利用甲醛聚糖反应合成燃料和化学品的衔接策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于化石能源的大规模使用,目前世界面临两大问题:化石燃料的逐渐枯竭和自然环境的逐渐恶化。作为解决这些问题的一条途径,将可再生的生物质资源转变为燃料和化学品已经引起人们越来越多的关注。目前,非食用的木质纤维素基生物质转变为液态燃料和化学品的策略主要有热解和水解两种方法。在这两种方法中,热解方法中的气化途径能够将木质纤维素基生物质全组分转变为合成气,但在将合成气转变为液态燃料的费托过程中将会损失大量的能量。与之相对应的是,水解方法中的将可溶性糖类化合物转变为液态燃料和化学品的水相炼制过程具有反应条件温和、能量效率高的优点,但在将木质生物质转变为可溶性糖的预处理以及酸水解过程操作成本高昂、环境污染大。因此,目前仍旧缺乏一条低花费,高效率的炼制路线。
     针对以上问题,本文在此描述了一条新的催化路径,经甲醛聚糖反应链接生物质气化路径和水相处理过程来制备液态交通燃料。从生物质合成气转变而来的甲醛首先通过甲醛聚糖反应转变为二羟基丙酮(DHA),接着经Aldol缩合和催化脱水转变为4-羟甲基糠醛(4-HMF),随后氢化转化为C9-C15支链烷烃或2,4-二甲基呋喃(2,4-DMF)作为液态交通燃料。在我们的链接策略中,昂贵的和高污染的生物质预处理过程被摒弃掉,而高能量保有率的水相处理过程(APP)被保留了。理论上,甲醇中大约75%的能量以及生物质中几乎50%的能量被保留在了液体燃料2,4-DMF中,并且可以通过综合利用反应热来进一步提高能量效率。此外,作为一种新型平台分子——4-HMF,本论文还描述了其在化学品方面的应用。
     在第1章中,我们简要介绍了目前由生物质制备液态燃料的发展状况,详细综述了目前由生物质制备液态燃料的三种途径:气化重整、热解提质和水相炼制,并将这三种方法进行的对比,提出了利用甲醛聚糖反应衔接气化和水相炼制的新策略。
     第2章介绍了生物质水相炼制中一条重要路线——基于5-羟甲基糠醛的炼制路线。详细综述了由各种生物质原料制备5-羟甲基糠醛的工艺,以及各种影响因素。此外还简要介绍了5-羟甲基糠醛在制备液态燃料和精细化学品方面的应用。
     第3章主要介绍三碳糖的制备。本章主要提出了两种制备三碳糖的方法:甘油催化氧化法和选择性甲醛聚糖反应。在甘油催化氧化研究中,我们利用Pt-Bi/C催化剂,在固定床中利用氧气氧化甘油水溶液,最高可获80%以上选择性地制备1,3-二羟基丙酮。在选择性甲醛聚糖反应研究中,我们首先简要介绍了甲醛聚糖技术的发展历史以及甲醛缩合为1,3-二羟基丙酮工艺进展。而后,我们利用N-烷基取代苯并噻唑卡宾催化剂选择性催化多聚甲醛制备1,3-二羟基丙酮。此外,考虑到原料成本因素,在使用甲醛水溶液时,我们设计了双塔反应体系,利用溶剂共沸除水的方式原位再生催化剂,实现甲醛水溶液连续转变为1,3-二羟基丙酮水溶液。
     第4章主要研究了三碳糖的催化缩合。考察了各种碱催化下的甘油醛缩合和1,3-二羟基丙酮的缩合。研究表明在碱催化下,甘油醛首先发生异构化,转变为1,3-二羟基丙酮,而后甘油醛和1,3-二羟基丙酮发生交叉缩合,形成直链己酮糖;而1,3-二羟基丙酮在碱催化下主要发生自身缩合,形成支链己酮糖。并且,通过固定床连续反应器研究,发现1,3-二羟基丙酮异构化为甘油醛的活化能大于1,3-二羟基丙酮自身缩合的活化能。因此,反应温度也可以调控1,3-二羟基丙酮缩合产物的分布。此外,我们利用原位核磁跟踪,首次明确了1,3-二羟基丙酮在室温缩合时,产物支链己酮糖与直链己酮糖的比例为9:1,而非之前报道的2:1。
     第5章主要研究了己酮糖的脱水。研究发现直链己酮糖脱水产生5-羟甲基糠醛;而首次发现支链己酮糖可以脱水转变为4-羟甲基糠醛。我们分别研究了支链己酮糖在非水体系间歇或连续脱水转变为4-羟甲基糠醛,以及在双相体系间歇或连续脱水转变为4-羟甲基糠醛的工艺。
     第6章主要研究4-羟甲基糠醛转变为高辛烷值的支链烷烃燃料以及转变为新型呋喃基含氧燃料——2,4-二-甲基呋喃。
     第7章简单介绍了作为2,4-二取代呋喃化合物——4-羟甲基糠醛及其衍生物在斑蝥素类药物前体分子和液晶小分子方面的应用。
     第8章对全文进行了总结和展望。
     综上所述,本文利用甲醛聚糖反应衔接了生物质气化和水相炼制过程。在三碳糖缩合过程中首次明确可以将1,3-二羟基丙酮以95%以上的选择性转变为支链己酮糖,同时意外发现支链己酮糖可以转变为新型平台分子——4-羟甲基糠醛。通过工艺整合,实现了4-羟甲基糠醛的连续化生产,并分别展现了4-羟甲基糠醛在燃料和化学品方面的应用,开辟了一条基于4-羟甲基糠醛的全新水相炼制途径。
The world is currently faced with two significant problems:fossil fuel depletion and environmental degradation due to the consumption of fossil energy. As one of the solutions to these problems, the transformation of biomass into fuel and chemicals has drawn more and more attention. Current strategies for converting inedible lignocelluloses biomass to liquid fuels and chemicals involve two major methods:pyrolysis and hydrolysis. In these two methods, entire biomass can be converted to syn-gas through gasification in pyrolysis, but lots of energy will be lost in the Fischer-Tropsch synthesis (FTS) to convert syn-gas to alkanes. In contrast, hydrolysis method of converting soluble carbohydrates into liquid fuels and chemicals through aqueous phase-processing (APP) has advantages of benign reaction conditions and high energy efficiency. However, the pretreatment and acid hydrolysis of biomass to sugars are costly and may cause environmental concerns. In this respect, a low-cost and high-efficiency refinery technology still remains absence.
