过渡金属配位聚合物的合成、性质及金属离子调控IRMOF3-sal的发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-有机框架化合物(Metal-Organic Frameworks, MOFs)是一种多孔的晶体材料,由于其具有高的比表面积、规则的孔道结构和可功能化等特点而倍受关注。MOFs在气体吸附、分离及催化等方面表现出良好的应用前景。最近,作为一种实用性的方法,MOFs的后合成修饰(PSM)可以将许多有效的官能团引入到MOFs骨架中。本论文采用V型有机配体合成出3种配位聚合物,并对所合成的化合物进行了荧光等性质的研究;同时研究了配位共价修饰的IRMOF3-sal的发光性质。
     1.采用V型有机配体分别在水热和混合溶剂热条件下合成了三个过渡金属配位聚合物。用红外光谱、元素分析、热重分析等对其进行了表征,对部分化合物研究了它的热稳定性、光谱性质等。研究结果表明,化合物1,2具有较高的热稳定性,并且是一种良好的潜在固态荧光材料。化合物1对Cu2+具有特殊的响应,为开发新的离子探针提供了一定的参考。
     2.通过后合成修饰将水杨醛(salicylaldehyde,sal)锚装在金属-有机框架化合物IRMOF-3上得到IRMOF3-sal,捕获不同金属离子得到一系列化合物—IRMOF3-Msal(M=Mg, Zn, Co, Cd, Ni, Eu, Nd, Pr, Tb);采用红外光谱、元素分析和XRD对其进行表征,并对其荧光性质进行了对比研究。结果表明,IRMOF3-Msal的荧光峰均发生较大蓝移,并且IRMOF3-Mgsal的荧光强度最强。
     3.通过采用不同乙酰丙酮盐对IRMOF3-sal进行配位共价修饰,研究了IRMOF3-Msal荧光峰位置及强度的变化,结果显示IRMOF3-Msal荧光峰都发生不同程度的蓝移,但荧光强度变化幅度不如与用硝酸盐修饰过的IRMOF3-sal的大。该研究结果为MOFs的配位共价修饰提供了有力的实验依据。
Metal-organic frameworks (MOFs) are porous, crystalline materials that have gathered increasing attention owing to their high surface areas, uniform pores, and chemical tunability. The ability to synthesize a wide range of MOFs has made them attractive materials for applications in gas sorption, separations, and catalysis. Recently, postsynthetic modification (PSM) of MOFs has been shown to be a general, practical approach for incorporating a wide range of functional groups into MOFs. We the preparations and properties of metal-organic coordination polymers generated from dicarboxylates ligand. Moreover, we also studied the luminescence of IRMOF3-sal controled by metal ions.
     This dissertation covers the following four parts:
     1. Under hydrothermal and solvothermal condition, third compounds were synthesized by using N,N"-bis(4-carboxyphenyl)-1,3-benzenedicarboxamide, l,4-di(1H-imidazol-1-yl)butane,4,4'-bipyridine. They were further characterized by elemental analysis, IR, powder X-ray diffraction (XRD) and TGA. The measurement and analysis of fluorescence spectra indicate that compound 1,2 are good potential solid fluorescent materials. Compound 1 exhibits high sensing of Cu2+
     2. An isoreticular metal-organic framework(IRMOF-3) modified with salicylaldehyde(sal) by postsynthetic modification(PSM) capture metal ions to yield IRMOF3-Msa)(M=Mg, Zn, Co, Cd, Ni, Eu, Nd, Pr, Tb). They were characterized by FT-IR spectra, elemental analysis, powder X-ray diffraction (XRD) and inductively coupled plasma (ICP). The measurement and analysis of fluorescence spectra indicate that the emission peak of IRMOF3-Msal is blue shifted and IRMOF3-Mgsal display the strongest relative fluorescence intensity.
     3. IRMOF3-sal is an effective bidentate ligand for metal complexation and was metallated with M(acac)n (M=Mg, Zn, Pr, Ni). IRMOF3-Msal was investigated by solid-state fluorescence spectroscopy. The fluorescence changes of IRMOF3-sal metallated with M(NO3)n were better than M(acac)n.
引文
[1]许玉敏,胡拖平,胡晓琴.金属-有机配合物的设计合成及其应用前景[J].广州化工,2011,39(2):8-9.
    [2]Eddaoudi M, Moler D B, Li H L, et al. Modular chemistry:Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylare frameworks [J]. Acc. Chem. Res.,2001,34(4):319-330.
    [3]Champness N R, Schroder M. Extended networks formed by coordination polymers in the solid state [J]. Current Opinion in Solid State and Materials Science,1998,3(4):419-424.
    [4]Ferey G. Hybrid porous solids:past, present, future [J]. Chem. Soc. Rev.,2008,37(1):191-214.
    [5]Rowsell J L C, Eckert J, Yaghi O M. Characterization of H2 binding sites in prototypical metal-organic frameworks by inelastic neutron scattering [J]. J. Am. Chem. Soc,2005, 127(14):904-14910.
