BODIPY类和过渡金属配合物类发光体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
BODIPY荧光染料是近二十几年发展起来的,并受到普遍关注的一种比较新的荧光物质,由于其具有摩尔吸光系数大,荧光量子产率高,荧光峰的半峰宽狭窄,对溶剂极性和pH值不敏感,激发和发射波长处于可见光区(大于500nm),光化学性质比较稳定等独特的光化学光物理性能,因而在荧光染料中占有越来越重要的地位。本论文所研究的BODIPY染料(1-4)由鲁汶大学合作方合成提供,我们对其进行了系统的研究,具体分为三部分:
     第一章:详细阐述了荧光的基础知识和荧光染料的发展状况以及金属离子荧光分子探针的研究进展,最后简介了溶剂化效应和溶剂化效应中常用的ETN(30)、Catalan和Kamlet-Taft等溶剂化参数。
     第二章:分别介绍了3个BODIPY荧光染料的晶体结构,研究了它们在20个不同溶剂中紫外吸收和荧光发射的光谱学性质及溶剂化效应。结果发现3个BODIPY荧光染料的结构特点是从非刚性向半刚性和全刚性有规律的过渡,并且详细阐述了3个BODIPY荧光染料之间性质的联系与区别:
     以非刚性的化合物{3,5-双-(2-溴苯氧基)-4,4-二氟-8-(4-甲苯基)-4-硼-3a,4a-二氮杂-二吡咯亚甲基}1为起始原料,采用钯催化下形成分子内香豆酮的方法,以较高的总产率合成了另外两个刚性结构渐增的BODIPY染料2和3。由于含苯氧基的基团旋转受到限制,从而导致了染料2和3与非刚性的染料1相比,吸收和发射光谱移向长波长方向,并且有着更高的荧光量子产率。X射线衍射分析表明在1→2→3系列中,发色团逐渐扩充的平面性与其结构限制性的逐步增长是一致的,从而能够解释吸收和发射光谱出现的较大的红移。
     第三章:合成了一个以二(2-吡啶甲基)胺(DPA)为螯合剂,BODIPY作为发光基团的新颖的金属离子荧光化学传感器—4,4-二氟-8-(4-甲苯基)-5-(苯乙炔基)-3-[双2-吡啶亚甲基]-4-硼-3a,4a-二氮杂-二吡咯亚甲基(4),并对其进行了光谱学及光物理研究。Catalan溶剂参数通过4的吸收和发射光谱位移对溶剂效应进行了很好的描述。表明了溶剂偶极性是影响染料4的吸收和发射最大值的主要因素。在乙腈溶液中通过吸收和荧光滴定研究了几种金属离子的配位性能和质子化作用。该BODIPY染料能够与几种过渡金属离子(Ni2+, Cu2+, Zn2+)和重金属离子(Cd2+, Hg2+)形成1:1的配合物,其吸收和荧光光谱产生了较大的红移,除Ni2+外,其他离子均产生阳离子诱导的荧光增强效应。同时对该化合物也进行了质子化(氢离子)(pKa2.46)影响的研究,质子化导致其吸收和荧光光谱的红移。
     第四章:本章研究了一价铜的发光配合物[Cu(DPPZ)(PPh3)2]BF4的合成、晶体结构、光物理性质及电子性质。通过将[Cu(DPPZ)(PPh3)2]BF4嵌入PS的高分子载体基质,发现发射信号对于不同的氧气浓度比较敏感,最大灵敏度为3.78。我们把这个灵敏度归属于配体DPPZ大的共轭平面结构,因为它增加了激发态电子的数量,更容易使氧影响[Cu(DPPZ)(PPh3)2]BF4的激发态。
BODIPY fluorescent dye has been developed for over twenty years and it is a new fluorescent compound that is took into account widely. It is holding a more important position among fluorescent dyes for its particular photochemical and photophysical property. For example, high fluorescence quantum yield, high molar extinction coefficient, narrow absorption and emission band, having a thick skin to solvent polarity and pH value, high photostability, etc. This paper chooses four more recent BODIPY fluorescent dyes as subject investigated which are researched systematically, specifically the paper comprises of three parts:
     In chapter one, we elaborate basic knowledge of fluorescence and developmental status of fluorescent dyes and research progress of fluorescent molecular probes of metal ions, In the end introduce briefly solvent effect and ETN(30)、Catalan and Kamlet-Taft parameters, respectively.
     In chapter two, we introduce crystallographic structures and spectrographic properties of absorption and fluorescence emission in twenty different solvents and solvent effects of three BODIPY fluorescent dyes, respectively. The structural features of three BODIPY fluorescent dyes is organized transition from nonrigid to semi-rigid and rigidness. At last, the relations and differences of properties of three BODIPY fluorescent dyes are introduced in detail:
     Starting from the conformationally unconstrained compound3,5-di-(2-bromo phenoxy)-4,4-difluoro-8-(4-methylphenyl)-4-bora-3a,4a-diaza-s-indacene (1), two BODIPY dyes (2and3) with increasingly rigid conformations were synthesized in outstanding total yields via palladium catalyzed intramolecular benzofuran formation. Restricted bond rotation of the phenoxy fragments leads to dyes2and3which absorb and fluoresce more intensely at longer wavelengths and have higher fluorescence quantum yields relative to the unconstrained dye1. X-ray diffraction analysis shows the progressively more extended planarity of the chromophore in line with the increasing conformational restriction in the series1→2→3, which explains the larger red shifts of the absorption and emission spectra.
     In chapter three, a novel pH and metal ion-sensitive fluorescent chemosensor-4,4-difluoro-8-(4-methylphenyl)-5-(phenylethynyl)-3-[bis(pyridin-2-ylmethyl)amino]-4-bora-3a,4a-diaza-.s-indacene (4)-based on the BODIPY platform with di-(2-picolyl)-amine as chelator has been synthesized and spectroscopically/photophysically characterized. The generalized Catalan solvent scales are the best for describing the solvent-dependent vis absorption and fluorescence emission shifts of4and indicate that solvent dipolarity is the primary factor affecting the solvent-dependent absorption and emission maxima. Complex formation with several metal ions as well as protonation is investigated in acetonitrile as solvent via spectrophotometric and fluorometric titrations. The BODIPY dye forms1:1complexes with several transition-metal (Ni2+, Cu2+, Zn2+) and heavy-metal (Cd2+, Hg2+) ions, producing large bathochromic shifts in the vis absorption and fluorescence spectra and, except for Ni2+, cation-induced fluorescence amplifications. The compound also undergoes a reversible (de)protonation reaction (pKa2.46) and shows red spectral shifts upon protonation.