     Faced with these problems, this paper described a new catalytic path here which linked biomass gasification with APP via formose reaction to make liquid transportation fuels and chemicals. At first, formaldehyde from syn-gas was converted to triose. This was followed by aldol condensation and dehydration to4-hydroxymethylfurfural (4-HMF). Finally,4-HMF was hydrogenated to produce C9-C15branched-chain alkanes or2,4-dimethylfuran (2,4-DMF) as liquid transportation fuels. In the linked strategy, high energy-consuming pretreatment as well as expensive and polluting hydrolysis of biomass were omitted, but the high energy recovery of APP was inherited. Theoretically, about75%of the energy in methanol and almost50%of the energy in biomass was retained in the liquid fuel2,4-DMF, and by comprehensive utilization of reaction heat energy efficiency could be further improved. Inadditional, as a novel building block platform, this paper also described the application of4-HMF in preparing chemicals.
     In the first chapter, we briefly introduced the current development of conversion of biomass to liquid fuels, reviewed thoroughly current three routes for conversion of biomass to liquid fuels:gasification-FTS route, pyrolysis-upgrading route, and hydrolysis-APP route, and compared these three routes, proposed a new strategy of linking gasification with APP through formose reaction.
     In the second chapter, an important path was introduced in biomass APP——5-hydroxymethylfurfural (5-HMF) based refining path, as well as various influence factors. Furthermore the application of5-HMF in preparing liquid fuels and fine chemicals was briefly introduced.
     The third chapter is mainly about the preparation of triose sugars. In this chapter we proposed two methods to prepare triose sugars: glycerol catalytic oxidation method and selective formose reaction. In the study of glycerol catalytic oxidation, with Pt-Bi/C catalyst oxidized glycerol aqueous solution with oxygen, we got the highest selectively of80%to prepare1,3-dihydroxyacetone (DHA). In the study of selective formose reaction, we at first briefly introduced the development history of formose technique as well as the advancement of DHA technique. Then, we synthesized DHA by using N-alkylation benzothiazole carbene catalyst for selective catalysis of paraformaldehyde. Moreover, considering the cost of feedstock, we designed a dual towers system using solvent azeotropic water method regenerated the catalyst in situ to achieve the continuous conversion of formaldehyde solution to DHA.