    [6]胡晓琴,胡拖平,许玉敏.金属-有机配合物的合成及其研究进展[J].广州化工,2011,39(1):13-15.
    [7]Yaghi O M, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework. [J]. Nature,1995,378:703-706.
    [8]Chen B, Eddaoudi M, Hyde S T, et al. Interwoven metal-organic framework on a Periodic minimal surface with extra-large pores [J]. Seience,2001,291:1021-1023.
    [9]Nathaniel L R, Juergen E, Mohamed E, et al. Hydrogen storage in microporous metal-organic frameworks [J]. Seience,2003,300:1127-1129.
    [10]Chael H K, Siberio-Perez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature,2004,427:523-527.
    [11]Chen Bang lin, Nathan W O, Millward A R, et al. High H2 adsorption in a microporous metal organic framework with open metal sites [J]. Angew. Chem. Int. Ed.,2005,44(30):4745-4749.
    [12]Lee J Y, Pan L, Kelly S P, et al. Achieving high density of adsorbed hydrogen in microporous metal-organic frameworks [J]. Adv. Mater.,2005,17(22):2703-2706.
    [13]Kesanli B, Cui Yong, Smith M R, et al. Highly interpenetrated metal-organic frameworks for hydrogen storage [J]. Angew. Chem. Int. Ed.,2005,44(1):72-75.
    [14]Navarro J A R, Barea E, Salas J M, et al. H2, N2, CO, and CO2 sorption properties of a series of robust sodalite-type microporous coordination polymers [J]. Inorg. Chem.,2006,45(6): 2397-2399.
    [15]Millward A R, Yghi O M. Meta-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature [J]. J. Am. Chem. Soc.,2005,127(51): 17998-17999.
    [16]Latroche M, Surbl S, Serre C, et al. Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101 [J]. Angew. Chem. Int. Ed.,2006,45(48):8227-8231.
    [17]Dietzel P D C, Panell B, Hirscher M, et al. Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework [J]. Chem. Commun.,2006,6(9):959-961.
    [18]Dinea M, Dailly A, Liu Y, et al. Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites [J]. J. Am. Chem. Soc.,2006,128(51):16876-16883.
    [19]Humphrey S M, Chang J S, Jhung S H, et al. Porous Cobalt(Ⅱ)-organic frameworks with corrugated walls: structurally robust gas-sorption materials [J]. Angew. Chem. Int. Ed.,2007, 46(1-2):272-275.
    [20]Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoretieular MOFs and their application in methane storage [J]. Seience,2002,295:469-472.
    [21]魏文英,方键,孔海宁等.金属有机骨架材料的合成及应用[J].化学进展,2005,17:1110-1115.
    [22]James S L. Metal-organic frameworks [J]. Chem. Soc. Rev.,2003,32:276-288.
    [23]Dybtsev D N, Chun H, Yoon S H, et al. Microporous manganese formate:A simple metal-organic porous material with high framework stability and highly selective gas sorption properties [J]. J. Am. Chem. Soc.,2004,126(1):32-33.
    [24]Lin X, Jia J H, Zhao X B, et al. High H2 adsorption by coordination-framework materials [J]. Angew. Chem. Int. Ed.2006,45(44):7358-7364.
    [25]Pan L, Olson D H, Ciemnolonski L R, et al. Separation of hydrocarbons withamicro porous metal-organic framework [J]. Angew. Chem. Int. Ed.2006,45(4):616-619.
    [26]Li Y W, Yang R T. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover [J]. J. Am. Chem. Soc.2006,128(3):726-727.
    [27]Wang B, Cote A P, Furukawa H, et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs [J]. Nature,2008,453:207-211.
    [28]Park K S, Ni Z, Cote A P, et al. Exceptional chemieal and thermal stability of zeolitie imidazolate frameworks [J]. PNAS,2006,103(27):10186-10191.
    [29]Banerjee R, Phan A, Wallg B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J]. Science,2008,319:939-943.
    [30]Barthelet K, Marrot J, Riou D, Ferey G. A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. [J]. Angew. Chem. Int. Ed.,2002,41(2):281-284.
    [31]Millange F., Serre C, Ferey G. Synthesis, structure determination and properties of MIL-53as and MIL-53ht:the first CrⅢ hybrid inorganic-organic microporous solids:CrⅢ (OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x [J]. Chem. Commun.2002,2(8):822-823.
    [32]Millange F, Serre C, Guillou N, et al. Structural effects of solvents on the breathing of metal-organic frameworks:an in situ diffraction study [J]. Angew. Chem. Int. Ed.,2008, 47(22):4100-4105.
    [33]Llewellyn P L, Bourrelly S, Serre C, et al. How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53 [J]. Angew. Chem. Int. Ed.,2006,45(46):7751-7754.
    [34]Alaerts L, Maes M, et al. Selective adsorption and separation of ortho-substituted alkylaromatics with the microporous aluminum terephthalate MIL-53 [J]. J. Am. Chem. Soc., 2008,130(43):14170-14178.
    [35]Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers [J]. Angew. Chem Int. Ed.,2004,43(18):2334-2375.
