新型荧光探针分子的制备及在液相色谱和电泳中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液相色谱及电泳的分离分析被广泛应用于诸多领域,如生物学、化学、毒物学、临床化学、以及环境科学等。液相色谱是分析化学中发展最快、应用最为广泛的分析手段,其分离特性使之成为诸多领域中被广泛采用的一种有效的分离手段。继液相色谱之后,毛细管电泳也是一种近年来迅速发展的分离技术,它具有高效、快速、样品用量少等特点。能用于多种化合物的分离,如氨基酸、手性药物、维生素、杀虫剂、无机离子、有机酸、染料、肽和蛋白、甚至整个细胞和病毒颗粒。
     毛细管电泳的分离机制与液相色谱不同,故两者之间可以提供正交的、互补分析,此外,电泳的方法开发较为简单,不仅样品用量很少,而且几乎没有有机废液。
     随着现代分析技术的发展,人们对化合物的常规分析已转向痕量及超痕量分析。为了提高检测灵敏度,人们在放大信号和改进检测仪器方面进行着不懈的努力,如何使所测结果更加可靠和灵敏是所有科学工作者优先期盼的,但是在提高仪器灵敏度方面受到一定的限制,因此研制并开发新型高灵敏的荧光探针分子,提高检测灵敏度是一个行之有效的途径,也为克服常规的化学分析方法无法解决的困难开辟了新途径,使许多经典方法得以改进,使进行痕量和超痕量分析成为现实。为此,本研究采用化学衍生化方法,改变被测化合物特性,使之用于液相色谱和电泳的快速高灵敏的测定。论文中设计并合成了两种新型荧光探针分子,应用于氨基酸和多肽的高效液相色谱和毛细管电泳的分离分析,结果令人满意。论文分四章:
     第一章:
     对化学衍生化试剂及衍生化方法进行了简单介绍。对高效液相色谱和毛细管电泳的发展和相关基础知识进行了简述。综述了荧光试剂在氨基酸和多肽的高效液相色谱和毛细管电泳中的分离应用。
     第二章:
    
     两种新型荧光试剂咔哇一9一乙基氯甲酸酷和1,2一苯并一3,4一二氢咔哇
    一9一乙基氯甲酸酷的合成及结构表征。
     第三章:
     咔哇一9一乙基氯甲酸酷在高效液相色谱和毛细管电泳中的应用,包括
     四部分。
     3.1研究了咔哇一9一乙基氯甲酸酷用于氨基酸和多肤的高效液相色谱
     分离分析。选择了衍生化条件,优化了洗脱程序,考察了氨基酸和
     多肤衍生物的检测限、线性范围及回归方程。结果表明,在实验条件
     下,氨基酸衍生物的线性范围宽,检测限达加ol,灵敏度高。在实
     际应用中测定了四种苔鲜中的氨基酸含量,结果令人满意。
     3.2研究了咔哇一9一乙基氯甲酸酷用于氨基酸的毛细管区带电泳分离。
     通过对分离条件的考察,找到最佳的分离条件:18~ol几的醋酸
     盐缓冲溶液(含28%的乙睛),pH值为5.8,分离电压25kv,温度
     为25℃。在选定的分离条件下,12种氨基酸衍生物在不足15min
     内实现了基线分离,结果理想。
     3.3采用毛细管胶束电动色谱在6min内实现了CEOC衍生的14种氨基
     酸衍生物的完全分离。通过对分离条件的选择,得出了最佳的分离
     条件:分离电压为25kV、柱温25℃、235lun DAD检测,采用硼酸
     盐浓度为36~ol几,含有30~ol几SDS和3%乙睛的缓冲溶液
     (pH=9.0)。考察了各种氨基酸的线性范围、检测限及回归方程,
     从而为CEOC作衍生试剂,利用毛细管电泳对其它环境样品中的氨
     基酸的分离测定奠定了基础。
     3.4采用毛细管电泳在胶束电动色谱模式下实现了小肤CEOC衍生物的
     完全基线分离。通过电泳条件的选择,得出最佳分离条件:分离电
     压25kv、柱温300C、硼酸盐浓度为36mmol/L(pH=9.0)、sns
     30~ol/L和3%的乙睛,235nm DAD检测。在选定的条件下,考察
     了5种肤的线性、检测限和方法的重现性,结果表明,所建立的方
     法简单快速.
    之
    