     In the forth chapter, we mainly studied the catalytic condensation of triose sugars. Studies indicated that with base catalysts glyceraldehyde (GLYD) isomerized into DHA at first, and then cross condensation occured between GLYD and DHA to form straight-chain hexoketoses (SCS); while under base catalysis DHA self-condensation happened to form branch-chained hexoketose (BCS). Also, through the research on fixed bed flow reactor, we find out that the activation energy of DHA isomerizing to GLYD is higher than that of DHA's self condensation. Therefore, reaction temperature can also control the distribution of DHA condensation products. Moreover, we used in situ nuclear magnetic tracking and for the first time confirmed that when the condensation of DHA in room temperature, the molar ratio of products of BCS and SCS is9:1, instead of2:1as reported before.
     The fifth chapter was mainly about the dehydration of hexoketose. Studies indicate that SCS dehydrate into5-HMF and that BCS dehydrate into4-HMF. We studied the dehydration of BCS into4-HMF in non aqueous system and two phase system respectively with batch procedure or continuous process.
     In the next chapter, we focused on the conversion of4-HMF into high octane branched alkane fuels and new furyl oxygenated fuels——2,4-DMF.
     We introduced the application of4-HMF and its derivatives as2,4-disubstituted furan compounds in chemicals such as cantharidin precursor molecules and liquid crystal molecules in the seventh chapter.
     The last chapter was the summary and outlook of this article.
     In conclusion, this article represented a linked strategy which linked biomass gasification with APP via formose reaction. In the condensation process of triose sugars, it was confirmed at the first time that DHA can be converted to BCS with selectivity of over95%. At the same time we found serendipitously that BCS could be converted to a new platform molecule——4-HMF. Through process integration, we achieved the continuous production of4-HMF, and presented the application of4-HMF in fuels and chemicals respectively, opens up a new aqueous refining path based on4-HMF.
引文
[1]Energy Information Administration (U. s.). Annual Energy Review,2009[M]. Energy Information Administration,2010. http://www.eia.doe.gov/aer/pdf/aer.pdf.
    [2]KEENAN R, GIKAS A. Statistical aspects of the energy economy in 2008[J]. Nuclear energy, 2009,8:12.0. http://www.eds-destatis.de/de/downloads/sif/sf 09055.pdf.
    [3]中国科学院生物质资源领域战略研究组.中国至2050年生物质资源科技发展路线图,2009[M].北京:科学出版社.
    [4]Simonetti D A, Dumesic J A. Catalytic Strategies for Changing the Energy Content and Achieving C-C Coupling in Biomass-Derived Oxygenated Hydrocarbons[J]. ChemSusChem,2008,1(8-9): 725-733.
    [5]EIA U S. International energy outlook[J]. Washington, DC, USA: United States Energy Information Administration,2009. http://www.eia.doe.gov/oiaf/ieo/pdf/0484%282009%29.pdf.
    [6]EIA U S. International energy outlook[J]. Washington, DC, USA: United States Energy Information Administration,2010. www.eia.doe.gov/oiaf/ieo.
    [7]Petroleum B. Statistical review of world energy 2010[J]. BP, London,2010. http://bp.com/statisticalreview.
    [8]Sorrell S, Speirs J, Bentley R W, et al. Global oil depletion: an assessment of the evidence for a near-term peak in global oil production: UK Energy Research Centre[J].2009. http://www.ukerc.ac.uk/support/tiki-download file.php?fileId=283.
    [9]IPCC A R. Intergovernmental Panel on Climate Change[J].2007. http://ipccwgl.restec.or.ip/AR4/meeting/pdf/SyR0407-siryo2.pdf.
    [10]Bush G W. State of the union address[J].2007. http://www.enebooks.com/data/JK82mxJBHsrAsdHqOvsK/2009-07-20/1248077111.pdf
    [11]EU-Commission. Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport[J]. Official Journal of the European Union,2003,5. http://ec.europa.eu/energy/res/legislation/doc/biofuels/en final.pdf.
    [12]Kreith F, Goswami D Y. Handbook of energy efficiency and renewable energy[M]. CRC PressI Lic,2007.
    [13]Graziani M, Fornasiero P. Renewable resources and renewable energy: a global challenge[M]. CRC PressI Llc,2007.
    [14]Klass D L. Biomass for renewable energy, fuels, and chemicals[M]. Academic press,1998.
    [15]Chheda J N, Huber G W, Dumesic J A. Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals[J]. Angewandte Chemie International Edition, 2007,46(38):7164-7183.
    [16]Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials[J]. Science,2006,311(5760):484-489.