    [36]Kondo M, Okubo T, Asami A, et al. Rational synthesis of stable channel-like cavities with methane gas adsorption properties:[{Cu2(pzdc)2(L)}n](pzdc=pyrazine-2,3-dicarboxylate; L =a pillar ligand) [J]. Angew. Chem. Int. Ed.,1999,38(1-2):140-143.
    [37]Tanaka D, Nakagawa K, Higuehi M, et al.Kinetic gate-opening process in a flexible porous coordination polymer [J]. Angew. Chem. Int. Ed.,2008,47(21):3914-3918.
    [38]Wang X S, Ma S Q, Sun D F, et al. A mesoporous metal-organic framework with permanent porosity [J]. J. Am. Chem. Soc.,2006,128(51):16474-16475.
    [39]Ma S, Zhou H C. A metal-organic framework with entatic metal center exhibiting high gas-adsorption affinity [J]. J.Am. Chem. Soc.,2006,128(36):11734-11735.
    [40]Ma S, Sun D, Simmons J M, et al. Metal-organic framework from ananthracene derivative containing nanoscopic cages exibiting high methane uptake [J]. J. Am. Chem. Soc.,2008, 130(3):1012-1016.
    [41]Maspoch D, Ruiz-Molina D, Veciana J. Old materials with new tricks: multifunctional open-framework materials [J]. Chem Soc Rev,2007,36(5):770-818.
    [42]Janiak C. Engineering coordination polymers towards applications [J]. Dalton Trans.,2003, 32(14):2781-2804.
    [43]Suh M P, Cheon Y E, Lee E Y. Syntheses and functions of porous metallosupramolecular networks [J]. Coord. Chem. Rev.,2008,252:1007-1026.
    [44]Cahill C L, de Lill D T, Frisch M. Homo- and heterometallic coordination polymers from the f elements [J]. CrystEngComm,2007,9(1):15-26.
    [45]Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1330-1352.
    [46]Xiao Y Q, Cui Y J, Zheng Q, et al. A microporous luminescent metal-organic framework for highly selective and sensitive sensing of Cu2+ in aqueous solution [J]. Chem. Commun.,2010, 46(30):5503-5505.
    [47]Stylianou K C, Heck R, Bacsa J, et al. A guest-responsive fluorescent 3D microporous Metal-Organic Framework derived from a long-lifetime pyrene core [J]. J. Am. Chem. Soc., 2010,132(12):4119-4130.
    [48]林国强,陈耀全等著,手性合成—不对称反应及其应用[M].北京:科学出版社,2000.
    [49]Lee S J, Lin W. A chiral molecular square with metallo-corners for enantioselective sensing [J]. J. Am. Chem. Soc,2002,124(17):4554-4555.
    [50]Kumaiga H, Inoue K. A chiral molecular based metamagnet prepared from manganese ions and a chiral triplet organic radical as a bridging ligand Angew [J]. Chem. Int. Ed.,1999, 38(11):1601-1603.
    [51]Vaissermann J, Verdaguer M. Rational design of three-Dimensional(3D) optically active molecule-based magnets:synthesis, Structure, optical and magnetic properties of {[Ru(bpy)3]2+, ClO4-,[MnⅡCrⅢ(ox)3]-}n and {[Ru(bpy)2ppy]+, [MⅡCrⅢ(ox)3]-}n, with MⅡ= MnⅡ, NiⅡ.X-ray structure of {[△Ru(bpy)3]2+, ClO4-, [△MnⅡ△CrⅢ(ox)3]-}n and {[△Ru(bpy)2ppy]+,[△MnⅡCrⅢ(ox)3]*}n [J]. Inorg. Chem.,2001,40(18):4633-4640.
    [52]Seeber G, Pickering A L, Long D, et al. Controlling dimensionality of silver(Ⅰ) coordination networks with rigid aliphatic amino ligands:from a 2D to a 3D network of unprecedented topology comprising helical channels [J]. Chem. Commun.,2003,39(16):2002-2003.
    [53]Inoue K, Imai H, Ghalsasi P S, et al. A three-Dimensional ferrimagnet with a high magnetic transition temperature (Tc) of 53 K based on a chiral molecule [J]. Angew. Chem. Int. Ed., 2001,40(22):4242-4245.
    [54]C.Parlsen.B.B.Amabilino.J.Veciana, An enantiopure molecular ferromagnet [J]. Angew. Chem. Int. Ed.,2002,41(4):586-589
    [55]Siemeling U, Scheppelmann I, Neumann B, et al. Spontaneous chiral resolution of a coordination polymer with distorted helical structure consisting of achiral building blocks [J]. Chem. Commun.,2003,39(17):2236-2237.
    [56]Hernendez-Molina M, Lloret F, Ruiz-Perez C, et al. Weak ferromagnetism in chiral 3-Dimensional oxalato-bridged cobalt (II) compounds. Crystal structure of [Co(bpy)3] [Co2(ox)3] ClO4 [J]. Inorg. Chem.,1998,37(16):4131-4135.