    第四章:
    研究了1,2一苯并一3,4一二氢咔哇一9一乙基氯甲酸酷在高效液相色谱和毛
    细管电泳中的应用,包括三部分。
    4.1研究了1,2一苯并一3,4一二氢咔哇一9一乙基氯甲酸酷用于氨基酸和多
     肤的高效液相色谱分离分析。选择了衍生化条件,优化了洗脱程序,
     考察了氨基酸和多肤衍生物的检测限、线性范围及回归方程。比较
     了BCEOC和CEOC衍生物的荧光强度。结果表明,在实验条件下,
     氨基酸和多肤衍生物的线性范围宽,检测限达fmol,灵敏度比CEOC
     的高2一6倍。利用该方法测定了瓜子提取液中的氨基酸含量,结果
     令人满意。
    4.2采用毛细管胶束电动色谱在18 min内实现了10种BCEOC氨基酸
     衍生物的完全分离。通过对分离条件的选择,得出了最佳分离条件:
     分离电压为ZOkV、柱温25℃、324nm DAD检测,采用硼酸盐浓度
     为4Ommol/L,含有42rnmol几sns和4%乙睛的缓冲溶液(pH=9.4)。
     并考察了各种氨基酸的线性范围、检测限以及回归方程,从而为
     BCEOC作衍生试剂,利用毛细管电泳对氨基酸的分析奠定了基础。
    4.3利用胶束电动色谱在10mln内实现了五种小肤的BCEOC衍生物的
     基线分离。通过电泳条件的选择,得出最佳分离条件:分离电压
     19kv、柱温25oC、硼酸盐侬度为38mmol/L(pH=9.0)、Sns 32mmol/L
The enthusiastic adoption of high performance liquid chromatographic (HPLC) and capillary electrophoresis (CE) has been a great impact on chemical analysis, not only in chemistry and biochemistry but also in toxicology, clinical sciences, environmental science and many other fields.
    With the special separation characterization, HPLC is one of the fastest developed and the most widely used fields in analytical chemistry. After HPLC method, capillary electrophoresis (CE) is a rapidly growing separation technique with many advantages including high performance, high speed and small sample consumption. It has proved to be powerful tool for the separation of compounds such as amino acids, chiral drugs, vitamins, pesticides, inorganic ions, organic acids, dyes, peptides and proteins, and even whole cells and virus particles.
    The responsible mechanisms for the separation of components in CE are different from those in liquid chromatography. In view of this, two methods can each other offer orthogonal, complementary analyses. In addition, CE may offer simpler method development, minimal sample volume requirements with almost no organic waste.
    With the development of modern analytical technology, the method of traditionally conventional analysis has been converted to the trace analysis and even the extreme trace analysis. In order to improve the sensitivity of detection, people have been devoting to amplify signals and renovate the detectors. All the scientific researchers have been expected to obtain the reliable and sensitive results, and this is also a question which claims precedence over all others. However, there is a limit in improving the sensitivity of instrument. So it is an accessible approach to design and synthesize novel high sensitive fluorescent probe to improve detection sensitivity that it is difficulty to achieve the goal with
    
    
    the conventional analysis. With the development of these novel sensitive probes, the classical analytical method has been developed and made the trace and extreme trace analysis true. Therefore, labeling of the analytes with fluorescent probe has been widely adopted to alter the chemical physical properties of target compounds to make them be analyzed easier with HPLC or CE.
    In this thesis, the method for the sensitive determination of amino acids and peptides using the synthesized tagging reagents with different chromophores by HPLC and CE with fluorescence or DAD detector has been developed. The thesis consists of four chapters.
    Chapter one:
    The development of the labeling reagents and the method of derivatization have been simply introduced. At the same time, the basic knowledge and the further improvement of HPLC and CE are briefly introduced. Then the applications of fluorescence reagents to analyze amino acids and peptides by HPLC or CE are reviewed.
    Chapter two:
    9-(2-Carbazole)ethyl chloroformate (CEOC) and
    l,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) are synthesized and their structures are characterized.
    Chapter three:
    The applications of 9-(2-carbazole)ethyl chloroformate (CEOC) for the analysis of different components by HPLC and CE are investigated. The principal contents of this chapter consist of four parts.
    3.1 The separation and determination of amino acids and oligopeptides using CEOC as labeling reagent by HPLC with fluorescence detection are studied. The derivatization conditions in conjunction with the gradient elution program are optimized. At the same time, the detection limit and linearity for derivatized
    