    [17]Rinaldi R, Schtuth F. Design of solid catalysts for the conversion of biomass[J]. Energy & Environmental Science,2009,2(6):610-626.
    [18]Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels, Huber G W. Breaking the chemical and engineering barriers to lignocellulosic biofuels:next generation hydrocarbon biorefineries[M]. Washington, DC: National Science Foundation, Chemical, Biogengineering, Environmental and Transport Systems Division,2008. http://www.ecs.umass.edu/biofuels/Images/Roadmap2-08.pdf.
    [19]Flavin C, Sawin J L, Mastny L, et al. American energy:the renewable path to energy security [J]. American energy:the renewable path to energy security,2006. http://www.worldwatch.org/files/pdf/AmericanEnergy.pdf.
    [20]Lynd L R, Wyman C, Laser M, et al. Strategic biorefinery analysis: analysis of biorefineries[J]. Golden, Colorado:National Renewable Energy Laboratory,2005. http://www.nrel.gov/docs/fv06osti/35578.pdf.
    [21]Kamm B. Production of platform chemicals and synthesis gas from biomass[J]. Angewandte Chemie International Edition,2007,46(27):5056-5058.
    [22]Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering[J]. Chemical reviews,2006,106:4044-4098.
    [23]Kavalov B, Peteves S D. Status and perspectives of biomass-to-liquid fuels in the European Union[J]. European Commission—DG JRC, Institute for Energy, Petten, The Netherlands,2005: 92-894. http://www.mangus.ro/pdf/Stadiul%20actual%20si%20perspectivele%20bio-combustibililor%20 in%20Europa.pdf.
    [24]Milne T A, Abatzoglou N, Evans R J. Biomass gasifier "tars":their nature, formation, and conversion[M]. Golden, CO: National Renewable Energy Laboratory,1998. http://www.nrel.gov/docs/fy99osti/25357.pdf.
    [25]Boerrigter H, Van Der Drift A. Biosyngas:Description of R&D trajectory necessary to reach large-scale implementation of renewable syngas from biomass[J]. Energy Research Centre of the Netherlands,2004.
    [26]Spath P L, Dayton D C. Preliminary screening-technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas[R]. NATIONAL RENEWABLE ENERGY LAB GOLDEN CO,2003. http://www.nrel.gov/docs/fy04osti/34929.pdf.
    [27]Caldwell L. Selectivity in Fischer-Tropsch synthesis: review and recommendations for further work[J].1980. http://www.fischer-tropsch.org/DOE/DOE reports/81223596/pb81223596.pdf.
    [28]Dry M E. The Fischer-Tropsch process:1950-2000[J]. Catalysis today,2002,71(3):227-241.
    [29]Steynberg, A., Dry, M. (Eds.). Elsevier Science. Fischer-Tropsch Technology[M]. Elsevier Science,2004 (Vol.152).
    [30]Lange J P. Methanol synthesis: a short review of technology improvements[J]. Catalysis today, 2001,64(1):3-8.
    [31]Zhang R, Cummer K, Suby A, et al. Biomass-derived hydrogen from an air-blown gasifier[J]. Fuel processing technology,2005,86(8):861-874.
    [32]Koppatz S, Pfeifer C, Rauch R, et al. H2 rich product gas by steam gasification of biomass with in situ CO2 absorption in a dual fluidized bed system of 8 MW fuel input[J]. Fuel Processing Technology,2009,90(7):914-921.
    [33]Lange J P. Lignocellulose conversion:an introduction to chemistry, process and economics[J]. Biofuels, Bioproducts and Biorefining,2007,1(1):39-48.
    [34]Elliott D C, Beckman D, Bridgwater A V, et al. Developments in direct thermochemical liquefaction of biomass:1983-1990[J]. Energy & Fuels,1991,5(3):399-410.
    [35]Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil:a critical review[J]. Energy & Fuels,2006,20(3):848-889.
    [36]Lin Y C, Huber G W. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion[J], Energy & Environmental Science,2009,2(1):68-80.
    [37]Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy & Fuels,2004,18(2):590-598.
    [38]Elliott D C. Historical developments in hydroprocessing bio-oils[J]. Energy & Fuels,2007,21(3): 1792-1815.
    [39]Furimsky E. Catalytic hydrodeoxygenation[J]. Applied Catalysis A: General,2000,199(2): 147-190.
    [40]Wildschut J, Mahfud F H, Venderbosch R H, et al. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts[J]. Industrial & Engineering Chemistry Research,2009, 48(23):10324-10334.