    [57]Romero F M, Rusanov E, Stoeckli-Evans H. Ferromagnetism and chirality in two-Dimensional cyanide-bridged bimetallic compounds [J]. Inorg. Chem.,2002,41(18):4615-4617.
    [58]Inoue K, Kikuchi K, Ohba M, et al. Structure and magnetic properties of a chiral two-dimensional ferrimagnet with Tc of 38 K [J]. Angew. Chem. Int. Ed.,2003,42(39):4810-4813.
    [59]Cui Y, Evans O W, et al. Rational design of homochira solids based on two-dimensional metal carboxylates [J]. Angew. Chem. Int. Ed.,2002,41 (7):1159-1160.
    [60]Grosshans P, Jouaiti A, Bulach V, et al. Molecular tectonics: from enantiomerically pure sugars to enantiomerically pure triple stranded helical coordination network [J]. Chem. Commun.,2003,39(12):1336-1337
    [61]Wu C, Lu C, Lu S, et al. Synthesis, structures and properties of a series of novel left- and right-handed metal coordination double helicates with chiral channels [J]. j. Chem. Soc., Dalton Trans.,2003,32(16):3192-3198.
    [62]Han S J, Manson L J, Kim J, et al. Weak ferromagnetism in a three-dimensional manganese (Ⅱ) azido complex, [Mn(4,4'-bipy)(N3)2]n(bipy=Bipyridine) [J]. Inorg. Chem.,2000,39(18): 4182-4185.
    [63]Xiong R, You X, Xue Z, et al. Enantioseparation of rcemic organic molecules by a zeolite analogue [J]. Angew. Chem. Int. Ed.,2001,40(23):4422-4425.
    [64]Evans O R, Ngo H L, Lin W. Chiral porous solids based on lamellar lanthanide phosphonates [J]. J. Am. Chem. Soc.,2001,123(42):10395-10396.
    [65]Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis [J]. Nature,2000,404:982-986.
    [66]Yu S Y, Zhang Z X, Cheng E C C, et al. A chiral luminescent Au16 ring self-assembled from achiral components [J]. J. Am. Chem. Soc.,2005,127(51):17994-17995
    [67]Wu C, Hu A, Zhang L, Lin W. A homochiral porous Metal-Organic Framework for highly enantiuselective heterogeneous asymmetric catalysis [J]. J. Am. Chem. Soc.,2005,127(25): 8940-8941.
    [68]Zhao H, Heintz R A, Ouyang X, et al. Spectroscopic, Thermal, and magnetic properties of metal/TCNQ network polymers with extensive supramolecular interactions between layers [J]. Chem. Mater.,1999,11(3):736-746.
    [69]Pokhodnya K I, Petersen N, Miller J S. Iron pentacarbonyl as a precursor for molecule-based magnets:Formation of Fe[TCNE]2 (Tc=100K) and Fe[TCNQ]2 (Tc=35K) magnets [J]. Inorg. Chem.,2002,41(8):1996-1997.
    [70]Zhao H, Bazile M J, Galane-Mascaros J R, et al. A rare-earth metal TCNQ magnet: synthesis, structure, and magnetic properties of{[Gd2(TCNQ)5(H2O)9][Gd(TCNQ)4(H2O)3]}4H2O [J]. Angew. Chem. Int. Ed.,2003,42(9):1015-1018.
    [71]Galane-Mascaros J R, Dunbar K R. A self-assembled 2D molecule-based magnet: the honeycomb layered material{Co3Cl4(H2O)2[Co(Hbbiz)3]2} [J]. Angew. Chem. Int. Ed.,2003, 42(20):2289-2293.
    [72]Ribas J, Escuer A, Monfort M, et al. Polynuclear NiⅡ and MnⅡazido bridging complexes. Structural trends and magnetic behavior [J]. Coord. Chem. Rev.,1999,193-195:1027-1068.
    [73]Liu T, Fu D, Gao S, et al. An azide-bridged homospin single-chain magnet:[Co(2,2'-bithiazoline)(N3)2]n[J]. J. Am. Chem. Soc.,2003,125(46):13976-13977.
    [74]Gao E, Bai S, Wang Z, et al. Two-dimensional homochiral manganese(II)-azido frameworks incorporating an achiral ligand:Partial spontaneous resolution and weak ferromagnetism [J]. J.Am. Chem. Soc.,2003,125(17):4984-4985.
    [75]Liu C M, Gao S, Zhang D Q, et al. A unique 3D alternating ferro- and antiferromagnetic manganese azide system with threefold interpenetrating (10,3) Nets [J]. Angew. Chem. Int. Ed.,2004,43(8):990-994.
    [76]Ribas J, Escuer A, Monfort M, et al. Polynuclear Ni-II and Mn-Ⅱ azido bridging complexes. Structural trends and magnetic behavior [J]. Coord. Chem. Rev.,1999,193(5):1027-1068.
    [77]Serna Z E, Lezama L, Urtiaga M K, et al. A dicubane-like tetrameric nickel(Ⅱ) azido complex [J]. Angew. Chem. Int. Ed.,2000,39(2):344-347.