    
    amino acids and oligopeptides are obtained under the optimum conditions. The results indicate that the detection limits for tagged amino acids and oligopeptidesis are at fmol levels (S/N=3) with relatively wide linear range. The established method for the determination of amino acids from extracted four bryphytes is evaluated with satisfactory results.
    3.2 The separation of derivatized amino acids using CEOC as derivatization agent by capillary zone electrophoresis (CZE) with DAD detectio
引文
1.邓延倬,何金兰编著.高效毛细管电泳[M].北京:科学技术出版社, 1998:
    2.汪正范 林炳承 高效毛细管电泳——生命科学中分离分析的重要手段现代科学仪器1995,3,10-14
    3.刘虎威 张煦 Agilent三维毛细管电泳系统 大学化学 2001,10,9,
    
    (16) 5, 64—65
    4. O. vesterberg, J, Chromatogr. 480, 3 (1989)
    5. Zhaohui Chen, et. al. J. Chromatogr. A 914(2001)293-298
    6. Toy6oka, T.; Ishibashi, M.; Terao, T.; Imai, K., Analyst; 1993, 118, 759-763
    7. Mechref, Y.; Rassi, Z. E., Anal. Chem.; 1996, 68, 1771-1777
    8. Einarsson S., Josefsson B., Lagerkvist S., J. Chromatogr. 1983, 282, 609
    9. Cohen S. A., Michaud D. E, Anal. Biochem., 1993, 211,279
    10. Seiler, N.; Methods Biochem. Anal.; 1970, 18, 259.
    11. Stobaugh, J. E; Repta, A. J.; Sternson, L, A.; Garren, K. W.; Factors Affecting the Stability of Fluorescent Isoindoles Derived from Reaction of O-phthalaldehyde and hydroxyalkylthiols with Primary Amines; Anal. Biochem.; 1983, 135, 495-504.
    12. Einarsson, S.; Detection of Amino Acids with 9-fluorenylmethyl Chloroformate and RPLC; J.Chromatorgr.; 1983, 282, 609-618.
    13. Anson Moye, H.; Bining, A. J.; A versatile fluorogenic labelling Reagent for Primary and Secondary amines: 9-fluorenylmethyl.chloroformate; Jr., Anal. Lett.; 1979, 12, 25-35.
    14. Pugniere, M.; Mattras, H.; Casstro, B.; Previero, A.; Adsorption LC on silica for the chiral separation of amino acids and asymmetric amines derivation with optically active N-α-9-fluorenylmethyloxycarbonyl-amino acid-N-carboxy anhydrides; J. Chromatogr. A.; 1997, 767, 69-75.
    15. Tang, Y.; Zukowski, J.; Armstrong, D. W.; Investigation on enantiomeric separations of fluorenylmethyloxycarbonyl amino acids and peptides by HPLC using native cyclodextrins as chiral stationary phases; J. Chromatogr. A.; 1996, 743,261-271.
    16. Einarsson, S.; Josefsson, B.; M1er, P.; Sanchez, D.; Separation of Amino Acid Enantiomers and Chiral Amines Using Precolumn Derivatization with (+)-1-(9-Fluorenyl)ethyl Chloroformate and RPLC; Anal. Chem.; 1987, 59,
    