    [41]Wildschut J, Iqbal M, Mahfud F H, et al. Insights in the hydrotreatment of fast pyrolysis oil using a ruthenium on carbon catalyst[J]. Energy & Environmental Science,2010,3(7):962-970.
    [42]Kersten S R A, van Swaaij W P M, Lefferts L, et al. Options for catalysis in the thermochemical conversion of biomass into fuels[J]. Catalysis for Renewables:from Feedstock to Energy Production,2007:119-145.
    [43]Czernik S, French R, Feik C, et al. Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes[J]. Industrial & Engineering Chemistry Research, 2002,41(17):4209-4215.
    [44]Cortright R D, Davda R R, Dumesic J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water[J]. Nature,2002,418(6901):964-967.
    [45]Davda R R, Dumesic J A. Renewable hydrogen by aqueous-phase reforming of glucose[J]. Chemical communications,2004 (1):36-37.
    [46]Zhao C, Kou Y, Lemonidou A A, et al. Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY(?) Ni and Nafion/SiO2 catalysts[J]. Chemical Communications,2010, 46(3):412-414.
    [47]Sharma R K, Bakhshi N N. Catalytic upgrading of pyrolysis oil[J]. Energy & Fuels,1993,7(2): 306-314.
    [48]Adjaye J D, Katikaneni S P R, Bakhshi N N. Catalytic conversion of a biofuel to hydrocarbons: effect of mixtures of HZSM-5 and silica-alumina catalysts on product distribution [J]. Fuel Processing Technology,1996,48(2):115-143.
    [49]Gayubo A G, Aguayo A T, Atutxa A, et al. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols[J]. Industrial & engineering chemistry research,2004,43(11):2610-2618.
    [50]Carlson T R, Vispute T P, Huber G W. Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds[J]. ChemSusChem,2008,1(5):397-400.
    [51]Vispute T P, Zhang H, Sanna A, et al. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils[J]. Science,2010,330(6008):1222-1227.
    [52]Deng L, Fu Y, Guo Q X. Upgraded acidic components of bio-oil through catalytic ketonic condensation[J]. Energy & Fuels,2008,23(1):564-568.
    [53]Dooley K M, Bhat A K, Plaisance C P, et al. Ketones from acid condensation using supported CeO2 catalysts: Effect of additives [J]. Applied Catalysis A:General,2007,320:122-133.
    [54]Hendren T S, Dooley K M. Kinetics of catalyzed acid/acid and acid/aldehyde condensation reactions to non-symmetric ketones[J]. Catalysis today,2003,85(2): 333-351.
    [55]Gaertner C A, Serrano-Ruiz J C, Braden D J, et al. Ketonization Reactions of Carboxylic Acids and Esters over Ceria-Zirconia as Biomass-Upgrading Processes[J]. Industrial & Engineering Chemistry Research,2010,49(13):6027-6033.
    [56]Xiong M, Deng J, Woodruff A P, et al. A bio-catalytic approach to aliphatic ketones[J]. Scientific reports,2012,2.
    [57]Bridgwater, A. V, Boocock, D. G. B. (Eds.). Developments in thermochemical biomass conversion[M]. Springer,1996.
    [58]Klimkiewicz R, Fabisz E, Morawski I, et al. Ketonization of long chain esters from transesterification of technical waste fats[J]. Journal of Chemical Technology and Biotechnology, 2001,76(1):35-38.
    [59]Glinski M, Szymanski W, Lomot D. Catalytic ketonization over oxide catalysts:X. Transformations of various alkyl heptanoates[J]. Applied Catalysis A:General,2005,281(1): 107-113.
    [60]Gartner C A, Serrano-Ruiz J C, Braden D J, et al. Catalytic Upgrading of Bio-Oils by Ketonization[J]. ChemSusChem,2009,2(12):1121-1124.
    [61]Serrano-Ruiz J C, Dumesic J A. Catalytic upgrading of lactic acid to fuels and chemicals by dehydration/hydrogenation and C-C coupling reactions[J]. Green Chemistry,2009,11(8): 1101-1104.
    [62]Pagliaro M, Rossi M. The future of glycerol:new uses of a versatile raw material[M]. Royal Society of Chemistry,2008.
    [63]Gong C S, Du J X, Cao N J, et al. Coproduction of ethanol and glycerol[J]. Applied Biochemistry and Biotechnology,2000,84-86:543-559.
