
    [64] Winkler MA, Hickman RK, Golden A,et al. Analysis of recombinant protein expression by MALDI-TOF mass spectrometry of bacterial colonies. Biotechniques 2000; 28(5): 890-2, 894-5.
    [65] Hurst GB, Doktycz MJ, Vass AA, et al. Detection of bacterial DNA polymerase chain reaction products by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun
    
    Mass Spectrom 1996;10(3): 377-82.
    [66] Garcia BA, Heaney PJ, Tang K.Improvement of the MALDI-TOF analysis of DNA with thin-layer matrix preparation. Anal Chem 2002;74(9): 2083-91.
    [67] Taguchi R, Hamakawa N, Maekawa N, et al. Application of electrospray ionization MS/MS and matrix-assisted laser desorption/ionization-time of flight mass spectrometry to structural analysis of the glycosyl-phosphatidylinositol-anchored protein. J Biochem (Tokyo) 1999; 126: 421-9.
    [68] Kaufmannr. Matrix assisted laser desorption ionization (MALDI) mass spectrometry: a novel analytical tool in molecular biology and biotechnology. J biotechnol, 1995; 41: 155
    [69] Holland RD, Rafii F, Heinze TM, et al. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric detection of bacterial biomarker proteins isolated from contaminated water, lettuce and cotton cloth. Rapid Commun Mass Spectrom 2000, 14(10): 911-7
    [70] Hurst GB, Weaver K, Doctycz MJ,et al. MALDI-TOF analysis of polymerase chain reaction products from methanotrophic bacteria. Anal.Chem1998 ;70: 2693-8.
    [71] Erhard M, Von Do'hren H and Jungblut PR. Rapid typing and elucidation of new secondary metabolites of intact cyanobacteria using MALDI-TOF mass spectrometry. Nat. Biotechnol 1997;15: 906-9.
    [72] Holland RD, Duffy CR, Rafii F, et al. Identification of bacterial proteins observed in MALDI TOF mass spectra from whole cells. Anal Chem 1999;71(15): 3226-30.
    [73] von Wintzingerode F, Booker S, Schlotelburg C, et al. Base-specific fragmentation of amplified 16S rRNA genes analyzed by mass spectrometry: a tool for rapid bacterial identification. Proc Natl Acad Sci U S A 2002; 99: 7039-44.
    [74] Wittmann C, Heinzle E. Application of MALDI-TOF MS to lysine-producing Corynebacterium glutamicum: a novel approach for metabolic flux analysis. Eur J Biochem 2001 ;268: 2441-55.
    [75] Kirpekar F, Berkenkamp S, Hillenkamp F. Detection of double-stranded DNA by IR-and UV-MALDI mass spectrometry. Anal Chem 1999;71: 2334-9.
    [76] Chong BE, Wall DB, Lubman DM,et al. Rapid profiling of E. coli proteins up to 500 kDa from whole cell lysates using matrix-assisted laser desorption/ionization time-of- fight mass spectrometry. Rapid Commun. Mass Spectrom1997; 11: 1900-8.
    [77] Krishnamurthy T. and Ross PL. Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun. Mass Spectrom. 1996,10: 1992-6.
    [78] Arnold RJ and Reilly JP. Fingerprint matching of E. coli strains with matrix-assisted laser desorption/ionization time-of-fight mass spectrometry of whole cells using a modified correlation approach. Rapid Commun. Mass Spectrom 1998; 12: 630-6.
    [79] Holland, R. D., Duffy, C. R., Rafii, F., et al. Rapid identification of intact whole bacteria based
    