     In chapter four, we study on synthesis、crystal structure、Photophysical Performance and electronic property of Luminescent Cu(I) Complex [Cu(DPPZ)(PPh3)2]BF4. By embedding [Cu(DPPZ)(PPh3)2]BF4into a polymer supporting matrix of PS, the emission signal is found to be sensitive towards varying oxygen concentrations, with a maximum sensitivity of3.78. We attribute this sensitivity to the large conjugation plane in DPPZ ligand which can increase the population of excited state electrons and favor the oxygen attack on [Cu(DPPZ)(PPh3)2]BF4excited state.
引文
[1]Du H,DisneyM D Miller B L,and Krauss T D,Hybridization-Based Unquenching of DNA Hairpins on Au Surfaces:Prototypical " Molecular Beacon " Biosensors.J.Am.Chem.Soc.,2003.125(15):4012-4013.
    [2]Schulman S G. Fluorescence and Phosphorescence Spectroscopy, Physicochernical Principles and Practic. New York:oxford,1977.
    [3]Guilbault G. G. Practical Fluorescence:Theory, Methods, and Techniques. New York:Marcel Dekker,1973:99-112.
    [4]Schulman S.G. Ed. Molecular Lumincscence Spectroscopy:Methods and Applications. Part 1. New York:John Wiley & Sons.1985:10-11
    [5]Medinger T.et al. Trans. Faraday Soc.,1965,61:620.
    [6]Giachino G. G. et al. J. Chem. Phys.,1970,52:2964.
    [7]Bhatnagar D. C. et al. Spectrochim. Acta,1965,21:1803.
    [8]Luo H Y, Jing J H, Zhang X B et al. Synthesis of porphyrin-appended terpyridine as a chemosensor for cadmium based on fluorscent enhancement. Talanta,2007, 72 (2):575-581.
    [9]Thiagarajan V, Ramamurthy P, Thirumalai D et al. A Novel Colorimetric and Fluorescent Chemosensor for Anions Involving PET and ICT Pathways. Organic Letters,2005,7(4):657-660.
    [10]Belser P, De Cola L, Hartl F et al. Photochromic Switches Incorporated in Bridging ligands:A New tool to Modulate Energy-Transfer Processes. Advanced Functional Materials,2006,16(2):195-208.
    [11]Magri D C, Brown G J, Mcclean G D et al. Communicating Chemical Congregation:A Molecular AND Logic Gate with Three Chemical Inputs as a "Lab-on-a-Molecule" Prototype Journal of the American Chemical Society, 2006,128(15):4950-4951.
    [12]Sautter A, Kaletas B K, Schmid D G et al. Ultrafast Energy-Electron Transfer Cascade in a Multichromophoric Light-Harvesting Molecular Square. Journal of the American Chemical Society,2005,127(18):6719-6729.
    [13]De Silva A P. Fluorescent signaling crown ethers:'switching on'of fluorescence by alkali metal ion recognition and binding in situ. Chemical Communications, 1986:1709-1710.
    [14]Wu Y, Peng X, Guo B et al. Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(II) in living cells. Organic & Biomolecular Chemistry,2005,3(8):1387-1392.
    [15]Gunnlaugsson T, Lee T C, Parkesh R. Highly selective fluorescent chemosensors for cadmium in water. Tetrahedron,2004,60:11239-11249.
    [16]Turfan B, Engin U A. Modulation of Boradiazaindacene Emission by Cation-Mediated Oxidative PET. Organic Letters,2002,4(17):2857-2859.
    [17]Novaira M, Biasutti M A, Silber J J et al. New insights on the photophysical behavior of PROD AN in anionic and cationic reverse micelles:From which state does it emit? Journal of Physical Chemistry B,2007.111(4):748-759.
    [18]Citterio D, Takeda J, Kosugi M et al. pH-independent fluorescent chemosensor for highly selective lithium ion sensing. Analytical Chemistry,2007, 79(3):1237-1242.
    [19]Wang J B, Qian X H, Qian J H et al.Micelle-induced versatile performance of amphiphilic intramolecular charge-transfer fluorescent molecular sensors. Chemistry-a European Journal,2007,13(26):7543-7552.
    [20]Peng X J, Du J J, Fan J L et al. A selective fluorescent sensor for imaging Cd2+in living cells. Journal of the American Chemical Society,2007,129(6):1500-1501.
    [21]Fery-Forgues S, Bourson J, Dallery L et al. NMR and optical spectroscopy studies of cation binding on chromophores and fluorophores linked to monoaza-15-crown-5. Mew Journal of Chemistry,1990,14:617-623.
    [22]Grabowski Z R. Rotkjewicz K, Rettig W. Structural changes accompanying intramolecular electron transfer:focus on twisted intramolecular charge-transfer states and structures. Chem. Rev,2003,103:3899-4031.
    [23]Lippert E, Loder W, Boos H. Fluoreszenzspektrum and Franck-Condon-Prinzip in Losungen Aromatischer Verbindungen, in:Advances in Molecular spectroscopy. England:Oxford Pergamon Press,1962.
    [24]Jonker S A, Van Dijk S I, Goubitz K et al. Solid-state structure and spectroscopy of chromoionophoric acridinium derivatives. Molecular Crystals and Liquid Crystals,1990,183:273-282.
    [25]Zhao Y G, Lin Z H, Liao H P et al. A highly selective fluorescent chemosensor for Al3+derivated from 8-hydroxyquinoline. Inorganic Chemistry Communication ,2006,9(9):966-968.
    [26]Kim J S, Choi M G, Song K C et al. Ratiometric determination of Hg2+ ions based on simple molecular motifs of pyrene and dioxaoctanediamide. Organic Letters, 2007,9(6):1129-1132.
    [27]Machi L, Santacruz H, Sanchez M et al. Bichromophoric naphthalene derivatives of ethylenediaminetetraacetate:Fluorescence from intramolecular excimer, protonation and complexation with Zn2+and Cd2+.Supramolecular Chemistry, 2006,18(7):561-569.