    [64]Pagliaro M, Ciriminna R, Kimura H, et al. From Glycerol to Value-Added Products[J]. Angewandte Chemie International Edition,2007,46(24):4434-4440.
    [65]Zhou C H C, Beltramini J N, Fan Y X, et al. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals[J]. Chemical Society Reviews,2008, 37(3):527-549.
    [66]Viinikainen T S, Karinen R S, Krause A O I. Conversion of Glycerol into Traffic Fuels[J]. Catalysis for Renewables:From Feedstock to Energy Production,2007:209-222.
    [67]Soares R R, Simonetti D A, Dumesic J A. Glycerol as a source for fuels and chemicals by low-temperature catalytic processing[J]. Angewandte Chemie International Edition,2006,45(24): 3982-3985.
    [68]Alcala R, Mavrikakis M, Dumesic J A. DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt (111)[J]. Journal of Catalysis,2003,218(1):178-190.
    [69]He R, Davda R R, Dumesic J A. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases[J]. The Journal of Physical Chemistry B,2005,109(7):2810-2820.
    [70]Christoffersen E, Liu P, Ruban A, et al. Anode materials for low-temperature fuel cells:A density functional theory study [J]. Journal of Catalysis,2001,199(1):123-131.
    [71]Greeley J, Mavrikakis M. Alloy catalysts designed from first principles[J]. Nature materials, 2004,3(11):810-815.
    [72]Simonetti D A, Rass-Hansen J, Kunkes E L, et al. Coupling of glycerol processing with Fischer-Tropsch synthesis for production of liquid fuels[J]. Green Chemistry,2007,9(10): 1073-1083.
    [73]Zeitsch K J. The chemistry and technology of furfural and its many by-products[M]. Elsevier Science,2000, vol.13,34-69.
    [74]Zhao H, Holladay J E, Brown H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597-1600.
    [75]Moliner M, Roman-Leshkov Y, Davis M E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water [J]. Proceedings of the National Academy of Sciences,2010, 107(14):6164-6168.
    [76]Roman-Leshkov Y, Chheda J N, Dumesic J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science,2006,312(5782):1933-1937.
    [77]Huber G W, Chheda J, Barrett C B, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science,2005,308:1446-2079.
    [78]West R M, Liu Z Y, Peter M, et al. Liquid Alkanes with Targeted Molecular Weights from Biomass-Derived Carbohydrates[J]. ChemSusChem,2008,1(5):417-424.
    [79]Barrett C J, Chheda J N, Huber G W, et al. Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water [J]. Applied catalysis B:environmental,2006,66(1):111-118.
    [80]Huber G W, Cortright R D, Dumesic J A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates[J]. Angewandte Chemie International Edition,2004,43(12): 1549-1551.
    [81]Kunkes E L, Simonetti D A, West R M, et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes[J]. Science,2008,322(5900):417-421.
    [82]West R M, Kunkes E L, Simonetti D A, et al. Catalytic conversion of biomass-derived carbohydrates to fuels and chemicals by formation and upgrading of mono-functional hydrocarbon intermediates [J]. Catalysis Today,2009,147(2):115-125.
    [83]Serrano-Ruiz J C, Dumesic J A. Catalytic processing of lactic acid over Pt/Nb2O5[J]. ChemSusChem,2009,2(6):581-586.
    [84]Serrano-Ruiz J C, Wang D, Dumesic J A. Catalytic upgrading of levulinic acid to 5-nonanone[J]. Green Chemistry,2010,12(4):574-577.
    [85]Kunkes E L, Gurbuz E I, Dumesic J A. Vapour-phase C-C coupling reactions of biomass-derived oxygenates over Pd/CeZrOx catalysts[J]. Journal of Catalysis,2009,266(2):236-249.
    [86]Gurbuz E I, Kunkes E L, Dumesic J A. Dual-bed catalyst system for C-C coupling of biomass-derived oxygenated hydrocarbons to fuel-grade compounds[J]. Green Chemistry,2010, 12(2):223-227.
    [87]Gurbuz E I, Kunkes E L, Dumesic J A. Integration of C-C coupling reactions of biomass-derived oxygenates to fuel-grade compounds[J]. Applied Catalysis B:Environmental,2010,94(1): 134-141.
    [88]林鹿,薛培俭,庄军平.生物质基乙酰丙酸化学与技术[M].北京:化学工业出版社,2009.