    1191-1195.
    17. Akasaka, K.; Ohrui, H.; Meguro, H.; Determination of Carboxylic Acids by HPLC with 2-(2,3-Anthracenedicarboximido) ethyl Trifluoromethanesulfonate as a Highly Sensitive Fluorescence Labelling Reagent; Analyst; 1993, 118, 765-768.
    18. Roach, M. C.; Ungar, L. W.; Zare, R. N.; Reimer, L. M.; Pompliane, D. L.; Frost, J. W.; Fluorescence detection of Alkylphonic acids using P-(9-Anthroyloxy) phenacyl Bromide; Anal. Chem.; 1987, 59, 1056-1059.
    19. Toyo'oka, T.; Chokshi, H. P.; Carlson, R. G.; Givens, R. S.; Lunte, S. M.; Oxazole-based Tagging Reagents for Analysis of Secondary Aminesand Thiols by LC with Fluorescence Detection; Analyst; 1993, 118, 257-263.
    20. Hara, S.; Aoki, J.; Yoshikuni, K-I.; Tatsuguchi, Y.; Yamaguchi, M.; 4-(5',6'Dimethoxybenzothiazolyl) benzoyl Fluoride and 2-(5', 6'-Dimethoxybenzothiazolyl) benzene sulfonyl chloride as Sensitive Fluorescence Derivatization Reagents for Amines; Analyst; 1997, 122, 475-479.
    21. Quilliam, M. A.; Gago-Martinez, A.; Rodriguez-Vázaquez, J. A.; Improved method for preparation and use of 9-anthryldiazomethane for derivatizartion of hydroxycarboxylic acids Application to diarrhetic shellfish poisoning toxins; J. Chromatogr. A.; 1998, 807, 229-239.
    22. Kawasaki, S.; Nagaoka, T.; Saisho,Y.; Morimoto, A.; Umeda, T.; Determination of mevalonic acid in human urine by LC with precolumn derivatization and fluorescence detection Anal, Chim. Acta; 1998, 365, 205-212
    23. Espinosa-Mansilla, A.; Durán-Merás, I.; Salinas, F.; HPLC-Fluorometric Determnation of Glyoxal, Methylglyoxal and Diacetyl in Urine by prederivatization to Pteridinic Rings; Anal. Biochem.; 1998, 255,263-273.
    24. Ohba, Y.; Kai, M.; Zaitsu, K.; Simutaneous determination of 7-methylguanine and O~6-methylguamine in DNA by LC with postcolumn fluorescence
    
    derivatization usinh 3,4-dimethoxy-phenylglyoxal; Anal. Chim. Acta; 1998, 365, 233-239.
    25. Inoue, H.; Kohashi, K.; Tsuruta, Y.; Simutaneous determination of serum and urinary hydroxyproline and proline by LC using two fluorescent labelling reagents; Anal. Chim.Acta; 1998, 365, 219-226.
    26. Tsuruta, Y.; Date, Y.; Kohashim, K.; Phthalimidylbenzenesulphonyl chlorides as fluorescence labelling reagents for amino acids in HPLC; J. Chromatogr.; 1990, 502, 178-183.
    27. Toyooka, T.; Liu, Y-M.; HPLC resolution of amino acid enantiomers derivatized with fluorescent chiral Edman reagents; J. Chromatogr. A; 1995, 689, 23-30.
    28. Matsunaga, H.; Santa, T.; Iida, T.; Fukushima, T.; Homma, H.; Effect of the Substituent Group at the Isothiocyanate Moiety of Edman Reagents on the Racemization and Fluorescence Intensity of Amino Acids Derivatized with 2,1,3-Benzoxadiazolyl Isothiocyanates; Analyst; 1997, 122, 931-936.
    29. Gump, E. L.; Monnig, C. A.; Pre-column derivatization of proteins to enhance detection sensitivity forsodium dodecyl sulfate non-gel siering CE; J, Chromatogr. A.; 1995, 715, 167-177.
    30. Amankwa, L. N.; Scholl, J.; Kuhr, W. G.; Characterization of the Oligomeric Dispersion of Poly (oxyalkylene) diamine Polymers by Precolumn Derivatization and CZE with Fluorescence Detection; Anal. Chem.; 1990, 62, 2189-2193.
    31. O'shea, T. J.; Weber, P. L.; Bammel, B. P.; Lunte, C. E.; Lunte, S. M.; Monitoring excitatory amino acids release in vivo by micro dialysis with CE-electrochemistry; J. Chromatogr.; 1992, 608, 189-195.
    32. Scholten, A. H. M. T.; Brinkman, U. A. Th.; Frei, R. W.; Comparison of Liquid Segmented with Nonsegmented Flow Systems in Postcolumn Reactors for LC; Anal. Chem.; 1982, 54,1932-1938.
    33. Hu, T.; Zuo, H.; Riley, C. M.; Stobaugh, J. F.; Lunte, S.M.; Determination
    