    [28]Kameta N, Hiratani K. Synthesis of supramolecular boron complex with anthryl groups exhibiting specific optical response for chloride ion. Tetrahedron Letters, 2006,47(28):4947-4950.
    [29]Bouas-Laurent H, Castellan A, Daney M et al. Cation-directed photochemistry of an anthraceno-crown ether. Journal of the Americal Society,1986,108:315-317.
    [30]Ben Othman A, Lee J W, Wu J S et al. Calix[4]arene-based,Hg2+-induced intramolecular fluorescence resonance energy transfer chemosensor. Journal of Organic Chemistry,2007,72(20):7634-7640.
    [31]Lee M H, Quang D T, Jung H S et al. Ion-induced FRET on-off in fluorescent calix[4]arene. Journal of Organic Chemistry,2007,72(11):4242-4245.
    [32]Valeur B, Pouget J, Bourson J et al. Tuning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding. Journal of physical Chemistry,1992,96:6545-6549.
    [33]Valeur B, Pouget J, Bourson J. Photoinduced electronic energy transfer in a supramolecular complex between a coumarin bichromophoric molecule and lead (Ⅱ). Journal of Luminescence,1992,52:345-347.
    [34]Swanson R, Raghavendra M P, Zhang W Q et al. Serine and cysteine proteases are translocated to similar extents upon formation of covalent complexes with serpins-Fluorescence perturbation and fluorescence resonance energy transfer mapping of the protease binding site in Crma complexes with granzyme B and caspase-1. Journal of Biological Chemistry,2007,282(4):2305-2313.
    [35]Ko S, Grant, S A. Development of a novel FRET method for detection of Listeria or Salmonella. Sensors and Actuators B-Chemical,2003,96(1-2):372-378.
    [36]Laurence T A, Kong X X,Jager M et al. Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. Proceedings of the National Academy of Sciences of the United States of America,2005,102(48): 17348-17353.
    [37]Zelphati O, Szoka F C. Mechanism of oligonucleotide release from cationic liposomes. Proceedings of the National Academy of Sciences of the United States of America,1993,93:11493-11501.
    [38]Ashok A D, Maxime D, Jocelyn R. et al. Single-pair fluorescence resonance energy transfer on freely diffusing molecules:observation of Forster distance dependence and subpopulations. Proceedings of the National Academy of Sciences of the United States of America,1999,96:3670-3677.
    [39]Laws W R, Brand L. Analysis of two-state excited-state reaction. The fluorescence decay of 2-naphthol. Journal of Physical Chemistry,1979,83: 795-802.
    [40]Mordon S, Devoisselle J M, Soulie S. Fluorescence spectroscopy of Ph in vivo using a dual-emission fluorophore(C-SNAFL-1). J. Photochem. Photobiol, B.,1995,28:19-23.
    [41]Tanaka K, Kumagai T, Aoki H et al. Application of 2-(3,5,6-Trifluoro-2-hydroxy-4-methoxy-phenyl)benzoxazole and benzothiazole to Fluorescent Probes Sensing pH and Metal Cations. Journal of Organic Chemistry,2001,66(22):7328-7333.
    [42]Henary M M,Fahmi C J. Excited State Intramolecular Proton Transfer and Metal Ion Complexation of 2-(2-Hydroxyphenyl)benzazoles in Aqueous Solution. Journal of Physical Chemistry A,2002,106:5210-5220.
    [43]Vazquez S R, Rodriguez M C R, Mosquera M et al. Excited-state intramolecular proton transfer in 2-(3'-hydroxy-2'-pyridyl)benzoxazole. Evidence of coupled proton and charge transfer in the excited state of some o-hydroxyarylbenzazoles. Journal of Physical Chemistry A,2007,111,(10):1814-1826.
    [44]Yushchenko D A, Shvadchak V V, Klymchenko A S et al.2-Aryl-3-hydroxyquin-Olones, a new class of dyes with solvent dependent dual emission due to excited state intramolecular proton troton transfer. New Journal of Chemistry,2006, 30(5):774-781.
    [45]Rodembusch F S, Campo L F, Rigacci A et al. A new ESIPT fluorescent dye-doped silica aerogel. Macromolecular Symposium,2005,229:188-193.
    [46]Klymchenko A S, Mely Y, Demchenko A P et al. Simultaneous probing of hydration and polarity of lipid bilayers with 3-hydroxyflavone fluorescent dyes. Biochimica Et Biophysica Acta-Biomembranes,2004,1665(1-2):6-19.
    [47]Kim S, Seo J, Jung H K et al. White luminescence from polymer thin films containing excited-state intramolecular proton-transfer dyes. Advanced Materials, 2005,17:2077-2082.
    [48]Ressalan S, Iyer C S P. Absorption and fluorescence spectroscopy of 3-hydroxy-3-phenyl-1-o-carboxyphenyltriazene and its copper (Ⅱ), nickel (Ⅱ), and zinc (II) complexes:a novel fluorescence sensor. Journal of Luminescence, 2005,111(3):121-129.
    [49]Peng X J, Wu Y K, Fan J L et al. Colorimetric and ratiometric fluorescence sensing of fluoride:Yuning selectivity in proton transfer. Journal of Organic Chemistry,2005,70(25):10524-10531.
    [50]Wu Y K, Peng X J, Fan J L et al. Fluorescence sensing of anions based on inhibition of excited-state intramolecular proton transfer. Journal of Organic of Chemistry,2007,72(10):62-70.
    [51]Karolin J, Johansson L B A, Strandberg L and Ny T, Fluorescence and Absorption Spectroscopic Properties of Dipyrrometheneboron Difluoride(BODI-PY). Derivatives in Liquids, Lipid Membranes, and Proteins. J Am Chem Soc, 1994,116:7801-7806.
    [52]Meltola N J, Soini A E and Hanninen P E, Syntheses of Novel Dipyrrylmethene-BF2 Dyes and Their Performance as Labels in Two-Photon Excited Fluoroimmunoassay. Journal of Fluorescence,2004,14(2):129-138.
    [53]Worries H J, Koek J H, pyrromethene-BF2 complexes (4,4'-difluoro-4bra-3a,4a-Diaza-s-indacenes) synthesis and luminescences properties. Recl Trav Chim Pays-Bas,1985,104:288-291.