    [89]Werpy T, Petersen G, Aden A, et al. Top Value Added Chemicals from Biomass. Volume 1-Results of Screening for Potential Candidates from Sugars and Synthesis Gas[R]. DEPARTMENT OF ENERGY WASHINGTON DC,2004. http://www.nrel.gov/docs/fy04osti/35523.pdf.
    [90]Bozell J J, Moens L, Elliott D C, et al. Production of levulinic acid and use as a platform chemical for derived products[J]. Resources, conservation and recycling,2000,28(3):227-239.
    [91]Heeres H, Handana R, Chunai D, et al. Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to y-valerolactone using ruthenium catalysts [J]. Green Chemistry,2009,11(8):1247-1255.
    [92]Deng L, Li J, Lai D M, et al. Catalytic conversion of biomass-derived carbohydrates into y-valerolactone without using an external H2 supply[J]. Angewandte Chemie International Edition,2009,48(35):6529-6532.
    [93]Horvath I T, Mehdi H, Fabos V, et al. γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals[J]. Green Chemistry,2008,10(2):238-242.
    [94]Lange J P, Vestering J Z, Haan R J. Towards 'bio-based'Nylon: conversion of y-valerolactone to methyl pentenoate under catalytic distillation conditions[J]. Chemical Communications,2007 (33):3488-3490.
    [95]Huang Y B, Dai J J, Deng X J, et al. Ruthenium-Catalyzed Conversion of Levulinic Acid to Pyrrolidines by Reductive Amination[J]. ChemSusChem,2011,4(11):1578-1581.
    [96]Bond J Q, Alonso D M, Wang D, et al. Integrated catalytic conversion of y-valerolactone to liquid alkenes for transportation fuels[J]. Science,2010,327(5969):1110-1114.
    [97]Serrano-Ruiz J C, Braden D J, West R M, et al. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen[J]. Applied Catalysis B:Environmental,2010,100(1):184-189.
    [98]Alonso D M, Bond J Q, Serrano-Ruiz J C, et al. Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes[J]. Green Chemistry,2010,12(6): 992-999.
    [99]Lange J P, Price R, Ayoub P M, et al. Valeric biofuels: a platform of cellulosic transportation fuels[J]. Angewandte Chemie International Edition,2010,49(26): 4479-4483.
    [100]Nilges P, dos Santos T R, Harnisch F, et al. Electrochemistry for biofuel generation: Electrochemical conversion of levulinic acid to octane[J]. Energy & Environmental Science, 2012,5(1):5231-5235.
    [101]Serrano-Ruiz J C, Dumesic J A. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels[J]. Energy & Environmental Science,2011,4(1):83-99.
    [102]Aden A, Ruth M, Ibsen K, et al. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover[R]. United States Department of Energy, National Renewable Energy Laboratory,2002. http://www.nrel.gov/docs/fy02osti/32438.pdf.
    [103]Deng J, Pan T, Xu Q, et al. Linked strategy for the production of fuels via formose reaction[J]. Scientific reports,2013,3:1244.
    [104]The Production of Methanol and Gasoline[R] Report of the New Zealand Institute of Chemistry. http://nzic.org.nz/ChemProcesses/energy/7D.pdf.
    [1]Huber G W, Chheda J, Barrett C B, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science,2005,308:1446-2079.
    [2]Bicker M, Kaiser D, Ott L, et al. Dehydration of d-fructose to hydroxymethylfurfural in sub-and supercritical fluids[J]. The journal of supercritical fluids,2005,36(2):118-126.
    [3]Rosatella A A, Simeonov S P, Frade R F M, et al.5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications[J]. Green Chem., 2011,13(4):754-793.
    [4]Hu L, Zhao G, Hao W, et al. Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes[J]. RSC Advances,2012,2(30):11184-11206.
    [5]van Putten R J, van der Waal J C, de Jong E, et al. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources[J]. Chemical reviews,2013,113(3):1499-1597.
    [6]Roman-Leshkov Y, Chheda J N, Dumesic J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science,2006,312(5782):1933-1937.
    [7]Zhao H, Holladay J E, Brown H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597-1600.
    [8]Roman-Leshkov Y, Barrett C J, Liu Z Y, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature,2007,447(7147):982-985.
    [9]Chheda J N, Roman-Leshkov Y, Dumesic J A. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono-and poly-saccharides[J]. Green Chemistry,2007,9(4): 342-350.
    [10]Cao Q, Guo X, Yao S, et al. Conversion of hexose into 5-hydroxymethylfurfural in imidazolium ionic liquids with and without a catalyst[J], Carbohydrate Research,2011,346(7):956-959.
