奶牛乳腺炎金黄色葡萄球菌基因工程疫苗构建及实验免疫
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用分子生物学、细菌学、免疫学及基因工程和DNA重组技术等理论和方法,以研制安全有效的奶牛乳腺炎金黄色葡萄球菌基因工程疫苗为目的,基于金黄色葡萄球菌的基因组结构、感染与致病以及免疫反应等特点,甄选具有主要抗原活性的纤黏连结合蛋白A(FnbA)配基结合区基因和凝集因子A(ClfA)及其活性基因作为研究对象,通过PCR获得目的基因,利用原核表达系统制备了可溶性的重组蛋白,纯化后进行了小鼠免疫试验;以安全性真核表达载体pVAX1为基础,扩增牛白介素18基因(bIL18)作为基因佐剂,构建了系列单独表达或共表达pFnbA、ClfA和bIL18基因的侯选重组核酸疫苗质粒,开展了小鼠免疫试验研究。同时,通过不同疫苗组合、添加佐剂以及免疫-增强(Prime-boost)等策略探讨了联合免疫在临床应用的可行性。
     运用血清ELISA抗体检测、Th1/Th2类细胞因子含量测定、T细胞增殖实验等方法对免疫小鼠的各项指标进行综合评价,结果表明,所构建候选疫苗均能诱导机体产生特异的细胞免疫和体液免疫应答,其中3种蛋白类疫苗主要以体液免疫为主;5种DNA疫苗二者兼有;添加壳聚糖佐剂组具有更强的免疫诱导作用;以DNA疫苗首免、重组蛋白加强免疫刺激机体产生的免疫应答水平优于单独应用同种疫苗进行的免疫。
     上述研究为奶牛乳腺炎金黄色葡萄球菌新型基因工程疫苗的研制提供了原始数据,建立了技术平台,为有效免疫和临床应用研究奠定了坚实基础。
Mastitis is one of the most important and costly disease in dairy cow herds resulted in huge economic loss worldwide. The occurrence and prevalence of the disease threatens human healthy as well as public safety. During the last decade, numerous attempts of developing different methods to prophylaxis or therapy the disease have been carried out. But, there still has no effective solutions. So, it’s urgent to develop new methods or strategies to prevent and control the disease better.
     Many factors associated with mastitis in cows. Among those, microorganisms’infection is regard as the main reason. Staphylococcus aureus (S. aureus) has been identified as one of the most important etiological agents. Therefore, it has been shown to focus on the research against S. aureus is a very significant direction.
     Vaccination was regarded as the most effective and expected methods to eradicate infectious disease spread. The traditional vaccines include whole-organism vaccines, capsular polysaccharide (CP) vaccines, toxic vaccines, and so on. Although several successful stimulations of immune responses and decrease of clinical symptoms have been made, unfortunately, commercially available vaccines have shown limited efficacy under field conditions. With the development of genetic engineering, molecular biology, genetics as well as immunology, more researchers focus on new vaccines investigation because of its merits such as safety, easy to control, etc. New vaccines against S. aureus also made certain progress, especially with regard to genetic engineering subunit vaccine and DNA vaccine.
     Genetic engineering subunit vaccine is constructed by inserting the major protective antigen gene into an expression plasmid, and then expressed through different expression systems (such as prokaryotic or eukaryotic cells, etc.). After prepared and purified, the protein was vaccinated as immunogen so as to stimulate the body inducing immune response. Because the vaccine contains only effective immune structure of the pathogen, when stimulate immune protection at the same time ensuring the safety, it shows good perspective. But there still have some problems need to pay an attention including small quantities of antigens, inadequate and poor immunogenicity, etc. Therefore, increasing antigen epitopes to enhance immunogenicity is the major direction. Deoxyribonucleic acid (DNA) vaccination, also named nucleic immunization or genetic immunization, has presently been developed as a simple and efficient technique to prevent many current infectious diseases. This technique is a novel vaccine technology that uses naked DNA injection to induce immune responses different from those traditional peptide or protein vaccines. It has been shown that DNA immunogens could stimulate both the cellular and/or humoral arms of the immune system. In addition, DNA vaccines are stable, safe, simple to manipulate and test, easy to store and transport, low cost and reproducible large scale production. All these unique features make it well suitable as an immunization or immune therapy strategy.
     In addition, the protective immune effects of vaccines have important relations with vaccination strategies. Previous studies have shown that it is not ideal when immuned with a single antigen vaccine or the same vaccine injected several times. However, combination of different forms of vaccine expressed the same epitope or the addition of endogenous or exogenous gene adjuvants will induce stronger immune response. It has been proved to be an effective immune strategy that recombinant DNA (rDNA) vaccines primed, followed by a boosting of recombinant virus or proteins in AIDS research field.
     Therefore, the study was conducted to develop new genetic vaccines against S. aureus infection in cow. Based on the genomic structure of S. aureus, infection and pathogen mechanism, and characteristics of immune response, and make full use of current molecular biology, bacteriology, immunology, genetic engineering and recombinant DNA technology, the research was carried out to investigate anti-cow mastitis of S. aureus genetic engineering subunit vaccine and DNA vaccine.
     Firstly, the genomic DNA (gDNA) was extracted from S. aureus isolated by our laboratory. Then the main antigenic genes of S. aureus containing clumping factor A (cClfA), the A region of ClfA (pClfA) and ligand binding regeion of fibronectin-binding protein A (pFnbA) were cloned successfully by polymerase chain reaction (PCR), respectively. The results of homology comparison and protein secondary structure prediction and analysis indicated that the sequence of cloned gene was very conservative, and contained major antigenic epitopes. It laid a solid foundation for constructing ideal vaccines.
     Secondly, based on the prokaryotic expression vector pET-28a(+), the recombinant expression plasmids pET-cClfA, pET-pClfA and pET-pFnbA were constructed. Through IPTG induction, SDS-PAGE and western blot analysis showed that the proteins were expressed successfully. And the target products existed mainly in soluble form. After optimizing the induction conditions, the optimal induction conditions were determined. The induced temperature is the same 37℃. But the other conditions were different from each other. Under the optimal induction condition, the highest products of pET-cClfA, pET-pClfA and pET-pFnbA account for 30.06%, 31.69% and 58.02% of the total bacterial proteins respectively. They can reach approximately a yield of 0.46mg/mL, 0.48mg/mL and 1.12mg/mL respectively. The proteins were purified by Ni+ metal chelate affinity chromatography. Thin-layer gel scanning analysis showed that the purity of three recombinant protein reached more than 95%. This is helpful to the further animal experiment.
     Thirdly, after preparation of recombinant proteins, mice immune experiment was carried out. To evaluate humoral responses, the antigen-specific antibodies were detected using indirect enzyme-linked immunosorbent assay (ELISA). Compared with the negative control, antibody titers increased following vaccines administrations and dynamic trend of antibody titer is basically the same. Vaccination with cClfA induced more antibody production than the others did individually (p<0.05). T-lymphocyte proliferation assay with the MTT method was performed to evaluate cellular immune responses elicited by the proteins. The results showed that antigen-specific T-lymphocyte proliferation responses in mice were induced a little but significant comparable (p>0.05). Cytokine levels were evaluated using the mouse Th1/Th2 ELISA Ready-SET-Go! kit (eBioscience). The concentrations of four cytokines increased to various extents in the vaccine groups compared with controls. Secretion levels of IL2 and IFN-γwere statistically comparable except for cClfA protein groups. However, the IL4 and IL10 levels were remarkably increased. This result illustrates that protein vaccines were tend to induce humoral immunity responses.