    [78]Goher M A S, Cano J, Journaux Y, et al. Synthesis, structural characterization, and Monte Carlo simulation of the magnetic properties of two new alternating Mn-Ⅱ azide 2-D honeycombs. Study of the ferromagnetic ordered phase below 20 K [J]. Chem Eur J,2000, 6(5):778-784.
    [79]Meyer F, Kircher P, Pritzkow H. Tetranuclear nickel(Ⅱ) complexes with genuine μ3-1,1,3 and μ4-1,1,3,3 azide bridges [J]. Chem Commun,2003,39(6):774-775.
    [80]Guo G C, Mak T C W. Aμ,1,1,3,3,3 azide anion inside a trigonal prism of silver centers [J]. Angew Chem Int Ed,1998,37(23):3268-3270.
    [81]Papaefstathiou G. S, Perlepes S P, Escuer A, et al. Unique single-atom binding of pseudohalogeno ligands to four metal ions induced by their trapping into high-nuclearity cages [J]. Angew Chem Int Ed,2001,40(5):884-886.
    [82]Gao E Q, Bai S Q, Yue Y F, et al. New one-dimensional azido-bridged manganese (Ⅱ) coordination polymers exhibiting alternating ferromagnetic -antiferromagnetic interactions: Structural and magnetic studies [J]. Inorg. Chem.,2003,42(11):3642-3649.
    [83]Braga D, Grepioni F, Orpen A G. Crystal Engineering: From Molecules and Crystals to Materials [M]. Dordrecht, Kluwer Academic Pblishers,1999
    [84]Seddon K R, Zaworotko M. Crystal engineering:the design and application of functional solids [M]. Dordrecht, Kluwer Academic Pblishers,1999.
    [85]Becher L, Schaumburg K, et al. Molecular engineering for advanced materials [M]. Dordrecht: Kluwer Academic Publishers,1995.
    [86]Kahn O. Magnetism:A Supramolcular Function [M]. Weinheim:VCH,1996.
    [87]游效曾.分子材料-光电功能化合物[M].上海:上海科学技术出版社,2001.
    [88]Liu C M, Gao S, Zhang D Q, et al. A unique 3D alternating ferro-and antiferromagnetic manganese azide system with three fold interpenetrating (10,3) nets [J]. Angew Chem Int Ed, 2004,43(8):990-994.
    [89]Hoskins B F, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuⅠZnⅡ(CN)4] and CuⅠ[4,4',4",4"'-tetracyanotetraphenylmethane] BF4·xC6H5NO2[J].J. Am. Chem. Soc.,1990,112(4):1546-1554.
    [90]Fujita M, Kwon Y J, Washizu S, et al. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(Ⅱ) and 4,4'-bipyridine [J]. J. Am. Chem. Soc.,1994,116(3):1151-1152.
    [91]Alaerts L, Seguin E, Poelman H, et al. Probing the lewis acidity and catalytic activity of the metal-organic framework [Cu-3(btc)(2)](BTC= benzene-1,3,5-tricarboxylate) [J] Chem. Eur. J.,2006,12(28):7353-7363.
    [92]Hupp J T, Poeppelmeier K R.. Better living through nanopore chemistry [J]. Science,2005, 309:2008-2009.
    [93]Lu Y, Tonigold M, Bredenkotter B, et al. A Cobalt(II)-containing Metal-Organic Framework showing catalytic activity in oxidation reactions [J]. Z. Anorg. Allg. Chem.,2008, 634(12-13):2411-2417.
    [94]Xamena F X L I, Abad A, Corma A, et al. MOFs as catalysts:activity, reusability and shape-selectivity of a Pd-containing MOF [J]. J. Catal.,2007,250(2):294-298.
    [95]Ravon U, Domine M E, Gaudillere C, et al. MOFs as acid catalysts with shape selectivity properties [J]. New J. Chem.,2008,32(6):937-940.
    [96]Tranchemontagne D J, Hunt J R, Yaghi O M. Room temperature synthesis of metal-organic frameworks:MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0 [J]. Tetrahedron,2008, 64(36):8553-8557.
    [97]Lee J, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts [J]. Chem. Soc. Rev.,2009,38(12):1450-1459.
    [98]Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J]. J. Am. Chem. Soc,2008,130(42): 13850-13851.
    [99]Farha O K, Spokoyny A M, Mulfort K L, et al. Synthesis and hydrogen sorption properties of carborane based metal-organic framework materials [J]. J. Am. Chem. Soc.,2007,129(42): 12680-12681.
    [100]Henschel A, Gedrich K, Kraehnertb R, et al. Catalytic properties of MIL-101 [J]. Chem. Commun.,2008,44(35):4192-4194.
    [101]Zhao D, Yuan D Q, Zhou H C. The current status of hydrogen storage in metal-organic frameworks [J]. Energy Environ. Sci.,2008,1(2):222-235.