    of α-difluoromethylornithine in blood by microdialysis sampling and CE with UV detection; J. Chromatogr. A.; 1995, 716, 381-388.
    34. Cohen, S. A.; Michaud, D. P.; Synthesis of a Fluorescent Derivatizing Reagent, 6-Aminoquinolyl-N-Hydroxysuccinimidy Carbamate, and Its Application for the Analysis of Hydrolysate Amino Acids via HPLC; Anal. Biochem.; 1993, 211, 279-287.
    35. Liu, H. J.; Determination of amino acids by precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and HPLC with ultroviolet detection; J. Chromatogr. A.; 1994, 670, 59-66.
    36. Cohen, S. A.; De Antonis, K. M.; Application of amino acid derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate Analysis of feed grains, intravenous solutions and glycoproteins; J. Chromatogr. A.; 1994, 661, 25-34.
    37. Yang, J. H.; Zhang, G. L.; Wu, X.; Huang, F., Liu, C., Cao, X., Sun, L., Ding, Y.; Fluorimetric determination of epinephrine with Ophenylenediamine; Anal. Chim. Acta; 1998, 363, 105-110.
    38. Imaoka, S.; Funac, Y.; Sugimoto, T.; Hayahara, N.; Maekawa, M.; Specific and Rapid Assay of Urinary Oxalic Acid Using HPLC; Anal. Biochem.; 1983, 128, 459-464.
    39. Hara, S.; Nakamura, M.; Sakai, F.; Nohta, H.; Ohkura, Y.; Yamaguchi, M.; 2,2'- Dithiobis (1-amino-4,5-dimethoxybenzene) as a highly sensitive, selective and stable fluorescence derivatization reagent for aromatic aldehydes in LC; Anal. Chim. Acta; 1994, 291,189-195.
    40. Korte, W. D.; 9-(chloromethyl) anthracene: a useful derivatizationreagent for enhanced ultraviolet and fluorescence detection of carboxylic acids with LC; J. Chromatogr.; 1982, 243, 153-157.
    41. Kai, M.; HPLC of Guanidino Compounds using Benzoin as pre-column fluorescent derivatization reagent; J. Chromatogr.; 1983,268, 417-424.
    42. Kai, M.; Miyazaki, T.; Sakamoto, Y.; Ohkura, Y.; Use of benzoin as
    
    pre-column fluorescent derivatization reagent for the HPLC of angiotensins; J. Chromatogr.; 1985, 322, 473-477.
    43. Kanoaka, Y.; Machida, M.; Ando, K.; Sekine, T.; Biochem. Biochem. Biophys. Acta; 1970, 207, 269.
    44. Farinotti, R.; Siard, P.; Bourson, J.; Kirkiacharian, S.; Valeur, B.; Mahuzier, G.; 4-Bromomethyl-6, 7-dimethoxycoumarin as afluorescent lable for carboxylic acids in chromatographic detection; J. Chromatogr.; 1983, 269, 81-90.
    45. Murayama, K.; Kinoshita, T.; Determination of Glutathione on HPLC using N-CHLOKODANSYLAMIDE (NCDA); Anal. Lett.; 1981, 14, 1221-1232.
    46. Murayama, K.; Kinoshita, T.; N-CHLOKODANSYLAMIDE (NCDA), A New Fluorometric Reagent for the Analysis of Amino Acids and Peptides; Anal. Lett.; 1982, 15, 123-133.
    47. Lloyd, J. B. F.; Phenanthrimidazoles as fluorescent derivatives inthe analysis of fatty acids by HPLC; J. Chromatogr.; 1980, 189,359-373
    48. Swarin, S. J.; Lipari, F.; Determination of Formaldehyde and other Aldehydes by HPLC with Fluorescence Detection; J. Liq. Chromatogr.; 1983, 6, 425-444.
    49. Guebitz. G.; Winterrsteiger, R.; Frei, R. W.; Fluorogenic labeling of earbonyl compounds with 7-HYDRAZINO-4-NITRIOBENZO-2-OXA-1,3-DIAZOLE (NBDH); J. Liq. Chromatogr.; 1984, 7, 839-854.
    50. Grushka, E.; Lam, S.; Chassin; Fluorescence labelling of Dicarboxylic Acids for HPLC; J. Anal. Chem.; 1978, 50, 1398-1399.
    51. Lam, S.; Grushka, E.; Labelling of fatty acids with 4-bromomethyl-7-methoxy-coumarin via crown ether catalyst for fluorimetric detection in HPLC; J. Chromatogr.; 1978, 158, 207-214.
    52. Crozier, A.; Zaerr, J. B.; Morris, R. O.; Reversed and Normal-phase HPLC of gibberellin methoxycoumaryl esters; J. Chromatogr.; 1982, 238, 157-166.
    53. Toyóoka, T.; Ishibashi, M.; Terao, T.; Imai, K.; 4-(N, N-Dimethyl
    