     Fourthly, several potential DNA vaccine candidates pV-cClfA, pV-pClfA, pV-pFnbA, pV-pFnbA-pClfA and pV-pFnbA-pClfA-bIL18 were constructed sucessfully containing the cClfA、pClfA、pFnbA with or without the bIL18 gene based on the eukaryotic expression vector pVAX1. The ability of the recombinant DNA plasmids to express their antigens were evaluated in HeLa transfected cells. The result showed that the plasmids successfully expressed their target exogenous genes and the proteins could be recognized by antibodies against S. aureus through indirect immunofluorescent assay (IFA). BALB/c mice were immunized by the recombinant plasmids separately. The result manifested that all the DNA vaccines could stimulate mice to generate specific humoral and cellular immune responses. The vaccine groups including fusion genes (pV-pFnbA-pClfA) induced stronger immune responses than one gene (pV-pClfA or pV-pFnbA). This result illustrated that a combination of diverse antigens was responsible for high antibody induction. And pV-pFnbA-pClfA-bIL18 vaccine groups induced highest cellular immune responses. The outcomes illustrated that IL18 is a good adjuvant.
     Lastly, in the basis of the above-mentioned immune experiment, combined immune strategies as well as effective immune methods were carried out in this paper. The results showed that all the combined immune groups can generate specific antibodies against surface proteins of S. aureus, and T-lymphocyte proliferation responses were induced as well as Th1/Th2 type cytokine levels were increased to some extend. The immunization strategy of mixing two plasmids encoding different genes is better than fusing the two genes in one plasmid. Immunization with bIL18 or chitosan can induce more cellular response. rDNA vaccines primed twice, followed by a boosting of proteins, could induce higher humoral immunity. All the above findings indicated: the DNA vaccine containing fusion antigen and bIL18 gene is a good candidate vaccine; both mixed immunity and prime-boost immune method are effective immune strategy; and chitosan is a good adjuvant which is expected to apply to S. aureus vaccine. At the same time, it will be expected to achieve better immune effect when combined and integrated the above immunization strategies together.
     It is the first time to application ClfA and FnbA genes of S. aureus to construct subunit vaccine and DNA vaccine, and application bIL18, C1fA and FnbA gene to construct complex antigen DNA vaccine. Also, the systematic immune animal experiments were carried out to examine the different immunization strategy in this paper.
     Thus, the study will provide new breakthrough ideas, accumulate raw data, and establish technology platforms for cow mastitis S. aureus genetic engineering vaccine research. Furthermore, the research will lay the groundwork for effective immunization and pre-clinical research of S. aureus vaccine, and provide a good basis for the adoption of a scientific and rational comprehensive prevention and control measures to restrict the occurrence of mastitis cows.
引文
[1] JONSSON S, PULKKINEN MO. Mastitis today: incidence, prevention and treatment[J]. Annales chirurgiae et gynaecologiae, 1994, 208: 84-87.
    [2] HOUBEN EH, DIJKHUIZEN AA, VAN ARENDONK JA, et al. Short- and long-term production losses and repeatability of clinical mastitis in dairy cattle[J]. Journal of dairy science, 1993, 76 (9): 2561-2578.
    [3] HAGNESTAM C, EMANUELSON U, BERGLUND B. Yield losses associated with clinical mastitis occurring in different weeks of lactation [J]. Journal of dairy science, 2007, 90 (5): 2260-2270.
    [4] MUNGUBE EO, TENHAGEN BA, REGASSA F, et al. Reduced milk production in udder quarters with subclinical mastitis and associated economic losses in crossbred dairy cows in Ethiopia[J]. Tropical animal health and production, 2005, 37 (6): 503-512.
    [5]刘靖清,周兵,王君.奶牛乳房炎防治[J].畜禽业,2004 ,171(7) : 46-47
    [6]宣小龙,史远刚.奶牛乳腺防御研究进展[J].上海畜牧兽医通讯,2005,(2):2-4.
    [7] GULER L, OK U, GUNDUZ K, et al. Antimicrobial susceptibility and coagulase gene typing of Staphylococcus aureus isolated from bovine clinical mastitis cases in Turkey[J]. Journal of dairy science, 2005, 88 (9): 3149-3154.
    [8] NICKERSON SC, OWENS WE, BODDIE RL. Mastitis in dairy heifers: initial studies on prevalence and control[J]. Journal of dairy science, 1995, 78 (7): 1607-1618.
    [9] SUNG JM, LLOYD DH, LINDSAY JA. Staphylococcus aureus host specificity: comparative genomics of human versus animal isolates by multi-strain microarray[J]. Microbiology (Reading, England), 2008, 154 (Pt 7): 1949-1959.
    [10] PITKALA A, HAVERI M, PYORALA S, et al. Bovine mastitis in Finland 2001--prevalence, distribution of bacteria, and antimicrobial resistance[J]. Journal of dairy science, 2004, 87 (8): 2433-2441.
    [11] FOX LK, GAY JM. Contagious mastitis[J]. The Veterinary clinics of North America, 1993, 9 (3): 475-487.
    [12] SOL J, SAMPIMON OC, SNOEP JJ, et al. Factors associated withbacteriological cure after dry cow treatment of subclinical staphylococcal mastitis with antibiotics[J]. Journal of dairy science, 1994, 77 (1): 75-79.
    [13] AL SOUB H, CHACKO K. Tuberculous mastitis: a rare disease [J]. The British journal of clinical practice, 1996, 50 (1): 50-51.
    [14] O'HARA RJ, DEXTER SP, FOX JN. Conservative management of infective mastitis and breast abscesses after ultrasonographic assessment[J].The British journal of surgery, 1996, 83 (10): 1413-1414.
    [15] FRAGKOU IA, PAPAIOANNOU N, CRIPPS PJ, et al. Teat lesions predispose to invasion of the ovine mammary gland by Mannheimia haemolytica[J]. Journal of comparative pathology, 2007, 137 (4): 239-244.
    [16] OSTERMAN KL, RAHM VA. Lactation mastitis: bacterial cultivation of breast milk, symptoms, treatment, and outcome[J]. J Hum Lact, 2000, 16 (4): 297-302.
    [17] BROUILLETTE E, GRONDIN G, LEFEBVRE C, et al. Mouse mastitis model of infection for antimicrobial compound efficacy studies against intracellular and extracellular forms of Staphylococcus aureus[J]. Veterinary microbiology, 2004, 101 (4): 253-262.
    [18] TAYLOR DL, WARD PN, RAPIER CD, et al. Identification of a differentially expressed oligopeptide binding protein (OppA2) in Streptococcus uberis by representational difference analysis of cDNA[J]. Journal of bacteriology, 2003, 185 (17): 5210-5219.
    [19] DOBRZANSKI MJ, YANG TJ. Systemic profiles of antigen-specific lymphocytes in animals chronically exposed to staphylococcus antigen in the mammary region[J]. Comparative immunology, microbiology and infectious diseases, 1992, 15 (1): 41-46.