    [54]Haugland R P, Kang H C, chemical reactive dipyrrometheneboron difluoride dyes US4774339.1998.
    [55]Kang H C, Long wavelength chemically reactive dipyrrometheneboron difluoride dyes and conjugates WO93/09185.1993
    [56]Haugland R P, Kang H C, Dibenzopyrrometheneboron Difluoride Dyes US5422896.1995.
    [57]Burghart A, Kim H, Burgess K, Bergstrom F, Johansson L B A,3,5-Diaryl-4,4-d-Ifluoro-4-bora-3a,4a-diaza-s-indacene(BODIPY) Dyes:Synthesis, Spectroscopic , Electrochemical, and Strucyural Properties. J Org Chem,1999,64:7813-7819.
    [58]Kim H, Burghart A, Welch M B, Reibenspies J, Burgess K, Synthesis and Spectroscopic Properties of a New 4-bora-3a,4a-diaza-s-indacene(BODIPY) Dyes. Chem Commun,1999:1889-1890.
    [59]Chen J, Burghart A, Derecskei-Kovacs A, Burgess K,4,4-Difluoro-4-bora-3a, 4a-diaza-s-indacene(BODIPY) Dyes Modified for Extended Conjugation and Restricted Bond Rotations. J Org Chem,2000,65:2900-2906.
    [60]Chen J, Burghart A, Wan C W, Thai L, Ortiz C, Burgess, K, Synthesis and spectroscopic properties of 2-ketopyrrole-BF2 complexes:a new class of fluorescent dye. Tetrahedron Letters,2000,41:2303-2307.
    [61]Chen J, Reibenspies J, Derecskei-Kovacs A, Burgess K, Through-space 13C-19F coupling can reveal conformations of modified BODIPY dyes. Chem Commun, 1999:2501-2502.
    [62]Gorman A, Killoran J, O'Shea C, Kenna T, Gallagher W M, O'Shea D F, In Vitro Demonstration of the Heavy-Atom Effect for Photodynamic Therapy. J Am Chem Soc,2004,126:10619-10631.
    [63]Zhao W, Carreira E M, Conformationally Restricted Aza-Bodipy:A Highly Fluorescent, Stable, Near-Infrared-Absorbing Dye. Angew Chem Int Ed, 2005,44:1677-1679.
    [64]Zhang Y, Yang R H, Liu F, Li K A, Fluorescent sensor for Imidazole Derivatives Based on Monomer-Dimer Equilibrium of a Zinc Porphyrin Complex in a Polymeric Film Anal. Chem,2006,76(24):7336-7345.
    [65]Gawronski J, Gawronska K, Skowronek P, Holmen, A,1,8-Naphthalimides as Stereochemical Probes for Chiral Amines:A Study of Electronic Transitions and Exciton Coupling J Org Chem,1999,64(1):234-241.
    [66]Marthias Kollmannsberger, Jorg Daub. Ultrafast Charge Transfer in Amino-Subs-tituted Boron Dipyrromethene Dyes and Its Inhibition by Cation Complexation: A New Design Concept for Highly Sensitive Fluorescent Probes. J. Phys. Chem. A,1998.102:10211-10220.
    [67]Rurack K. Kollmannsberger M, Resch-genger U. Daub J. A Selective and sensitive Fluoroionophore for HgⅡ, AgⅠand CuⅡ with Virtually Decoupled Fluorophore and Receptor Units. Journal of the American Chemical Society(Co-Mmunication),2000,122(5):968-969.
    [68]Shawn C. Burdette and Stephen J. Lippard. ICCC34-golden edition of coordination chemistry reviews. Coordination chemistry for the neurosciences. Coordination Chmistry Reviews,2001,216-217:333-361.
    [69]Burdette S C, Walkup G K, Spingler B, Tsien R Y, Lippard S J. Fluorescent Sensors for Zn2+based on a Fluorescein Platform:Synthesis, Properties and Intracellular Distribution. Journal of the American Chemical Society.2001, 123(32):7831-7841.
    [70]Burdett S C, Frederickson C J, Bu W, Lippard S J. An Improved Neuronal Zn2+Sensor of the zinpyr Family. Journal of the American Chemical Society. 2003,125(7):1778-1787.
    [71]Hirano T, Kikuchi K, Urano Y, Nagano T. Improvement and biological Applications of Fluorescent Probes for Zinc,ZnAFs. Journal of the American Chemical Society,2002,124(23):6555-6562.
    [72]Lim N C, Brueckne C. DPA-substitited coumarins as chemosensors for zinc (Ⅱ):modulation of the chemosensory characteristics by variation of the position of the chelate on the coumarin. Chemical Communications,2004: 1094-1095.
    [73]Taki M, Wolford J L, O'Halloran T V. Emission Ratiometric Imaging of Intracellular Zinc:Design of a Benzoxazole Fluorescent Sensor and Its Application in Two-photon Microscopy. Journal of the American Chemical Society,2004,126(3):712-713.
    [74]Gee K R, Zhou Z L, qian W J,Kennedy R. Detection and Imaging of Zinc Secretion from Pancreatic Cells Using a New Fluorescent Zinc Indicator. Journal of the American Chemical Society,2002,124(5):776-778.
    [75]Bilge T, Engin U, Akkaya. Modulation of Boradiazaindacene Emission by Cation-Mediated Oxidative PET, Organic Letters,2002,4(17):2857-2859.
    [76]Hitomi K, Jun I K, Tetsuo Nagano. A Novel Fluorescent Probe for Zinc Ion Based on Boron Dipyrromethene. Chem. Bull.,2004,52(6):700-703.
    [77]Yunkou Wu, Xiaojun peng, Binchen Guo, et al. Boron dipyrromethene fluorophore based fluorescent sensor for the selective imaging of Zn (Ⅱ) in living cells. Org. Biomol. Chem,2005,3:1387-1392.
    [78]So Youn Moon, Na R C, Young Hee Kim, Chang S K. New Hg2+selective Chromo and Fluoroionophore Based upon 8-Hydroxyquinoline. Journal of Organic Chemistry,2004,69(1):181-183.