    on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight massspectrometry.Rapid Commun Mass Spectrom 1996; 10: 1227-32
    [80] Welham, K. J.; Domin, M. A., Scannell, D. E., et al. The characterization of micro-organisms by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 1998;12: 176-80.
    [81] Hindre T, Didelot S, Le Pennec JP, et al. Bacteriocin detection from whole bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 2003; 69: 1051-8.
    [82] Lee H, Williams SK, Wahl KL, et al. Analysis of whole bacterial cells by flow field-flow fractionation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 2003;75: 2746-52.
    [83] Cain TC, Lubman DM, Webber WJ, Jr. Differentiation of bacteria using protein profiles from MALDI-TOF/MS. Rapid Commun Mass Spectrom 1994; 8: 1026-30.
    [84] Krishnamurthy T, Davis MT, Stahl DC, et al. Liquid chromatography/microspray mass spectrometry, for bacterial investigations. Rapid Commun Mass Spectrom 1999; 13: 39-49.
    [85] Jones JJ, Stump M J, Fleming RC, et al. Investigation of MALDI-TOF and FT-MS techniques for analysis ofEscherichia coli whole cells. Anal Chem 2003; 75: 1340-7.
    [86] Liang X, Zheng K, Qian MG, et al. Determination of bacterial protein profiles by matrix-assisted laser desorption/ionization mass spectrometry with high-performance liquid chromatography. Rapid Commun Mass Spectrom 1996; 10: 1219-26.
    [87] 134. Winkler MA, Uher J, Cepa S. Direct analysis and identification of Helicobacter and Campylobacter species by MALDI-TOF mass spectrometry. Anal Chem 1999;71: 3416-9.
    [88] Smole SC, King LA, Leopold PE, et al. Sample preparation of Gram-positive bacteria for identification by matrix assisted laser desorption/ionization time-of-flight. J Microbiol Methods 2002; 48: 107-15.
    [89] Claydon MA, Davey SN, Edwards-Jones V, et al. The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 1996; 14: 1584-6.
    [90] Haag AM, Taylor SN, Johnston KH, et al. Rapid identification and speciation of Haemophilus bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 1998;33: 750-6.
    [91] Nilsson CL. Fingerprinting of Helicobacter pylori strains by matrix-assisted laser desorption/ionization mass spectrometric analysis. Rapid Commun Mass Spectrom 1999;13: 1067-71.
    [92] Wang Z, Russon L, Li L, et al. Investigation of spectral reproducibility in direct analysis of bacteria proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 1998; 12: 456-64.
    [93] Saenz AJ, Petersen CE, Valentine NB, et al. Reproducibility of matrix-assisted laser
    
    desorption/ionization time-of-flight mass spectrometry for replicate bacterial culture analysis. Rapid Commun Mass Spectrom 1999; 13: 1580-5.
    [94] Wilcox SK, Cavey GS, Pearson JD. Single ribosomal protein mutations in antibiotic-resistant bacteria analyzed by mass spectrometry. Antimicrob Agents Chemother 2001; 45(11): 3046-55.
    [95] Edwards-Jones V, Claydon MA, Evason DJ, et al. Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J Med Microbiol 2000; 49: 295-300.
    [96] Bemardo K, Pakulat N, Macht M, et al. Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser resorption/ionization-time of flight mass spectrometry. Proteomics 2002;2: 747-53.
    [97] Walker J, Fox A J, Edwards-Jones V, et al. Intact cell mass spectrometry (ICMS) used to type methicillin-resistant Staphylococcus aureus: media effects and inter-laboratory reproducibility. J Microbiol Methods 2002; 48: 117-26.
    [98] Du Z, Yang R, Guo Z, et al. Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Anal Chem. 2002;74: 5487-91
    [99] Bright JJ, Claydon MA, Soufian M, et al. Rapid typing of bacteria using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry and pattern recognition software. J Microbiol Methods 2002; 48: 127-38.
    [100] Demirev PA, Lin JS, Pineda FJ, et al. Bioinformatics and mass spectrometry for microorganism identification: proteome-wide post-translational modifications and database search algorithms for characterization of intact H. pylori. Anal Chem 2001; 73: 4566-73.
    [101] Dworzanski JP, Snyder AP, Chen R, et al. Identification of bacteria using tandem mass spectrometry combined with a proteome database and statistical scoring. Anal Chem 2004;76: 2355-66.
    [102] Ho YP, Hsu PH. Investigating the effects of protein patterns on microorganism identification by high-performance liquid chromatography-mass spectrometry and protein database searches. J Chromatogr A 2002; 976: 103-11.
    [103] Pineda FJ, Lin JS, Fenselau C, et al. Testing the significance of microorganism identification by mass spectrometry and proteome database search. Anal Chem 2000; 72: 3739-44.
    [104] Wang Z, Dunlop K, Long SR, et al. Mass spectrometric methods for generation of protein mass database used for bacterial identification. Anal Chem 2002; 74: 3174-82.
    [105] Yao ZP, Afonso C, Fenselau C. Rapid microorganism identification with on-slide proteolytic digestion followed by matrix-assisted laser desorption/ionization tandem mass spectrometry and database searching. Rapid Commun Mass Spectrom 2002; 16: 1953-6.
    [106] Vaidyanathan S, Winder CL, Wade SC, et al. Sample preparation in matrix-assisted laser desorption/ionization mass spectrometry of whole bacterial cells and the detection of high mass
    
    (>20 kDa) proteins. Rapid Commun Mass Spectrom 2002; 16: 1276-86.
    [107] Madonna AJ, Basile F, Ferrer I, et al. On-probe sample pretreatment for the detection of proteins above 15 KDa from whole cell bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2000; 14: 2220-9.
    [108] Krishnamurthy T, Ross PL, Rajamani U. Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 1996;10: 883-8.
    [109] Demirev PA, Ho YP, Ryzhov V, et al. Microorganism identification by mass spectrometry and protein database searches. Anal Chem 1999;71: 2732-8.
    [110] Fenselau CC, and Jackson K. MS and microbiology: modifications of the MALDI TOF method are allowing researchers to perform intact-cell analysis. Modem Drug Discovery 2003; 37-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700