    [102]Rowsell J L C, Millward A R, Park K S, et al. Hydrogen sorption in functionalized metal-organic frameworks [J]. J. Am. Chem. Soc,2004,126(18):5666-5667.
    [103]Sun D F, Ma S Q, Ke Y X, et al. An interweaving MOF with high hydrogen uptake [J]. J. Am. Chem. Soc.,2006,128(12):3896-3897
    [104]Chae H K, Siberio-Perez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature,2004,427:523-527
    [105]Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks [J]. Chem. Soc Rev.,2009,38(5):1477-1504
    [106]Matsuda R, Kitaura R, Kitagawa S, et al. Highly controlled acetylene accommodation in a metal-organic microporous material [J]. Nature,2005,436:238-241.
    [107]张建勇.新型氮杂环和羧酸类配位聚合物的构筑与性质研究[D].华东师范大学,2010.
    [108]Yamada T, Kitagawa H. Protection and deprotection approach for the introduction of functional groups into Metal-Organic Frameworks [J]. J. Am. Chem. Soc,2009,131(18): 6312-6313.
    [109]Morrisand W, Yaghi O M, Doonan C J, et al. Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks [J]. J. Am. Chem. Soc.,2008,130(38): 12626-12627.
    [110]Wang X F, Chen X M, et al. Two microporous metal-organic frameworks with different topologies constructed from linear trinuclear M3(COO)n secondary building units [J]. CrystEngComm,2008,10(6):753-758.
    [111]Ingleson M J, Barrio J P, Guilbaud J B, et al. Framework functionalisation triggers metal complex binding [J]. Chem. Commun.,2008,44(23):2680-2682.
    [112]Wang Z, Cohen S M, et al. et al. Tuning hydrogen sorption properties of Metal-Organic Frameworks by postsynthetic covalent modification [J]. Chem. Eur. J.2010,16(1):212-217.
    [113]Gadzikwa T, HuPP J T, et al. A Zn-based, pillared paddlewheel MOF containing free carboxylic acids via covalent post-synthesis elaboration [J]. Chem. Commun.,2009,45(24): 3720-3722.
    [114]Garibay S J, Wang Z Q, Cohen S M, et al. Postsynthetic modification:A versatile approach toward multifunctional Metal-Organic Frameworks [J]. Inorg. Chem.,2009,48(15): 7341-7349.
    [115]Wang Q, Cohen S M. Tandem modification of Metal-Organic Frameworks by a postsynthetic approach [J]. Angew. Chem. Int. Ed.,2008,47(25):4699-4702.
    [116]Dugan E, Cohen S M. etal. Covalent modification of a metal-organic framework with isocyanates:probing substrate scope and reactivity [J]. Chem. Commun.,2008,44(29): 3366-3368.
    [117]Wang Q, Cohen S M. Postsynthetic covalent modification of a neutral metal-organic framework [J]. J. Am. Chem. Soc.,2007(41):12368-12369.
    [118]Tanabe K K,Wang Z Q, Cohen S M. Systematic functionalization of a Metal-Organic Framework via a postsynthetic modification approach [J] J. Am. Chem. Soc.2008,130: 8508-8517
    [119]Song Y F, Cronin L. Postsynthetic covalent modification of Metal-Organic Framework (MOF) materials [J]. Angew. Chem. Int. Ed.,2008,47(25):4635-4637.
    [120]Burrows A D, Frost C G, Mahon M F, et al. Post-synthetic modification of tagged Metal-Organic Frameworks [J]. Angew. Chem. Int. Ed.,2008,47(44):8482-8486.
    [121]Walsh C T, Garneau-Tsodikova S, Gatto G J. Protein posttranslational modifications:the chemistry of proteome diversifications [J]. Angew. Chem. Int. Ed.,2005,44(45):7342-7372.
    [122]Kiang Y H, Gardner G B, Lee S, et al. Variable pore size, variable chemical functionality, and an example of reactivity within porous phenylacetylene silver salts [J]. J. Am. Chem. Soc.,1999,121(36):8204-8215.
    [123]Farha O K, Mulfort K L, Hupp J T. An example of node-based postassembly elaboration of a hydrogen-sorbing, Metal-Organic Framework material [J]. Inorg. Chem.,2008,47(22): 10223-10225.
    [124]Hwang Y K, Hong D Y, Chang J S, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs:Consequences for catalysis and metal encapsulation [J]. Angew. Chem. Int. Ed.,2008,47(22):4144-4148.
    [125]Demessence A., D'Alessandro D M, Foo M L, et al. Strong CO2 binding in a water-stable, triazolate-bridged Metal-Organic Framework functionalized with ethylenediamine [J]. J. Am. Chem. Soc.,2009,131(25):8784-8786.
    [126]Wang Z, Cohen S M. Postsynthetic modification of metal-organic frameworks [J]. Chem. Soc. Rev.,2009,38:1315-1329.
    [127]翁林红.基于芳香羧酸和双吡啶嗯二唑类混合配体的配位聚合物的合成、表征及性质研究[D].厦门大学,2010.