    [20] KELLEHER SL, LONNERDAL B. Immunological activities associated with milk [J]. Advances in nutritional research, 2001, 10: 39-65.
    [21] SOJKA DK, BRUNIQUEL D, SCHWARTZ RH, et al. IL-2 secretion by CD4+ T cells in vivo is rapid, transient, and influenced by TCR-specific competition[J]. J Immunol,2004, 172 (10): 6136-6143.
    [22] ALLUWAIMI AM, LEUTENEGGER CM, Farver TB et al. The cytokine markers in Staphylococcus aureus mastitis of bovine mammary gland[J]. Journal ofveterinary medicine, 2003, 50 (3): 105-111.
    [23] WEDLOCK DN, DOOLIN EE, PARLANE NA, et al. Effects of yeast expressed recombinant interleukin-2 and interferon-gamma on physiological changes in bovine mammary glands and on bactericidal activity of neutrophils [J]. The Journal of dairy research, 2000, 67 (2): 189-197.
    [24] RIOLLET C, RAINARD P, POUTREL B. Kinetics of cells and cytokines during immune-mediated inflammation in the mammary gland of cows systemically immunized with Staphylococcus aureus alpha-toxin[J]. Inflamm Res, 2000, 49 (9): 486-496.
    [25] TOLLERSRUD T, ZERNICHOW L, ANDERSEN SR, et al. Staphylococcus aureus capsular polysaccharide type 5 conjugate and whole cell vaccines stimulate antibody responses in cattle[J]. Vaccine, 2001, 19 (28-29): 3896-3903.
    [26] GUIDRY AJ, BERNING LM, HAMBLETON CN. Opsonization of Staphylococcus aureus by bovine immunoglobulin isotypes[J]. Journal of dairy science, 1993, 76 (5): 1285-1289.
    [27] OUTTERIDGE PM, LEE CS. The defence mechanisms of the mammary gland of domestic ruminants [J]. Progress in veterinary microbiology and immunology, 1988, 4: 165-196.
    [28] BARRIO MB, RAINARD P, GILBERT FB, et al. Assessment of the opsonic activity of purified bovine sIgA following intramammary immunization of cows with Staphylococcus aureus [J]. Journal of dairy science, 2003, 86 (9): 2884-2894.
    [29]冯春霞,豆卫.合理利用维生素和微量元素可降低奶牛乳房炎的发病率[J].中国草食动物, 2002,(06) .
    [30] NNRESH R.等编著,赵海珍译.奶牛患乳房炎期间血锌、铜和钴浓度的变化[J].中国奶牛,2002 , (3) :16-17
    [31]冯春霞,豆卫.合理利用维生素和微量元素可降低奶牛乳房炎的发病率[J].中国草食动物,2002 ,22 (6) :43-44.
    [32]朱仕铭.应用维生素E防止奶牛乳房炎[J].兽药与饲料添加剂,1998 ,3 (4) :25-27.
    [33]赵兴绪.奶牛乳腺炎防治[M].北京:金盾出版社,2007:66-67.
    [34]袁中彪,张琼.电解质在反刍动物中的应用[J].中国饲料,2004 ,(13) :29-31.
    [35]李成会,王继龙,朱莲英等.二氢吡啶在奶牛养殖中的应用研究[J].中国奶牛,2004 , (1) :21-23.
    [36]日穆德玛,巴音木仁,巴音等.甘草浸膏副产品复方添加剂对泌乳期奶牛的免疫功能影响的研究[J].中国兽医杂志,2000,99(2):9-12
    [37]王秋芳,欧阳五庆,阎守昌等.中草药添加剂对山羊泌乳性能的影响[J].畜牧兽医学报, 1993, (5):34-36
    [38]张淼涛,王秋芳,效梅等.复方中草药对隐性乳腺炎奶牛红细胞免疫功能的影响[J].中国兽医科技,2001,3(1):24-25.
    [39]李建国,桑润滋,张正珊等.热应激对奶牛生理常值、血液生化指标、繁殖及泌乳性能的影响[J].河北农业大学学报,1998 ,21(4) :69-75.
    [40] PANKEY JW, NICKERSON SC, BODDIE RL, et al. Effects of Corynebacterium bovis infection on susceptibility to major mastitis pathogens[J]. Journal of dairy science, 1985, 68 (10): 2684-2693.
    [41] MATTHEWS KR, KUMAR SJ, O'CONNER SA, et al. Genomic fingerprints of Staphylococcus aureus of bovine origin by polymerase chain reaction-based DNA fingerprinting[J]. Epidemiology and infection, 1994, 112 (1): 177-186.
    [42]李宣茹摘译.用疫苗预防奶牛乳腺炎[J].国外畜牧科技,1995,22(5):41-42.
    [43] FINCH RG..Introduction: standards of antibacterial performance[J]. Clin Microbiol Infect, 2004, 10 Suppl 2: 1-5.
    [44] MICHAELS RH, POZIVIAK CS. Countercurrent immunoelectrophoresis for the diagnosis of pneumococcal pneumonia in children[J]. The Journal of pediatrics, 1976, 88 (1): 72-74.
    [45] LEE JW, O'BRIEN CN, GUIDRY AJ, et al. Effect of a trivalent vaccine against Staphylococcus aureus mastitis lymphocyte subpopulations, antibody production, and neutrophil phagocytosis[J]. Canadian journal of veterinary research = Revue canadienne de recherche veterinaire, 2005, 69 (1): 11-18.
    [46]张礼华,袁永隆,郁杰.奶牛乳腺炎多联苗后海穴注射免疫试验研究[J].中兽医医药杂志,1996,(6):10-11.
    [47]尚佑军,郁杰,李宏胜等.奶牛乳腺炎多联苗免疫母鼠的乳腺抗感染试验研究[J].中国兽医科技,2001,31(11):30-31.
    [48] LEITNER G, YADLIN N, LUBASHEVSY E, et al. Development of aStaphylococcus aureus vaccine against mastitis in dairy cows. II. Field trial[J]. Veterinary immunology and immunopathology, 2003, 93 (3-4): 153-158.
    [49]张悦,戚晓红,冯振卿,免疫佐剂的研究进展[J].中国血吸虫病防治杂志,2004,16(3): 236-238.
    [50]林锋强,胡松华,胡奇林等.奶牛金黄色葡萄球菌乳房炎菌苗佐剂研究现状[J].动物医学进展,2004,256:49-51.
    [51] WYCKOFF JH, HOWLAND JL, SCOTT CM, et al, Confer AW. Recombinant bovine interleukin 2 enhances immunity and protection induced by Brucella abortus vaccines in cattle[J]. Veterinary microbiology, 2005, 111 (1-2): 77-87.
    [52]白吉庆,王小平.中药多糖的免疫佐剂作用[J].陕西中医学院学报. 2005, 28(4): 64-65.
    [53]胡北侠,黄艳艳.兽医常用免疫佐剂的研究概况与发展趋势[J].中国畜牧兽医.2005,32(3): 38-40.
    [54]燕海峰,邓缘,朱立军.家禽卵黄抗体作用机理及应用现状分析[J].兽医研究,2006,2006(9):28.
    [55]王宇.抗奶牛乳腺炎特异性IgY的制备及活性研究[D].大连:生物化工系,2006.