    [79]Xin Qi, Eun Jin Jun, Li Xu, et al. New BODIPY Derivatives as OFF-ON Fluorescent Chemosensor and Fluorescent Chemodosimeter for Cu2+:Cooperati-ve Selectivity Enhancement toward Cu2+ Journal of Organic Chemistry.2006, 71(7):2881-2884.
    [80]Li Zeng, Evan W. Miller, Arnd Pralle, et al. A Selective Turn-on Fluorescent sensor for Imaging Copper in Living Cells. Journal of American Chemical Society,2006,128(1):10-11.
    [81]Jiaobing Wang and Xuhong Qian. A Series of polyamide Receptor Based PET Fluorescent sensor Molecules:Positively Cooperative Hg2+lon Binding with High Sensitivity. Organic Letters.2006,8(17):3721-3724.
    [82]Mingjian Yuan, Yuliang Li, Junbo Li et al. A Colorimetric and Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule. Organic letters,2007,9(12): 2313-2316.
    [83]Xiaojun peng, Jianjun Du, Jiangli Fan et al. A selective fluorescent sensor for imaging Cd2+in living cells. Journal of the American Chemical Society.2007, 129(6):1500-1501.
    [1]A. Treibs, F.-H. Kreuzer, Liebigs Ann. Chem.1968,718,208-223.
    [2]A. Loudet, K. Burgess, Chem. Rev.2007,107,4891-4932. (b) G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed.2008,47,1184-1201.
    [3]R. P. Haugland, The Handbook. A Guide to Fluorescent Probes and Labeling Technologies,10th Ed. Invitrogen, Eugene, OR,2005.
    [4]B. Valeur, Molecular Fluorescence. Principles and Applications, Wiley-VCH: Weinheim, Germany,2002.
    [5](a) L. H. Thoresen, H. Kim, M. B. Welch, A. Burghart, K. Burgess, Synlett 1998, 1276-1278. (b) A. Burghart, H. Kim, M. B. Welch, L. H. Thoresen, J. Reibenspies, K. Burgess, F. Bergstrom, L. B.-A. Johansson, J. Org. Chem.1999,64, 7813-7819.
    [6]T. Rohand, W. Qin, N. Boens, W. Dehaen, Eur. J. Org. Chem.2006,4658-4663.
    [7]R. Rurack, M. Kollmannsberger, J. Daub, New J. Chem.2001,25,289-292.
    [8]Z. Dost, S. Atilgan, E. U. Akkaya, Tetrahedron 2006,62,8484-8488.
    [9]V. Leen, E. Braeken, K. Luckermans, C. Jackers, M. Van der Auweraer, N. Boens and W. Dehaen, Chem. Commun.,2009,30,4515-4517.
    [10]J. Chen, J.; A. Burghart, A. Derecskei-Kovacs, K. Burgess, J. Org. Chem.2000, 65,2900-2906.
    [11](a) M. Wada, S. Ito, H. Uno, T. Murashima, N. Ono, T. Urano, Y. Urano, Tetrahedron Lett.2001,42,6711-6713. (b) Z. Shen, H. Rohr, K. Rurack, H. Uno, M. Spieles, B. Schulz, G. Reck, N. Ono, Chem. Eur. J.2004,10,4853-4871.
    [12]S. Goeb, R. Ziessel, Org. Lett.2007,9,737-740.
    [13]K. Umezawa, Y. Nakamura, H. Makino, D. Citterio, K. Suzuki, J. Am. Chem. Soc.2008,130,1550-1551.
    [14]K. Umezawa, A. Matsui, Y. Nakamura, D. Citterio, K. Suzuki, Chem. Eur. J. 2009,15,1096-1106
    [15]The Cambridge Structural Database:a quarter of a million crystal structures and rising, F. H. Allen, Acta Cryst., B58,380-388,2002; [DOI:10.1107/S0108768102 003890].
    [16]T. Rohand, J. Lycoops, S. Smout, E. Braeken. M. Sliwa, M. Van der Auweraer, W. Dehaen, W. M. De Borggraeve, N. Boens, Photochem. Photobiol. Sci.2007,6, 1061-1066.
    [17]The following represents a non-exhaustive list of BODIPY papers with spectroscopic/photophysical data, (a) E. Vos de Wael, J.A. Pardoen, J. A. van Koeveringe, J. Lugtenburg, Reel. Trav. Chim. Pays-Bas 1977,96,306-309. (b) T. Lopez Arbeloa, F. Lopez Arbeloa, I. Lopez Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre, F. Amat-Guerri, Chem. Phys. Lett.1999,299,315-321. (c) A. Costela, I. Garcia-Moreno, C. Gomez, R.C. Sastre, F. Amat-Guerri, M. Liras, F. Lopez Arbeloa, J. Banuelos Prieto, I. Lopez Arbeloa, J. Phys. Chem. A 2002, 106,7736-7742. (d) F. Lopez Arbeloa, J. Banuelos Prieto, V. Martinez Martinez, T. Arbeloa Lopez, I. Lopez Arbeloa, ChemPhysChem 2004,5,1762-1771. (e) J. Banuelos Prieto, F. Lopez Arbeloa, V. Martinez Martinez, T. Arbeloa Lopez, F. Amat-Guerri, M. Liras, I. Lopez Arbeloa, Chem. Phys. Lett.2004,385,29-35. (f) W. Qin, M. Baruah, M. Van der Auweraer, F. C. De Schryver, N. Boens, J. Phys. Chem. A 2005,109,7371-7384. (g) W. Qin, T. Rohand, M. Baruah, A. Stefan, M. Van der Auweraer, W. Dehaen, N. Boens, N. Chem. Phys. Lett.2006,420, 562-568. (h) Z. Li, R. Bittman, R. J. Org. Chem.2007,72,8376-8382. (i) Z. Ekmekci, M. D. Yilmaz, E. U. Akkaya, Org. Lett.2008,10,461-464. (j) L. Li, J. Han, B. Nguyen, K. Burgess, J. Org. Chem.2008,73,1963-1970. (k) E. Fron, E. Coutino-Gonzalez, L. Pandey, M. Sliwa, M. Van der Auweraer, F. De Schryver, J. Thomas, Z. Dong, V. Leen, M. Smet, W. Dehaen, T. Vosch, New J. Chem. 2009,33,1490-1496.
    [18]S. E. Braslavsky, Pure Appl. Chem.2007,79,293-465.