    [128]Batten S R, Robson R. Interpenetrating nets:ordered, periodic entanglement [J]. Angew. Chem. Int. Ed.,1998,37(11):1461-1494.
    [129]Leininger S, Olenyuk B, Stang P J. Self-assembly of discrete cyclic nanostructures mediated by transition metals [J]. Chem. Rev.,2000,100(3):853-908.
    [130]Moulton B, Zaworotko M J. From molecules to crystal engineering supramolecular isomerism and polymorphism in network solids [J]. Chem. Rev.,2001,101(6):1629-1658.
    [131]Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading and polyknotting in coordination network chemistry [J]. Coord. Chem. Rev.,2003,246:247-289.
    [132]Ockwig N M, Delgado-Fredrichs O, O'Keefe M, et al. Reticular chemisry:Occurrence and taxonomy of nets and grammar for the design of frameworks [J]. Acc. Chem. Res.,2005, 38(3):176-182.
    [133]Rowsell J L C, Yaghi O M. Strategies for hydrogen storage in Metal-Organic Frameworks [J]. Angew. Chem., Int. Ed.,2005,44(30):4670-4679.
    [134]Sauvage J P. Transition metal-containing rotaxanes and catenanes in motion:toward molecular machines and motors [J]. Accounts of Chemical Reserch,1998,31:611-619.
    [135]Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis [J]. Nature,2000,404:982-986.
    [136]Evans O R, Lin W. Crystal engineering of NLO materials based on metal-organic coordination networks [J]. Acc. Chem. Res.,2002,35(7):511-522.
    [137]Yaghi O M, O'Keeffe M, Oekwig N W, et al. Global change:dishing the dirton coral reefs [J]. Nature,2003,423:705-706.
    [138]Rao C N R, Natarajan S, Vaidhyanathan R. Metal carboxylates with open architectures [J]. Angew. Chem. Int. Ed.,2004,43(12):1466-1496.
    [139]Rowsell J L C, Yaghi O M. Metal-organic frameworks:a new class of porous materials [J]. Microporous and Mesoporous Materials,2004,73(1-2):3-14.
    [140]Linx A., Blaek J, Wilsone, et al. A porous framework polymer based on a Zinc(II) 4,4'-bipyridine-2,6,2',6'-tetracarboxylate:synthesis, structure, and "Zeolite-like behaviors [J]. J. Am. Chem. Soc.,2006,128(33):10745-10753.
    [141]Zhou Z H, Yang J M, Wan H L. Diamine substitution reactions of tetrahydrate succinato Nickel, Cobalt, and Zinc coordination polymers [J]. Cryst. Growth Des.,2005,5(5): 1825-1830.
    [142]Childs S L, Chyall L J, Dunlap J T, et al. Crystal engineering approach to forming Co crystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids [J]. J. Am. Chem. Soc,2004, 126(41):13335-13342
    [143]Vishweshwar P, Nangia A, Lyllch V M. Molceular complexes of homologous alkanedicarboxylic acids with isonicotinamde:X-ray crystal structures, hydrogen bond synthons, and melting point alternation [J]. Cryst. Growth Des.,2003,3(5):783-790.
    [144]Ma B Q, Mulfort K L, Hupp J T. Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of Zinc ions [J]. Inorg Chem.,2005,44(14):4912-4914.
    [145]Tanaka D, Nakagawa K, Kitagawa S, et al. Kinetic gate-opening process in a Flexible porous coordination polymer [J]. Angew. Chem. Int. Ed.,2008,47(21):3914-3918.
    [146]Braun M E, Steffek C D, Kim J, et al.1,4-Benzenedicarboxylate derivatives as links in the design of paddle-wheel units and metal-organic frameworks [J]. Chem. Commun.,2001, 37(24):2532-2533.
    [147]Yang J, Ma J F, Liu Y Y, et al. Four novel 3D copper(II) coordination polymers with different topologies [J]. Eur. J. Inorg. Chem.,2005,2005(11):2174-2180.
    [148]中本一雄著,黄德如,汪仁庆译,廖代伟校.无机和配位化合物的红外和拉曼光谱[M].北京:化学工业出版社,1986.
    [149]Cao R, Sun D F, Liang Y C, et al. Syntheses and characterizations of three-dimensional channel-like polymeric lanthanide complexes constructed by 1,2,4,5-benzenetetracarboxylic acid [J]. Inorg. Chem,2002,41(8):2087-2094.
    [150]杨颖群,李薇,陈志敏等.一维链状锰配位聚合物[Mn(C10H9O3)2(4,4'-bipy)(H2O)2]n的合成、晶体结构及荧光性质分析[J].无机化学学报,2008,24(8):1365-1368.
    [151]Bunz U H F. Poly(aryleneethynylene)s: syntheses, properties, structures, and applications [J]. Chem. Rev.,2000,100(4):1605-1644.
    [152]Yang W Y, Schmider H, Wu Q G, et al. Syntheses, structures, and fluxionality of blue luminescent Zinc(II) complexes:Zn(2,2',2"-tpa)C12, Zn(2,2',2"-tpa)2(O2CCF3)2, and Zn(2,2',3"-tpa)4(O2CCF3)2 (tpa=Tripyridylamine) [J]. Inorg. Chem.,2000,39(11): 2397-2404.