    [56]张才骏.遗传因素在牛产科疾病中的作用[J]动物医学进展,1991,(02):35-38.
    [57]李建斌,孙少华,田雨泽.中国荷斯坦牛乳中体细胞数变化规律的研究[J].家畜生态学报, 2006,(03) :23-25.
    [58]张利军,赵爱琴,周斌.影响奶牛乳腺炎抗性性状的遗传因素[J].上海畜牧兽医通讯, 2005,(02) :46-48.
    [59] RAHMAN MT, KOBAYASHI N, ALAM MM, et al. Genetic analysis of mec A homologues in Staphylococcus sciuri strains derived from mastitis in dairy cattle[J]. Microbial drug resistance (Larchmont, NY, 2005, 11 (3): 205-214.
    [60] ROOSEN S, EXNER K, PAUL S , et al. Bovine beta-defensins: identification and characterization of novel bovine beta-defensin genes and their expression in mammary gland tissue[J]. Mamm Genome, 2004, 15 (10): 834-842.
    [61] LAMOTE I, MEYER E, DE KETELAERE A, et al. Influence of sex steroids on the viability and CD11b, CD18 and CD47 expression of blood neutrophils from dairy cows in the last month of gestation[J]. Veterinary research, 2006, 37 (1): 61-74.
    [62] CHIANG YC, PAI WY, CHEN CY, et al. Use of primers based on the heat shock protein genes hsp70, hsp40, and hsp10, for the detection of bovine mastitis pathogens Streptococcus agalactiae, Streptococcus uberis and Streptococcus bovis[J]. Molecular and cellular probes, 2008, 22 (4): 262-266.
    [63] SHARMA BS, LEYVA I, SCHENKEL F, et al. Association of toll-like receptor 4 polymorphisms with somatic cell score and lactation persistency in Holstein bulls[J]. Journal of dairy science, 2006, 89 (9): 3626-3635.
    [64] IBEAGHA-AWEMU EM, LEE JW, IBEAGHA AE, et al. Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 and downstream TLR signaling molecules in bovine mammary epithelial cells[J]. Veterinary research, 2008, 39 (2): 11.
    [65] GOLDAMMER T, ZERBE H, MOLENAAR A, et al. Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle[J]. Clinical and diagnostic laboratory immunology, 2004, 11 (1): 174-185.
    [66] PATEL D, ALMEIDA RA, DUNLAP JR, et al. Bovine lactoferrin serves as a molecular bridge for internalization of Streptococcus uberis into bovine mammary epithelial cells[J]. Veterinary microbiology, 2009.
    [67] LIANG S, LI L, HSU WL, et al. Exploring the molecular design of protein interaction sites with molecular dynamics simulations and free energy calculations[J]. Biochemistry, 2009, 48 (2): 399-414.
    [68] LAHOUASSA H, RAINARD P, CARATY A, et al. Identification and characterization of a new interleukin-8 receptor in bovine species[J]. Molecular immunology, 2008, 45 (4): 1153-1164.
    [69] CHANG YF, NOVOSEL V, CHANG CF. The isolation and sequence of canine interleukin-8 receptor[J]. DNA Seq, 1999, 10 (3): 183-187.
    [70] MARTINEZ R, TORO R, MONTOYA F, et al. Bovine SLC11A1 3' UTR SSCP genotype evaluated by a macrophage in vitro killing assay employing a Brucella abortus strain[J]. Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie, 2008, 125 (4): 271-279.
    [71] DAVIES D, MEADE KG, HERATH S, et al. Toll-like receptor andantimicrobial peptide expression in the bovine endometrium[J]. Reprod Biol Endocrinol, 2008, 6: 53.
    [72] BAEKER TR, SIMONS ER, ROTHSTEIN TL. Cytochalasin induces an increase in cytosolic free calcium in murine B lymphocytes[J]. J Immunol, 1987, 138 (8): 2691-2697.
    [73] BERGONIER D, DE CREMOUX R, RUPP R, et al. Mastitis of dairy small ruminants[J]. Veterinary research, 2003, 34 (5): 689-716.
    [74]刘萍,郝满良,叶宝娜等.奶牛乳腺炎的研究进展[J].奶牛科技,2006, (1):20-22.
    [75] BANKOVA V. Recent trends and important developments in propolis research[J]. Evid Based Complement Alternat Med, 2005, 2 (1): 29-32.
    [76]金宁一,胡仲明,冯书章.新编人兽共患病学[M].北京:科学出版社,2007: 577-599.
    [77] KURODA M, OHTA T, UCHIYAMA I, et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus[J]. Lancet, 2001, 357 (9264): 1225-1240.
    [78]张涛,马筱玲,戴媛媛等.耐万古霉素金黄色葡萄球菌生物学特性改变对细菌鉴定和药敏结果的影响[J].中国感染控制杂志, 2007,(01):4-7.
    [79] KADHUM HJ, BALL HJ, OSWALD E, et al. Characteristics of cytotoxic necrotizing factor and cytolethal distending toxin producing Escherichia coli strains isolated from meat samples in Northern Ireland[J]. Food microbiology, 2006, 23 (5): 491-497.
    [80] GYLES CL. Shiga toxin-producing Escherichia coli: an overview[J]. Journal of animal science, 2007, 85 (13 Suppl): E45-62.
    [81] DE RHAM O, ANDREWS AT. Qualitative and quantitative determination of proteolysis in mastitic milks[J]. The Journal of dairy research, 1982, 49 (4): 587-596.
    [82] RAUS J, LOVE DN. Comparison of the affinities to bovine and human prothrombin of the staphylocoagulases from Staphylococcus intermedius and Staphylococcus aureus of animal origin[J]. Journal of clinical microbiology, 1991, 29 (3): 570-572.
    [83] FRENEY J, KLOOS WE, HAJEK V, et al. Recommended minimal standards for description of new staphylococcal species[J]. International journal of systematic bacteriology, 1999, 49 Pt 2: 489-502.
    [84] HAN HR, PAK S, GUIDRY A. Prevalence of capsular polysaccharide (CP) types of Staphylococcus aureus isolated from bovine mastitic milk and protection of S. aureus infection in mice with CP vaccine[J]. The Journal of veterinary medical science / the Japanese Society of Veterinary Science, 2000, 62 (12): 1331-1333.
    [85] CASTAGLIUOLO I, PICCININI R, BEGGIAO E, et al. Mucosal genetic immunization against four adhesins protects against Staphylococcus aureus-induced mastitis in mice[J]. Vaccine, 2006, 24 (20): 4393-4402.
    [86] SMELTZER MS, GILLASPY AF, PRATT FL, et al. Prevalence and chromosomal map location of Staphylococcus aureus adhesin genes[J].Gene, 1997, 196 (1-2): 249-259.
    [87] HEYING R, VAN DE GEVEL J, QUE YA, et al. Fibronectin-binding proteins and clumping factor A in Staphylococcus aureus experimental endocarditis: FnBPA is sufficient to activate human endothelial cells[J]. Thrombosis and haemostasis, 2007, 97 (4): 617-626.
    [88] GANESH VK, RIVERA JJ, SMEDS E, et al. A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics[J]. PLoS pathogens, 2008, 4 (11): e1000226.