    [19](a) M. J. Kamlet, R. W. Taft, J. Am. Chem. Soc.1976,98,377-383. (b) M. J. Kamlet, J. L. M. Abboud, R. W. Taft, J. Am. Chem. Soc.1977,99,6027-6038.
    [20]J. Catalan, J. Phys. Chem. B 2009,113,5951-5960.
    [21]J. Catalan, H. Hopf, Eur. J. Org. Chem.2004,4694-4702.
    [22]J. Catalan, in Handbook of solvents, Wypych, G. Ed.; ChemTec Publishing: Toronto,2001; pp 583-616.
    [23]J. Catalan, C. Diaz, Liebigs Ann.1997,1941-1949
    [24]J. Catalan, C. Diaz, V. Lopez, P. Perez, J. L. G. de Paz, J. G. Rodriguez, Liebigs Ann.1996,1785-1794.
    [25]D. Pevenage, D. Corens, W. Dehaen, M. Van der Auweraer, F. C. De Schryver, Bull. Soc. Chim. Belg.1997,106,565-572.
    [1]J.-P. Desvergne, A.W. Czarnik, Eds. Chemosensors of Ion and Molecule Recogn-ition; Kluwer:Dordrecht, The Netherlands,1997.
    [2]B. Valeur, J.-C. Brochon, Eds. New Trends in Fluorescence Spectroscopy. Applications to Chemical and Life Sciences; Springer:Berlin,2002.
    [3]A. Treibs, F.-H. Kreuzer, Liebigs Ann. Chem.1968,718,208-223.
    [4](a) A. Loudet, K. Burgess, Chem. Rev.2007,107,4891-4932. (b) G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed.2008,47,1184-1201.
    [5]The following represents a non-exhaustive list of BODIPY papers with spectroscopic/photophysical data, (a) E. Vos de Wael, J. A. Pardoen, J. A. van Koeveringe, J. Lugtenburg, Recl. Trav. Chim. Pays-Bas,1977,96,306-309. (b) J. Karolin, L. B.-A. Johansson, L. Strandberg, T. Ny, J. Am. Chem. Soc.1994,116, 7801-7806. (c) M. Kollmannsberger, K. Rurack, U. Resch-Genger, J. Daub, J. Phys. Chem. A 1998,102,10211-10220. (d) T. Lopez Arbeloa, F. Lopez Arbeloa, I. Lopez Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre, F. Amat-Guerri, Chem. Phys. Lett.1999,299,315-321. (e) M. Kollmannsberger, K. Rurack, U. Resch-Genger, W. Rettig, J. Daub, Chem. Phys. Lett.2000,329,363-369. (f) K. Rurack, M. Kollmannsberger, J. Daub, New. J. Chem.2001,25,289-292. (g) K. Rurack, M. Kollmannsberger, J. Daub, Angew. Chem. Int. Ed.2001,40,385-387. (h) A. Costela, I. Garcia-Moreno, C. Gomez, R. Sastre, F. Amat-Guerri, M. Liras, F. L6pez Arbeloa, J. Banuelos Prieto, I. L6pez Arbeloa, J. Phys. Chem. A 2002, 106,7736-7742. (i) F. L6pez Arbeloa, J. Bafluelos Prieto, V. Martinez Martinez, T. Arbeloa L6pez, I. L6pez Arbeloa, ChemPhysChem 2004,5,1762-1771.0) J-Banuelos Prieto, F. L6pez Arbeloa, V. Martinez Martinez, T. Arbeloa L6pez, F. Amat-Guerri, M. Liras, I. L6pez Arbeloa, Chem. Phys. Lett.2004,385,29-35. (k) M. Baruah, W. Qin, N. Basaric, W. M. De Borggraeve, N. Boens, J. Org. Chem. 2005,70,4152-4157. (1) W. Qin, M. Baruah, M. Van der Auweraer, F. C. De Schryver, N. Boens, J. Phys. Chem. A 2005,109,7371-7384. (m) W. Qin, M. Baruah, A. Stefan, M. Van der Auweraer, N. Boens, ChemPhysChem 2005,6, 2343-2351. (n) Z. Dost, S. Atilgan, E. U. Akkaya, Tetrahedron 2006,62, 8484-8488. (p) W. Qin, T. Rohand, M. Baruah, A. Stefan, M. Van der Auweraer, W. Dehaen, N. Boens, Chem. Phys. Lett.2006,420,562-568. (q) Z. Li, R. Bittman, J. Org. Chem.2007,72,8376-8382. (r) W. Qin, T. Rohand, W. Dehaen, J. N. Clifford, K. Driessen, D. Beljonne, B. Van Averbeke, M. Van der Auweraer, N. Boens, J. Phys. Chem. A 2007,111,8588-8597. (s) T. Rohand, J. Lycoops, S. Smout, E. Braeken, M. Sliwa, M. Van der Auweraer, W. Dehaen, W. M. De Borggraeve, N. Boens, Photochem. Photobiol. Sci.2007,6,1061-1066. (t) Z. Ekmekci, M. D. Yilmaz, E. U. Akkaya, Org. Lett.2008,10,461-464. (u) L. Li, J. Han, B. Nguyen, K. Burgess, J. Org. Chem.2008,73,1963-1970.
    [6]K. Kyose, H. Kojima, Y. Urano, T. Nagano, J. Am. Chem. Soc.2006,128, 6548-6549.
    [7]R. P. Haugland, The Handbook. A Guide to Fluorescent Probes and Labeling Technologies,10th ed., Invitro gen-Molecular Probes, Carlsbad, CA,2005.
    [8]D. W. Gruenwendel, Inorg. Chem.1968,7,495-501.