    aminosulfonyl)-7-(2-chloroformylpyrrolidin-1-yl)-2,1,3-benzoxadiazole: Novel Fluorescent Chiral Derivatization Reagents for the resolution of Alcohol Enantiomers; Analyst; 1993, 118, 759-763.
    54. Mechref, Y.; Rassi, Z. E.; CE of herbicides 1: precolumn derivatization of chiral and achiral phenoxy acid herbicides with a fluoresnet tag for electrophoretic separation in the presence ofcyclodextrins and micellar phases; Anal. Chem.; 1996, 68, 1771-1777.
    55. Yoshida, T.; Moriyama, Y.; Nakamura, K.; Taniguchi, H.; Fluorescence DerivatizationReagents for Amines in LC; Analyst; 1993, 118, 29-33.
    56. Tsuruta, Y.; Kohashi, K.; Sensitive derivatization reagents for hydroxyl and amino compounds for thin-layer or HPLC with fluorescence detection; Anal. Chim. Acta; 1987, 192, 309-313.
    57. Ishida, J.; Yamaguchi, M.; Iwata, T.; Nakamura, M.; 3, 4-dihydro-6, 7-dimethoxy-4-methyl-3-oxoquinoxa-line-2-carbonyl chloride as a sensitive fluorescence derivatization reagent for amines in LC; Anal. Chim. Acta; 1989, 223,319-326.
    58. C. F. Poole and S. K. poole, Chromatography Today, Elsevier, Amsterdam, 1993.
    59. S. Ahuja, Selectivity and Detectability Optimization in HPLC, Wiley, New York, 1989
    60. I. W. Wainer, Liquid Chromatography in Pharmaceutical Development, Astel Publishing, Springdield, OR, 1985.
    61. B. King, and G. S. Graham, Hangdbook of Derivatives for Chromatography, Heyden Philadelphia, 1979.
    62. P. F. Cancanlon, C. R. Bryan, J. Chromatogr., 652, 555 (1993).
    63.邓延倬,何金兰 编著.高效毛细管电泳[M].北京:科学技术出版社,1998,218-221
    64. S. L. Pentoney, Jr., X. Huang, D. S. Burgi, R. N. Zare, Anal. Chem., 60, 2625 (1988).
    