    [89] KEANE FM, LOUGHMAN A, VALTULINA V, et al. Fibrinogen and elastin bind to the same region within the A domain of fibronectin binding protein A, an MSCRAMM of Staphylococcus aureus[J]. Molecular microbiology, 2007, 63 (3): 711-723.
    [90] O'CONNELL DP, NANAVATY T, MCDEVITT D, et al. The fibrinogen-binding MSCRAMM (clumping factor) of Staphylococcus aureus has a Ca2+-dependent inhibitory site[J]. The Journal of biological chemistry, 1998, 273 (12): 6821-6829.
    [91] ROZALSKA B, WADSTROM T. Interaction of fibronectin and fibronectin binding protein (FnBP) of Staphylococcus aureus with murine phagocytes and lymphocytes[J]. FEMS microbiology immunology, 1992, 4 (6): 305-315.
    [92] MCDEVITT D, FRANCOIS P, VAUDAUX P, et al. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus[J]. Molecular microbiology, 1994, 11 (2): 237-248.
    [93] MCDEVITT D, NANAVATY T, HOUSE-POMPEO K, et al. Characterizationof the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen[J]. European journal of biochemistry / FEBS, 1997, 247 (1): 416-424.
    [94] DEIVANAYAGAM CC, PERKINS S, DANTHULURI S, et al. Crystallization of ClfA and ClfB fragments: the fibrinogen-binding surface proteins of Staphylococcus aureus[J]. Acta crystallographica, 1999, 55 (Pt 2): 554-556.
    [95] HARTFORD OM, WANN ER, HOOK M, et al. Identification of residues in the Staphylococcus aureus fibrinogen-binding MSCRAMM clumping factor A (ClfA) that are important for ligand binding[J]. The Journal of biological chemistry, 2001, 276 (4): 2466-2473.
    [96] ROZALSKA B, SAKATA N, WADSTROM T. Staphylococcus aureus fibronectin-binding proteins (FnBPs) [J]. Identification of antigenic epitopes using polyclonal antibodies. Apmis, 1994, 102 (2): 112-118.
    [97] SUN Q, SMITH GM, ZAHRADKA C, et al. Identification of D motif epitopes in Staphylococcus aureus fibronectin-binding protein for the production of antibody inhibitors of fibronectin binding[J]. Infection and immunity, 1997, 65 (2): 537-543.
    [98] WADSTROM T. Molecular aspects on pathogenesis of wound and foreign body infections due to staphylococci[J]. Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene, 1987, 266 (1-2): 191-211.
    [99] VISAI L, XU Y, CASOLINI F, et al. Monoclonal antibodies to CNA, a collagen-binding microbial surface component recognizing adhesive matrix molecules, detach Staphylococcus aureus from a collagen substrate[J]. The Journal of biological chemistry, 2000, 275 (51): 39837-39845.
    [100] RICH RL, KREIKEMEYER B, OWENS RT, et al. Ace is a collagen-binding MSCRAMM from Enterococcus faecalis[J]. The Journal of biological chemistry, 1999, 274 (38): 26939-26945.
    [101]尚佑军,郁杰,李宏胜等.奶牛乳腺炎多联苗免疫母鼠的乳腺抗感染试验研究[J].中国兽医科技,2001,31(11):30-31.
    [102] LEITNER G, LUBASHEVSKY E, GLICKMAN A, et al. Development of a Staphylococcus aureus vaccine against mastitis in dairy cows. I. Challenge trials[J]. Veterinary immunology and immunopathology, 2003, 93 (1-2): 31-38.
    [103] HENSEN S M,PAVICIC M J A M P,LOHUIS J A C M, et al.Use of BovinePrimary Mammary Epithelial Cell for the Comparison of Adherence and Invasion Ability of Staphylococcus aureus stains[J]. J Dairy Sci,2000,83(3):418-429.
    [104] O’BRIEN C N,GUIDRY A J,ATTOM A F, et al. Production of antibodies to Staphylococcus aureus serotype 5 ,8 and 336 using poly(DL-lactide- co-glycoli-de) microspheres[J].J Dairy Sci ,2000,83:1758-1766.
    [105] ALBUS A, FOURNIER JM, WOLZ C, et al. Staphylococcus aureus capsular types and antibody response to lung infection in patients with cystic fibrosis[J]. Journal of clinical microbiology, 1988, 26 (12): 2505-2509.
    [106] KAMPEN AH, TOLLERSRUD T, LUND A. Staphylococcus aureus capsular polysaccharide types 5 and 8 reduce killing by bovine neutrophils in vitro[J]. Infection and immunity, 2005, 73 (3): 1578-1583.
    [107] HAN HR, PAK SI, KANG SW, et al. Capsular polysaccharide typing of domestic mastitis-causing Staphylococcus aureus strains and its potential exploration of bovine mastitis vaccine development. I. Capsular polysaccharide typing, isolation and purification of the strains[J]. Journal of veterinary science (Suwon-si, Korea), 2000, 1 (1): 53-60.
    [108] TUCHSCHERR LP, BUZZOLA FR, ALVAREZ LP, et al. Capsule-negative Staphylococcus aureus induces chronic experimental mastitis in mice [J]. Infection and immunity, 2005, 73 (12): 7932-7937.
    [109] LEE CY. Association of staphylococcal type-1 capsule-encoding genes with a discrete genetic element[J]. Gene, 1995, 167 (1-2): 115-119.
    [110] ROZALSKA B, WADSTROM T. Protective opsonic activity of antibodies against fibronectin-binding proteins (FnBPs) of Staphylococcus aureus[J]. Scandinavian journal of immunology, 1993, 37 (5): 575-580.
    [111] MAMO W, JONSSON P, FLOCK JI, et al. Vaccination against Staphylococcus aureus mastitis: immunological response of mice vaccinated with fibronectin-binding protein (FnBP-A) to challenge with S. aureus[J]. Vaccine, 1994, 12 (11): 988-992.
    [112] WILLIAMS RJ, HENDERSON B, NAIR SP. Staphylococcus aureus fibronectin binding proteins A and B possess a second fibronectin binding region that may have biological relevance to bone tissues[J]. Calcified tissue international, 2002, 70 (5): 416-421.
    [113] HAUCK CR, OHLSEN K. Sticky connections: extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus[J]. Current opinion in microbiology, 2006, 9 (1): 5-11.
    [114] CHAHROUDI A, GARBER DA, REEVES P, et al. Differences and similarities in viral life cycle progression and host cell physiology after infection of human dendritic cells with modified vaccinia virus Ankara and vaccinia virus[J]. Journal of virology, 2006, 80 (17): 8469-8481.
    [115] FERRARI G, KOSTYU DD, COX J, et al. Identification of highly conserved and broadly cross-reactive HIV type 1 cytotoxic T lymphocyte epitopes as candidate immunogens for inclusion in Mycobacterium bovis BCG-vectored HIV vaccines[J]. AIDS research and human retroviruses, 2000, 16 (14): 1433-1443.
    [116] HANKE T, BARNFIELD C, WEE EG, et al. Construction and immunogenicity in a prime-boost regimen of a Semliki Forest virus-vectored experimental HIV clade A vaccine[J]. The Journal of general virology, 2003, 84 (Pt 2): 361-368.