    [9]For recent reviews on fluorescent Zn2+ chemosensors, see:(a) K. Kikuchi, K. Komatsu, T. Nagano, Curr. Opin. Chem. Biol.2004,8,182-191. (b) P. Jiang, Z. Guo, Coord. Chem. Rev.2004,248,205-229. (c) N. C. Lim, H. C. Freake, C. Bruckner, Chem. Eur. J.2005,11,38-49. (d) P. Carol, S. Sreetjith, S. Ajayaghosh, Chem. Asian J.2007,2,338-348. For selected examples, see:(e) C. J. Fahrni, T. V. O'Halloran, J. Am. Chem. Soc. 1999,121,11448-11458. (f) D. A. Pearce, N. Jotterand, I. S. Carrico, B. Imperiali, J. Am. Chem. Soc.2001,123,5160-5161. (g) J. Kawakami, M. Ohta, Y. Yamauchi, K. Ohzeki, Anal. Sci.2003,19,1353-1354. (h) M. Taki, J. L. Wolford, T. V. O'Halloran, J. Am. Chem. Soc.2004,126,712-713. (i) Y Mei, P. A. Bentley, Biorg. Med. Chem. Lett.2006,16,3131-3134. (j) L. Zhang, S. Dong, L. Zhu, Chem. Commun.2007,1891-1893. (k) Y. Zhang, X. Guo, W. Si, L. Jia, X. Qian, Org. Lett.2008,10,473-476. (1) A. Helal, H.-S. Kim, Tetrahedron Lett.2009,50, 5510-5515.
    [10](a) G. K. Walkup, S. C. Burdette, S. J. Lippard, R. Y. Tsien, J. Am. Chem. Soc. 2000,122,5644-5645. (b) T. Hirano, K. Kikuchi, Y. Urano, T. Higuchi, T. Nagano, J. Am. Chem. Soc.2000,122,12399-12400. (c) S. C. Burdette, G. K. Walkup, B. Springer, R. Y. Tsien, S. J. Lippard, J. Am. Chem. Soc.2001,123, 7831-7841. (d) T. Hirano, K. Kikuchi, Y.Urano.T. Nagano, J. Am. Chem. Soc. 2002,124,6555-6562. (e) S. Murayama, K. Kikuchi, T. Hirano, Y. Urano, T. Nagano, J. Am. Chem. Soc.2002,124,10650-10651. (f) S. C. Burdette, C. J. Frederickson, W. M. Bu, S. J. Lippard, J. Am. Chem. Soc.2003,125,1778-1787. (g) N. C. Lim, C. Bruckner, Chem. Commun.2004,1094-1095. (h) C. J. Chang, J. Jaworski, E. M. Nolan, M. Sheng, S. J. Lippard, Proc. Natl. Acad. Aci USA 2004, 101,1129-1134. (i) H.-H. Wang, Q. Gan, X.-J. Wang, L. Xue, S.-H. Liu, H. Jiang, Org. Lett.2007,9,4995-4998.(j) S. Huang, R. J. Clark, L. Zhu, Org. Lett.2007, 9,4999-5002. (k) K. Komatsu, Y. Urano, H. Kojima, T. Nagano, J. Am. Chem. Soc.2007,129,13447-13454.
    [11]B. Turfan, E. U. Akkaya, Org. Lett.2002,4,2857-2859.
    [12]B. Valeur, Molecular Fluorescence. Principles and Applications; Wiley-VCH: Weinheim (Germany) 2002.
    [13]C. Goze, G. Ulrich, L. Charbonniere, M. Cesario, T. Prang6, R. Ziessel, Chem. Eur. J.2003,9,3748-3755.
    [14]H. Koutaka, J.-i. Kosuge, N. Fukasaku, T. Hirano, K. Kikuchi, Y. Urano, H. Kojima, T. Nagano, Chem. Pharm. Bull.2004,52,700-703.
    [15]Y. Wu, X. Peng, B. Guo, J. Fan, Z. Zhang, J. Wang, A. Cui, Y. Gao, Org. Biomol. Chem.2005,3,1387-1392.
    [16]X. Peng, J. Du, J. Fan, J. Wang, Y. Wu, J. Zhao, S. Sun, T. Xu, J. Am. Chem. Soc.2007,129,1500-1501.
    [17]S. Atilgan, T. Ozdemir, E. U. Akkaya, Org. Lett.2008,10,4065-4067
    [18]T. Cheng, Y. Xu, S. Zhang, W. Zhu, X. Qian, L. Duan, J. Am. Chem. Soc.2008, 130,16160-16161.
    [19]S. C. Dodani, Q. He, C. J. Chang, J. Am. Chem. Soc.2009,131,18020-18021.
    [20](a) K. A. Mitchell, R. G. Brown, D. Yuan, S.-C. Chang, R. E. Utecht, D. E. Lewis, J. Photochem. Photobiol A:Chem.1998,115,157-161. (b) Z. Xu, Y. Xiao, X. Qian, J. Cui, D. Cui, Org. Lett.2005,7,889-892. (c) Z. Xu, X. Qian, J. Cui, Org. Lett.2005,7,3029-3032. (d) H. Yang, Z.-Q. Liu, Z.-G. Zhou, E.-X. Shi, F.-Y. Li, Y.-K. Du, T. Yi, C.-H. Huang, Tetrahedron Lett.2006,47, 2911-2914.
    [21]Y. Mei, P. A. Bentley, W. Wang, Tetrahedron Lett.2006,47,2447-2449.
    [22]X. Qi, E. J. Jun, L. Xu, S.-J. Kim, J. S. J. Hong, Y. J. Yoon, J. Yoon, J. Org. Chem.2006,71,2881-2884.
    [23]V. Csokai, M. Kadar, D. L. H. Mai, O. Varga, K. Toth, M. Kubinyi, A. Griin, I. Bitter, Tetrahedron 2008,64,1058-1063.
    [24]L. Jiao, J. Li, S. Zhang, C. Wei, E. Hao, M. G. H. Vicente, New J. Chem.2009, 33,1888-1893.
    [25]R. Meallet-Renault, A. Herault, J.-J. Vachon, R. B. Pansu, S. Amigoni-Gerbier, C. Larpent, Photochem. Photobiol. Sci.2006,5,300-310.