    [153]张俊珺,阳年发,张春华,李碧辉.铜(Ⅰ)聚合物[Cu3Hpt3]n的水热合成、晶体结构及荧光光谱[J].无机化学学报,2010,26(3):533-536.
    [154]Duan C Y, Wei M L, Guo D, et al. Crystal structures and properties of large protonated water clusters encapsulated by Metal-Organic Frameworks [J]. J. Am. Chem. Soc.,2010, 132(10):3321-3330.
    [155]Chen B L, Wang L B, Zapata F, et al. A luminescent microporous Metal-Organic Framework for the recognition and sensing of anions [J]. J. Am. Chem. Soc.,2008,130(21): 6718-6719.
    [156]Zhang X, Llabres i Xamena F X, Corma A. gold(Ⅲ)-metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts [J]. J. Catal.2009,265(2): 155-160.
    [157]Ikemoto K., Inokuma Y., Fujita M. The reaction of organozinc compounds with an aldehyde within a crystalline molecular flask [J]. Angew. Chem. Int. Ed.2010,49(33): 5750-5752.
    [158]Ma M Y, Gross A, Zacher D, et al. Use of confocal fluorescence microscopy to compare different methods of modifying metal-organic framework(MOF) crystals with dyes [J]. CrystEngComm, DOI:10.1039/c0ce00416b.
    [159]Xue M, Zhu G S, Fang Q R, et al. Design, structure and properties of a novel 3D metal-organic framework constructed from N-donor ligand supporting Cd(Ⅱ)-carboxylate layer [J]. Inorg. Chem. Commun.,2006,9(6):603-606.
    [160]Chun H L, Kun L H, Chi Y N, et al. Lanthanide-organic cation frameworks with zeolite gismondine topology and large cavities from intersected channels templated by polyoxometalate counterions [J]. Inorg. Chem.,2009,48(5):2010-2017.
    [161]许金钩,王尊本.荧光分析法[M].北京:科学出版社,2006.
    [162]Klonkowski A M, Lis S, Pietraszkiewicz M, et al. Luminescence properties of materials with Eu(Ⅲ) complexes:role of ligand, coligand, anion, and matrix [J]. Chem. Mater.,2003, 15(3):656-663.
    [163]Ray D, Bharadwaj P K. A coumarin-derived fluorescence probe selective for magnesium [J]. Inorg. Chem.,2008,47(7):2252-2254.
    [164]Wu J S, Liu W M, Zhuang X Q, et al. Fluorescence turn on of coumarin derivatives by metal cations:A new signaling mechanism based on C=N isomerization [J]. Org. Lett., 2007,9(1):33-36.
    [165]Kesanli B, Cui Y, Smith M R, et al. Soft nanotechnology with soft nanoparticles [J]. Angew. Chem. Int. Ed.,2005,44(1):72-75.
    [166]田歌,朱广山,方干荣.具有双螺旋链的新型二维无机-有机骨架晶体材料Ni(PDC)(H2O)2的合成与结构[J].高等学校化学学,2006,27(6):1020-1022.
    [167]Shi X, Zhu G S, Qiu S L, et al. Zn2[S)-O3PCH2NHC4H7CO2]2: A homochiral 3D zinc phosphonate with helical channels [J]. Angew. Chem. Int. Ed.,2004,43(47):6482-6485.
    [168]Tian G, Zhu G S, Yang X Y, et al. A chiral layered Co(Ⅱ) coordination polymer with helical chains from achiral materials [J] Chem. Commun,2005,41(11):1396-1398.
    [169]孙福兴,朱广山,叶玲等.三维金属有机骨架微孔晶体化合物Cd5(BTC)4(H2O)8·6H2O的合成与晶体结构高等学校化学学报[J].2006,27(8):1418-1420.
    [170]田戈,袁宏明,陈岩等.三维银配位聚合物[Ag3(IN)2(CF3COO)]的水热合成与晶体结构[J].高等学校化学学报,2006,27(8):2045-2047.
    [171]日本化学会编,曹惠民译.无机化合物成手册[M].北京:化学工业出版社,1988.173
    [172]Choudhary, Boyapati Manoranjan. Process for the preparation of metal J acetylacetonates [P]. WO Patent,004056737A1,2004.
    [173]赵丹,段宏昌,姜恒,宫红.室温固相合成乙酰丙酮镍[J].化工时刊,2007,21(2):8-10.
    [174]刘青宝.乙酰丙酮金属化合物合成及其对PVC的热稳定作用研究[D].北京化工大学,2009.
    [175]郝向英,哈斯其木格,鸟地.一种新方法合成新型镨荧光配合物[J].阴山学刊,2000,15(3):30-31.
    [176]Stites J G, Mccarty, Quill L L. An improved mthod for the synthesis of some rare earth acetylacetonates [J]. J. Am. Chem. Soc.,1948,3142-3143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700