    [117] REINOSO E, MAGNANO G, GIRAUDO J, et al. Bovine and rabbit models for the study of a Staphylococcus aureus avirulent mutant strain, RC122[J]. Canadian journal of veterinary research = Revue canadienne de recherche veterinaire, 2002, 66 (4): 285-288.
    [118] FERNANDO GJ, STENZEL DJ, TINDLE RW, et al. Peptide polymerisation facilitates incorporation into ISCOMs and increases antigen-specific IgG2a production[J]. Vaccine, 1995, 13 (15): 1460-1467.
    [119] ESTCOURT MJ, LETOURNEAU S, MCMICHAEL AJ, et al. Vaccine route, dose and type of delivery vector determine patterns of primary CD8+ T cell responses[J]. European journal of immunology, 2005, 35 (9): 2532-2540.
    [120] KIMMAN TG, VANDEBRIEL RJ, HOEBEE B. Genetic variation in the response to vaccination [J]. Community genetics, 2007, 10 (4): 201-217.
    [121] ISRAEL BA, HERBER R, GAO Y, et al. Induction of a mucosal barrier to bovine herpesvirus 1 replication in cattle[J]. Virology, 1992, 188 (1): 256-264.
    [122] SUGIURA D, AIDA S, DENDA-NAGAI K, et al. Differential effector mechanisms induced by vaccination with MUC1 DNA in the rejection of coloncarcinoma growth at orthotopic sites and metastases[J]. Cancer science, 2008, 99 (12): 2477-2484.
    [123] GALVIN TA, MULLER J, KHAN AS. Effect of different promoters on immune responses elicited by HIV-1 gag/env multigenic DNA vaccine in Macaca mulatta and Macaca nemestrina[J]. Vaccine, 2000, 18 (23): 2566-2583.
    [124] XU W, CHU Y, ZHANG R, et al. Endoplasmic reticulum targeting sequence enhances HBV-specific cytotoxic T lymphocytes induced by a CTL epitope-based DNA vaccine[J]. Virology, 2005, 334 (2): 255-263.
    [125] GUPTA PK, SHARMA S, WALUNJ SS, et al. A DNA vaccine that encodes rabies virus glycoprotein lacking transmembrane domain enhances antibody response but not protection[J]. Acta virologica, 2006, 50 (2): 87-92.
    [126]赦文波,罗树红,余新炳.核酸疫苗-寄生虫疫苗的新希望[J].国外医学寄生虫,病学分册,1996,( 5):197-199.
    [127]孙树汉.核酸苗[M]上海:第三军医大学出版社,2000.
    [128] YANKUCKAS M, NAKAO M, FUKUNAGA M. Genetic diversity and the absence of regional differences of Borrelia garinii as demonstrated by ospA and ospB gene sequence analysis[J]. Microbiology and immunology, 1999, 43 (12): 1097-1102.
    [129]中西守.蛋白质核酸酵素,1993,38(7):1209.
    [130] MCCORMACK WT, TJOELKER LW, THOMPSON CB. Avian B-cell development: generation of an immunoglobulin repertoire by gene conversion[J]. Annual review of immunology, 1991, 9: 219-241.
    [131] ANDERSON RW, BENNINK JR, YEWDELL JW, et al. Influenza basic polymerase 2 peptides are recognized by influenza nucleoprotein-specific cytotoxic T lymphocytes[J]. Molecular immunology, 1992, 29 (9): 1089-1096.
    [132] ULMER JB, DECK RR, DEWITT CM, et al. Generation of MHC class I-restricted cytotoxic T lymphocytes by expression of a viral protein in muscle cells: antigen presentation by non-muscle cells[J]. Immunology, 1996, 89 (1): 59-67.
    [133] MICHEL ML, LOIRAT D. DNA vaccines for prophylactic or therapeutic immunization against hepatitis B[J]. Intervirology, 2001, 44 (2-3): 78-87.
    [134] TODA M, KASAI M, HOSOKAWA H, et al. DNA vaccine using invariant chain gene for delivery of CD4+ T cell epitope peptide derived from Japanese cedarpollen allergen inhibits allergen-specific IgE response[J]. European journal of immunology, 2002, 32 (6): 1631-1639.
    [135] WANG S, BARTIDO S, YANG G, et al. A role for a melanosome transport signal in accessing the MHC class II presentation pathway and in eliciting CD4+ T cell responses[J]. J Immunol, 1999, 163 (11): 5820-5826.
    [136] RICE J, DOSSETT ML, OHLEN C, et al. DNA fusion gene vaccination mobilizes effective anti-leukemic cytotoxic T lymphocytes from a tolerized repertoire[J]. European journal of immunology, 2008, 38 (8): 2118-2130.
    [137] NCHINDA G, KUROIWA J, OKS M, et al. The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells[J]. The Journal of clinical investigation, 2008, 118 (4): 1427-1436.
    [138] MICHAEL A. The use of cytokines and chemokines as genetic adjuvants for plasmid DNA vaccines[J ]. Clinical and Applied Immunology Reviews. 2002, 2: 255–287.
    [139] LEMIEUX P. Technological advances to increase immunogenicity of DNA vaccines[J]. Expert review of vaccines, 2002, 1 (1): 85-93.
    [140] CHABALGOITY JA, DOUGAN G, MASTROENI P, et al. Live bacteria as the basis for immunotherapies against cancer[J]. Expert review of vaccines, 2002, 1 (4): 495-505.
    [141] CHEN D, MAA YF, HAYNES JR. Needle-free epidermal powder immunization[J]. Expert review of vaccines, 2002, 1 (3): 265-276.
    [142] ADACHI S, ROTHENBERG EV. Cell-type-specific epigenetic marking of the IL2 gene at a distal cis-regulatory region in competent, nontranscribing T-cells[J]. Nucleic acids research, 2005, 33 (10): 3200-3210.
    [143] HAUER AD, UYTTENHOVE C, DE VOS P, et al. Blockade of interleukin-12 function by protein vaccination attenuates atherosclerosis[J]. Circulation, 2005, 112 (7): 1054-1062.
    [144] AGADJANYAN MG, GHOCHIKYAN A, PETRUSHINA I, et al. Prototype Alzheimer's disease vaccine using the immunodominant B cell epitope from beta-amyloid and promiscuous T cell epitope pan HLA DR-binding peptide[J]. J Immunol, 2005, 174 (3): 1580-1586.
    [145]代晓霞,周亮,楚雍烈等.白细胞介素18的研究进展.陕西肿瘤医学,2001,9(2):141-143
    [146] JIMBO J, SATO K, HOSOKI T, et al. Induction of leukemia-specific antibodies by immunotherapy with leukemia-cell-derived heat shock protein 70[J]. Cancer science, 2008, 99 (7): 1427-1434.
    [147] LIN TW, CARDENAS L, SOSLOWSKY LJ. Tendon properties in interleukin-4 and interleukin-6 knockout mice[J]. Journal of biomechanics, 2005, 38 (1): 99-105.
    [148] RICHTIG E, SOYER HP, POSCH M, et al. Prospective, randomized, multicenter, double-blind placebo-controlled trial comparing adjuvant interferon alfa and isotretinoin with interferon alfa alone in stage IIA and IIB melanoma: European Cooperative Adjuvant Melanoma Treatment Study Group[J]. J Clin Oncol, 2005, 23 (34): 8655-8663.