    [26]For a recent review of Hg2+-responsive fluorescent chemosensors, see:(a) E. M. Nolan, S. J. Lippard, Chem. Rev.2008,108,3443-3480. For selected examples, see:(b) X. Guo, X. Qian, L. Jia, J. Am. Chem. Soc.2004,126,2272-2273. (c) S. Yoon, A. E. Albers, A. P. Wong, C. Chang, J. Am. Chem. Soc.2005,127, 16030-16031. (d) J. Wang, X. Qian, Chem.Commun.2006,109-111. (e) J. Wang, X. Qian, J. Cui, J. Org. Chem.2006,71,4308-4311. (f) Y. Yu, L.-R Lin, K.-B. Yang, X. Zhong, R.-B. Huang, L.-S. Zheng, Talanta 2006,69,103-106. (g) E. M. Nolan, S. J. Lippard, J. Am. Chem. Soc.2007,129,5910-5918. (h) J. S. Kim, M. G. Choi, K. C. Song, K. T. No, S. Ahn, S.-K. Chang, Org. Lett.2007,9, 1129-1132. (i) X. Chen, S.-W. Nam, M. J. Jou, Y. Kim, S.-J. Kim, S. Park, J. Yoon, Org. Lett.2008,10,5235-5238.
    [27]K. Rurack, M. Kollmannsberger, U. Resch-Genger, J. Daub, J. Am. Chem. Soc. 2000,122,968-969.
    [28]S.Y.Moon, N. R. Cha, Y. H. Kim, S.-K. Chang, J. Org. Chem.2004,69,181-183.
    [29]J. Wang, X. Qian, Org. Lett.2006,8,3721-3724.
    [30]A. Coskun, M. D. Yilmaz, E. U. Akkaya, Org. Lett.2007,9,607-609.
    [31]M.Yuan, Y. Li, J. Li, C. Li, X. Liu, J. Lv, J. Xu, H. Liu, S. Wang, D. Zhu, Org. Lett.2007,9,2313-2316.
    [32]X. Zhang, Y. Xiao, X. Qian, Angew. Chem. Int. Ed.2008,47,8025-8029.
    [33]J. Du, J. Fan, X. Peng, H. Li, J. Wang, S. Sun, J. Fluoresc.2008,18,919-924.
    [34]H. Lu, L. Xiong, H. Liu, M. Yu, Z. Shen, F. Li, X. You, Org. Biomol. Chem. 2009,7,2554-2558.
    [35]H. Lu, S. Zhang, H. Liu, Y. Wang, Z. Shen, C. Liu, X. You, J. Phys. Chem. A 2009,113,14081-1486.
    [36]S. Atilgan, I. Kutuk, T. Ozdemir, Tetrahedron Lett.2010,51,892-894.
    [37]J. Catalan, J. Phys. Chem. B,2009,113,5951-5960.
    [38](a) M. J. Kamlet, R. W. Taft, J. Am. Chem. Soc.1976,98,377-383. (b) M. J. Kamlet, J. L. M. Abboud, R. W. Taft, J. Am. Chem. Soc.1977,99,6027-6038.
    [39]J. Catalan, V. Lopez, P. Perez, R. Martin-Villamil, J. G. Rodriguez, Liebigs Ann. 1995,241-25
    [40]Handbook of solvents, G. Wypych, Ed.; ChemTec Publishing:Toronto,2001; pp 583-616.
    [41]J. Catalan, H. Hopf, Eur. J. Org. Chem.2004,4694-4702.
    [42]J. Catalan, C. Diaz, Liebigs Ann.1997,1941-1949.
    [43]J. Catalan, C. Diaz, V. Lopez, P. Perez, J. L. G. de Paz, J. G. Rodriguez, Liebigs Ann.1996,1785-1794.
    [1]G.M. Kim, A. Wutzler, H.J. Radusch, G.H. Michler, P. Simon, R.A. Sperling, W.J. Parak, Chem. Mater.17 (2005) 4949-4957.
    [2]L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 41(2002)1221-1223.
    [3]J. Hartgerink, E. Beniash, S. Stupp, Science 294 (2001) 1684-1688.
    [4]D. Reneker, I. Chun, Nanotechnology 7 (1996) 216-223.
    [5]Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol., 63(2003)2223-2253.
    [6]X. Wang, C. Drew, S.-H. Lee, K.J. Senecal, J. Kumar, L.A. Samuelson, Nano Lett.2 (2002) 1273-1275.
    [7]J.A. Matthews, G.E. Wnek, D.G. Simpson, G.L. Bowlin, Biomacromolecules 3 (2002) 232-238.
    [8]O.S. Wolfbeis, Anal. Chem.80 (2008) 4269-4283.
    [9]C. Baleizao, S. Nagl, M. Schaferling, M.N. Berberan-Santos, O.S. Wolfbeis, Anal. Chem.80 (2008) 6449-6457.
    [10]G. Zhang, J. Chen, S.J. Payne, S.E. Kooi, J.N. Demas, C.L. Fraser, J. Am. Chem. Soc.129 (2007) 15728-15728.
    [II]A. Gulino, S. Giuffrida, P. Mineo, M. Purrazzo, E. Scamporrino, G. Ventimiglia, M.E. Van der Boom, I. Fragala, J. Phys. Chem. B 110 (2006) 16781-16786.
    [12]B. Lei, B. Li, H. Zhang, L. Zhang, W. Li, J. Phys. Chem. C 111 (2007) 11291-11301.
    [13]L. Zhang, S. Yue, B. Li, D. Fan, Inorg. Chem. Acta 384 (2012) 225-232.
    [14]D.G. Cuttell, S.M. Kuang, P.E. Fanwick, D.R. McMillin, R.A. Walton, J. Am. Chem. Soc.124 (2002) 6-7.
    [15]H.Q. Yu, H.W. Song, G.H. Pan, S.W. Li, Z.X. Liu, X. Bai, T. Wang, S.Z. Lu, H.F. Zhao, J. Lumin.124 (2007) 39-44.
    [16]L. Zhang, B. Li, Z. Su, Langmuir 25 (2009) 2068-2074.
    [17]Q. Zhang, Q. Zhou, Y. Cheng, L. Wang, D. Ma, X. Jing, F. Wang, Adv. Mater. 16(2004)432-436.
    [18]J. Jia, Y. Tian, Z. Li, Synthetic Met.161 (2011) 1377-1382.
    [19]Y. Wang, B. Li, Y. Liu, L. Zhang, Q. Zuo, L. Shi, Z. Su, Chem. Commun.39 (2009) 5868-5870.
    [20]H.Q. Yu, H.W. Song, G.H. Pan, S.W. Li, Z.X. Liu, X. Bai, T. Wang, S.Z. Lu, H.F. Zhao, J. Lumin.124 (2007) 39-44.
    [21]A. Mills, A. Lepre, Anal. Chem.69 (1997) 4653-4659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700