    
    65. R. M. Latorre et al. J. Chromatogr. A 976 (2002) 55-64.
    66.邓延倬,何金兰 编著.高效毛细管电泳[M].北京:科学技术出版社, 1998,2-3
    67.朱涛,方晓红,孙亦粱,高效毛细管电泳Ⅰ.分析化学中的一个新的前沿领域 化学进展,第六卷第三期,1994,9,230-240
    68.沈同,王镜岩 主编 生物化学 北京 高等教育出版社,1999,87
    69.吕建德等,非衍生氨基酸毛细管电泳,第一届全国毛细管电泳报告会文集,北京,1993
    70. Kirschbaum, J., Rebscher, K., Bruckner, H., J. Chromatography A, 2000, 881, 517
    71. Anders, E., Per, E. A. et al Anal. Chem. 1995, 67, 3018
    72.余兆楼等人 糖的高效毛细管电泳间接紫外检测法研究,第一届全国毛细管电泳报告会文集,北京,1993
    73.Albin, M., Grossman, P. D., Mofing, S. E., Anal. Chem., 1993, 65,489A
    74.陈立仁 蒋生祥 刘霞 侯经国 《高效液相色谱基础与实践》前言
    75.杨先碧 阮慎康 高效液相色谱发展史 化学通报1998年第11期
    76.陈立仁 蒋生祥 刘霞 侯经国《高效液相色谱基础与实践》(M)北京:科学技术出版社,2001
    77. Watson M W, Carr P W, Anal Chem, 1979. 51: 1835
    78. Dondi F, Kahie Y D, Lodi G, Reschiglian P, Pietrogrande C, Bighi C, Cartoni, G P. Chromatographia, 1987, 23: 844
    79. Jupille T H, Dolam J W, Snyder L R, Am. Lab, 1988, 20(12):20
    80. Chirst B F D, Cooperman B S, Snyder L R, J. Chromatogr., 1988, 459: 1
    81. Chirst B F D, Snyder L R, J. Chromatogr, 1988, 459: 25
    82. Chirst B F D, Snyder L R, J. Chromatogr., 1988, 459: 43
    83. Baba Y, Fukuda M, Yoza N, J. Chromatogr., 1988, 458: 385
    84. Baba Y, Ito M K, J. Chromatogr., 1989, 458: 647
    85. Jandera P. J. Chromatogr., 1989, 458: 113
    86.汪正范 高效液相色谱仪器的进展和在生命科学中的应用 现代科学仪器
    
    1997 3
    87. Bayer E, Albert K, Nieder M, Grom E, Keller T. J. Chromatogr., 1979, 497: 186
    88. Nicholson J K,. Holmes E, Sidelmann U G. Pharm. Sci., 1996, 2(3): 127-130
    89. Petr Hu ek, Petr imek, Chromatography, 2001, 19, 9, 986-999
    90. Carla Prata, Pierre Bonnafous, et al Electrophoresis, 2001, 22, 4129-4138
    91. Lunn G., Hellwig L. C., Handbook of derivatization reaction for HPLC, John Wilay& sons, New York, 1998
    92. Toyo'oka, T., Modem Derivatization Methods for separation Sciences, John Wilay& sons, New York, 1999
    93. Rosa M. Catorre, Javier Saurina, et al Journal of Chromatographic Scinace, 37 1999,9
    94. Rosa M. Catorre, Javier Saurina, et al J. Chromatigr. A, 976 (2002) 55-64
    95. Albin, M., Weinberger, R., Sapp., E., Moring.S. Anal. Chem. 1991,63,417-422
    96. Ander. Engstrm, Per. E. ,Andersson, et al Anal. Chem. 1995, 67, 3018-3022
    97. T. Ueda, R. Mitchell, F. Kitamura, T. Metcalf, T. Kuwana,and A. Nakamoto, Separation of naphthalene-2,3-dicarboxaldehyde-labeled amino acids by high performance capillary electro-phoresis with laser induced fluorescence detection. J. Chromatogr. 593:265-274 (1992)
    98. Zhang, Y., Gomez, F. A., Electrophoresis, 2000, 21, 3305-3310
    99.林炳承,毛细管电泳导论,北京,科学出版社,1996
    100.谢立,陈振德,陈志良,候连兵,许重远,龙眼肉及其混淆品蛋白多肽高效毛细管电泳法鉴别,中成药(Chinese Traditional Patent Medicine) 22,6,2000,6
    101.候连兵,陈振德,陈志良,许重远,三七及其混淆品蛋白多肽高效毛细管电泳法鉴别,中草药(Chinese Tradkional and Herbal Drugs)31,11, 2000,859-860
    102.陈振德,许重远,庄志铨,候连兵,穿山甲及其炮制品蛋白多肽高效毛
    
    细管电泳法鉴定,广东药学院学报,16,4,2000,12,302-304
    103.贾江滨,陈振德,候连兵,陈志良,许重远,乌梅及其混淆品李子的蛋白多肽高效毛细管电泳法鉴别,第一军医大学学报,20(4),2000
    104. Jinping Liu, et al. Capillar electrophoretic separations ofpeptides using micelleforming compounds and cyctodextrins as additives, J Chromatogr, 1990, 519:189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700