    [149] BOWERSOCK TL,MARTIN S. Vaccine delivery to animals [J]. Advanced Drug Delivery Reviews , 1999,38 (2) : 167-194.
    [150] COX JC , COULTER AR. Adjuvants a classification and review of their modes of action[J]. Vaccine , 1997 , 15 (1) : 48-56.
    [151] ZLOT NIK A , YOSHIE O. Chemokines : a new classification system and t heir role in immunity [J]. Immunity , 2000 , 12(1) : 121-127.
    [152] TSUJI T, FUKUSHIMA J, HAMAJIMA K , et al. H IV-l specific cell-medited immunity is enhanced by coinoculation of TCA3 exp ression plasmid with DNA vaccine [J]. Immunol, 1997, 90: 126.
    [153] MERCK E , GAILLARD C, SCUILLER M, et al. Ligation of the FcRgamma chain- associated human osteoclast- associated receptor enhances the proinflammatory responses of human monocytes and neutrophils[J]. J Immunol, 2006, 176(5): 3149- 3156.
    [154] HOEFER I E, GRUNDMANN S, ROYEN V N, et al. Leukocyte subpopulations and arteriogenesis: specific role of monocytes, lymphocytes and granulocytes [J]. Atherosclerosis, 2005, 181 (2):285- 293.
    [155]王健,赵金红,江水清等.丙型肝炎病毒慢性感染与IL -8、IP-10、M ig表达相关性研究[J].第三军医大学学报, 2006, 28(13), 1420-1423
    [156]魏战勇,崔保安,黄克和.DNA疫苗免疫佐剂的研究及应用[J].畜牧与兽医,2005,37(4): 48-50
    [157] DELIYANNIS G, BOYLE J S, BRADY J L, et al. A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge [J]. Proc Acad Sci USA, 2000, 97 (12): 6676-6680.
    [158]邹丽容,陈则. DNA疫苗免疫佐剂的研究进展[J].激光生物学报,2006,11(5): 395-398
    [159] IHATA A , WATABE S, SASAK I S, et al. Immunomodulatory effect of a plasm id ex ressing CD40 ligand on DNA vaccinat ion against human immunodeficiency virus type-1 [J]. Immuno logy, 1999, 98 (3): 436-442.
    [160]黄黎,李成文.脂质体在医学中的应用进展[J ] .国际生物制品学杂志, 2006 , 29 (3) : 130-132
    [161] SOMROOP S, TONGTAWE P, CHAISRI U, el at. Traffic of antibody-secreting cells after immunization with a liposome-associated, CpG-ODN-adjuvanted oral cholera vaccine [J]. Asian Pac J Allergy Immunol, 2006 , 24(4): 229-238.
    [162]刘学丽,马洁,张叔人.CpG ODN的免疫活性及其在肿瘤治疗中的作用[J] .中国肿瘤生物治疗杂志, 2006 , 13(2) : 147-149
    [163] GREEN T D, MONTEFIORI D C, ROSS T M, et al. Enhancement of antibodies to the human immunodeficiency virus type 1 envelope by using the molecular adjuvant C3d[J]. Viro, 2003,77( 3) : 2046- 2055.
    [164] DEMPSEY P W, ALLISON S, AKKARAJU C, et al. C3d of complement as a molecular adjuvant : bridging innate and acquired immunity[J]. Science, 1996, 271( 5247) : 348- 350.
    [165] ROSS T M, XU Y, RICK A, et al. C3d enhancement of antibodies to hemagglutinin accelerates protection against influenza virus challenge[J]. Nat. Immunol, 2000, 1( 2) : 127- 131
    [166]王焱冰,李轶杰,张富.分子佐剂C3d增强草原兔尾鼠卵透明带3DNA疫苗的免疫应答[J].分子细胞生物学报, 2006, 39(4): 297-302
    [167] ARRINGTON J , BRAUN R P, et al. Plasmid vectors encoding cholera toxin or the heat-liable enterotoxin from Escherichia coli are strong adjuvant for DNA vaccine [J]. J V irol, 2002, 76 (9) : 4536-4546.
    [168] MCDEVITT ,FRANCOIS P ,VAUDAUX P, et al.Molecular characterization of the clumoing factor (fibrinogen receptor) of Staphylococcus aureus[J].Mol Microbiol ,1994 ,(11)2 :237.
    [169]双金,嘎尔迪,包鹏云等.奶牛隐性乳房炎的发生规律及其致病菌的分离鉴别与药物敏感性试验[J].内蒙古农业大学学报(自然科学版),2001,22, 1:18-23.
    [170] NOUR EL-DIN AN, SHKRETA L, TALBOT BG, et al.DNA immunization of dairy cows with the clumping factor A of Staphylococcus aureus. Vaccine [J], 2006, 24 (12): 1997-2006.
    [171]史冬艳,郝永清.奶牛乳房炎金黄色葡萄球菌疫苗研究进展[J].中国兽药杂志, 2007 ,41(2) :46~49.
    [172] HENSEN S M ,PAVICIC M J ,LOHUIS J A, et al.Use of Bovine Primary Mammary Epithelial Cell for the Comparison of Adherence and Invasion Ability of Staphylococcus aureus stains[J].J Dairy Sci ,2000 ,83(3) :418-429.
    [173] RENNERMALM A, LI YH, BOHAUFS L, et al. Antibodies against a truncated Staphylococcus aureus fibronectin-binding protein protect against dissemination of infection in the rat[J]. Vaccine, 2001, 19 (25-26): 3376-3383.
    [174] AART L ,PIET J M ,NUIJTENL.The Fibroneetin Binding Proteins of Staphylococcus aureus Are Requiredand Invasion of Bovine Mammary Gland Cells[J].FEMS Microbiology Lettres ,1999 ,1(180) :103-109.
    [175] THERRIEN R, LACASSE P, GRONDIN G, et al. Lack of protection of mice against Staphylococcus aureus despite a significant immune response to immunization with a DNA vaccine encoding collagen-binding protein[J]. Vaccine, 2007, 25 (27): 5053-5061.
    [176]曹雷,李守军.奶牛乳房炎疫苗的研究进展[J].黑龙江畜牧兽医, 2006, (8): 30-32.
    [177] SHKRETA L, TALBOT BG, DIARRA MS, et al. Immune responses to a DNA/protein vaccination strategy against Staphylococcus aureus induced mastitis in dairy cows[J]. Vaccine, 2004, 23 (1): 114-126.
    [178] ZHOU H, XIONG ZY, LI HP, et al. An immunogenicity study of a newly fusion protein Cna-FnBP vaccinated against Staphylococcus aureus infections in a mice model[J]. Vaccine, 2006, 24 (22): 4830-4837.
    [179] FOSTER TJ, HOOK M. Surface protein adhesins of Staphylococcus aureus [J]. Trends in microbiology, 1998, 6 (12): 484-488.
    [180] KERRO-DEGO O, PRYSLIAK T, POTTER AA, et al. DNA-protein immunization against the GapB and GapC proteins of a mastitis isolate of Staphylococcus aureus[J]. Veterinary immunology and immunopathology, 2006, 113 (1-2): 125-138.
    [181] PEREZ-CASAL J, PRYSLIAK T, KERRO-DEGO O, et al. Immune responses to a Staphylococcus aureus GapC/B chimera and its potential use as a component of a vaccine for S. aureus mastitis[J]. Veterinary immunology and immunopathology, 2006, 109 (1-2): 85-97.
    [182] ZHU YM, MIAO JF, FAN HJ, et al. Protective effect of CpG-DNA against mastitis induced by Staphylococcus aureus infection in a rat model[J].International immunopharmacology, 2007, 7 (4): 435-443.
    [183] OHWADA A, SEKIYA M, HANAKI H, et al. DNA vaccination by mecA sequence evokes an antibacterial immune response against methicillin-resistant Staphylococcus aureus[J]. The Journal of antimicrobial chemotherapy, 1999, 44 (6): 767-774.
    [184] ROTH DM, SENNA JP, MACHADO DC. Evaluation of the humoral immune response in BALB/c mice immunized with a naked DNA vaccine anti-methicillin-resistant Staphylococcus aureus[J]. Genet Mol Res, 2006, 5 (3): 503-512.
    [185] SHINEFIELD HR, Black S.Prevention of Staphylococcus aureus infections: advances in vaccine development [J]. Expert Rev. Vaccines, 2005, 4(5): 669-676
    [186] PATTI JM, ALLEN BL, MCGAVIN MJ, HOOK M. MSCRAMM-mediated adherence of microorganisms to host tissues [J]. Annu Rev Microbiol 1994;48:585–617
    [187] MCDEVITT D,FRANCOIS P,VAUDAUX P, et al. Identification of the ligand-binding domain of the surface-located fibrinogen receptor (clumping factor) of Staphylococcus aureus [J]. Mol Microbiol 1995;16:895–907.
    [188]吴玉章.免疫识别、分子设计与抗原工程[J].第三军医大学学报,2000, 22(10): 917-918.
    [189] CLEWLEY J P.The polymerase chain reaction, a review of the practical limitations for human immunodeficiency virus diagnosis[J]. J Virol Methods, 1989, 25:179-187.
    [190]张凤笑,石磊.PCR技术在金黄色葡萄球菌中的研究进展[J].现代食品科技, 2008, 24(10): 1042-1047.
    [191] GAO A, ODUMERU J, RAYMOND M, et al. Comparison of milk culture, direct and nested polymerase chain reaction (PCR) with fecal culture based on samples from dairy herds infected with Mycobacterium avium subsp. Paratuberculosis [J]. Can J Vet Res, 2009, 73: 58-64.
    [192] MA MX, JIN NY, WANG ZG, et al.Construction and immunogenicity of recombinant fowlpox vaccines coexpressing HA of AIV H5N1 and chicken IL18[J]. Vaccine, 2006, 24: 4304-4311.
    [193]金光辉,田梅,金顺子等.小鼠白细胞介素18基因克隆、测序及重组质粒pIRES-IL18-B7.1的构建[J].吉林大学学报(医学版), 2003, 29(2): 125-127.
    [194]郭文龙,朱瑞良.基因工程亚单位疫苗的研究现状及发展动态[J].国外畜牧学, 2008, 28(4): 72-74.
    [195]戎晶晶,刁振宇,周国华.大肠杆菌表达系统的研究进展[J].药物生物技术. 2005,12 (6) :416-420.
    [196]童克中.基因及其表达(第二版) [M]. 2001,北京:科学出版社.
    [197]肖洁,郭刚,邹全明.提高大肠杆菌分泌表达重组蛋白的研究进展[J].微生物学杂志, 2007, 27(2): 73-77.
    [198] JOSEPH S, DAVID W R. Molecular cloning: A Laboratory Manual, 3rd ed [M]. 2002, Cold Spring Harbor Laboratory.
    [199]沈关心,周当麟,主编.现代免疫学实验技术(第2版) [M]. 2002,武汉:湖北科学技术出版社.
    [200]汪家政,范明.主编.蛋白质技术手册[M]. 2000,北京:科学出版社
    [201]赵嘉惠,张华屏,王春芳.MTT法在检测细胞增殖方面的探讨[J].山西医科大学学报, 2007, 38(3): 262-263.
    [202] DARIASZ S, SARAH J S, RIEHARD H, et al. An improved MTT assay [J]. J Immunol Methods. 1993, 157: 203.
    [203] MOSMANN T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays.J Immunol Methods [J]. 1983, (1~2): 55-63.
    [204] AUSUBEL F M,主编.马学军,舒跃龙,译校.精编分子生物学实验指南(第四版)[M].2005,北京:科学出版社.
    [205] BREWER J M., ALEXANDER J. Cytokines and the mechanisms of action of vaccine adjuvants[J]. Cytokines Cell Mol Ther. 1997, 3: 233-246.
    [206] DONG P, BRUNN C, HO R.J. Cytokines as vaccine adjuvants. Current status and potential applications[J]. Pharm Biotechnol. 1995, 6: 625-643.
    [207]李子健.HIV预防/治疗性基因工程疫苗的构建及实验免疫研究[D].长春:吉林大学, 2004.
    [208] OKAMURA H, TSUTSI H, KOMATSU T, et al., Cloning of a new cytokine that induces IFN-gamma production by T cells[J]. Nature, 1995, 378: 88-91.
    [209] USHIO S, NAMBA M, OKURA T, et al. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein[J]. J Immunol. 1996, 156: 4274-4279.
    [210] NEWMAN MJ. Heterologous prime-boost vaccination strategies for HIV-1:augmenting cellular immune responses[J]. Curr Opin Investig Drugs, 2002, 3(3): 374-378.
    [211] MCSHANE H. Prime-boost immunization strategies for infectious diseases[J]. Curr Opin Mol Ther, 2002, 4(1): 23-27.
    [212] RAMSAY AJ. DNA vaccination against virus infection and enhancement of antiviral immunity following consecutive immunisation with DNA and viral vectors [J]. Immunol Cell Biol, 1997, 75(4): 382-388.
    [213] HE X W, SUN S H, HU Z L, et al. Augmenetd humoral and cellular immune responses of a hepatitis B DNA vaccine encoding HBsAg by Protein boosting [J]. Vaccine, 2005, 23:1649-1656.
    [214] SCHIRMBECK R,REIMANN J.Alternative processing of endogenous or exogenous antigens extends the immunogenic, H-2 class I-restricted peptide repertoire [J]. Mol Immunol, 2002, 39: 249-259
    [215] ROMAN M, MARTIN-OROZCO E, GOODMAN J S, et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants[J]. Nat Med, 1997, 3: 849-854.
    [216]李德安.乙肝表面抗原DNA疫苗初免-蛋白疫苗加强免疫策略增强免疫反应的蛋白质组学分析[D].上海:第二军医大学, 2006.
    [217] MACLAUGHLIN F C, MUMPER RJ, WANG J J, et al. Chitosan and deploy merized chitosan oligomers as condensing carrier for in vivo plasmid delivery[J]. J Controlled Release, 1998, 56: 259-272
    [218] VELINOVA M, READ N, KIRBY C et al. Morphological observations on the fate of liposomes in the regional lymphs nodes after footpad injection into rats[J]. Biochim Biophys Acta, 1996, 1299 (2): 207-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700