    [11]Caes B R, Raines R T. Conversion of Fructose into 5-(Hydroxymethyl) furfural in Sulfolane[J]. ChemSusChem,2011,4(3):353-356.
    [12]Li C, Zhao Z K, Wang A, et al. Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions[J]. Carbohydrate research,2010,345(13):1846-1850.
    [13]Li Y, Lu X, Yuan L, et al. Fructose decomposition kinetics in organic acids-enriched high temperature liquid water[J]. Biomass and Bioenergy,2009,33(9):1182-1187.
    [14]Lai L, Zhang Y. The Effect of Imidazolium Ionic Liquid on the Dehydration of Fructose to 5-Hydroxymethylfurfural, and a Room Temperature Catalytic System[J]. ChemSusChem,2010, 3(11):1257-1259.
    [15]Lai L, Zhang Y. The Production of 5-Hydroxymethylfurfural from Fructose in Isopropyl Alcohol: A Green and Efficient System[J]. ChemSusChem,2011,4(12):1745-1748.
    [16]Roman-Leshkov Y, Dumesic J A. Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts[J]. Topics in Catalysis,2009,52(3):297-303.
    [17]Watanabe M, Aizawa Y, Iida T, et al. Glucose reactions with acid and base catalysts in hot compressed water at 473K[J]. Carbohydrate research,2005,340(12):1925-1930.
    [18]Yi Y B, Lee J W, Hong S S, et al. Acid-mediated production of hydroxymethylfurfural from raw plant biomass with high inulin in an ionic liquid[J]. Journal of Industrial and Engineering Chemistry,2011,17(1):6-9.
    [19]Qi X, Watanabe M, Aida T M, et al. Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating[J]. Green Chemistry,2008,10(7):799-805.
    [20]Qi X, Watanabe M, Aida T M, et al. Selective conversion of D-fructose to 5-hydroxymethylfurfural by ion-exchange resin in acetone/dimethyl sulfoxide solvent mixtures[J]. Industrial & Engineering Chemistry Research,2008,47(23):9234-9239.
    [21]Shimizu K, Uozumi R, Satsuma A. Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods[J]. Catalysis Communications,2009, 10(14):1849-1853.
    [22]Qi X, Watanabe M, Aida T M, et al. Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids[J]. Green Chemistry,2009,11(9):1327-1331.
    [23]Zhu H, Cao Q, Li C, et al. Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents[J]. Carbohydrate research,2011,346(13):2016-2018.
    [24]Moreau C, Durand R, Razigade S, et al. Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites[J]. Applied Catalysis A:General,1996,145(1):211-224.
    [25]Ordomsky V V, van der Schaaf J, Schouten J C, et al. The effect of solvent addition on fructose dehydration to 5-hydroxymethylfurfural in biphasic system over zeolites[J]. Journal of catalysis, 2012,287:68-75.
    [26]Guo X, Cao Q, Jiang Y, et al. Selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by mesoporous SBA-15-SO3H in ionic liquid BmimCl[J]. Carbohydrate Research, 2012,351:35-41.
    [27]Qi X, Watanabe M, Aida T M, et al. Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating[J]. Catalysis Communications,2008,9(13):2244-2249.
    [28]Qi X, Watanabe M, Aida T M. Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural[J]. Catalysis Communications,2009,10(13):1771-1775.
    [29]Qi X, Guo H, Li L. Efficient conversion of fructose to 5-hydroxymethylfurfural catalyzed by sulfated zirconia in ionic liquids[J]. Industrial & Engineering Chemistry Research,2011,50(13): 7985-7989.
    [30]Daengprasert W, Boonnoun P, Laosiripojana N, et al. Application of sulfonated carbon-based catalyst for solvothermal conversion of cassava waste to hydroxymethylfurfural and furfural[J]. Industrial & Engineering Chemistry Research,2011,50(13):7903-7910.
    [31]Stosic D, Bennici S, Rakic V, et al. CeO2-Nb2O5 mixed oxide catalysts: Preparation, characterization and catalytic activity in fructose dehydration reaction[J]. Catalysis today,2012, 192(1):160-168.
    [32]Dutta S, De S, Patra A K, et al. Microwave assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by mesoporous TiO2 nanoparticles[J]. Applied Catalysis A: General,2011,409:133-139.
    [33]Yang F, Liu Q, Yue M, et al. Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural[J]. Chemical Communications,2011,47(15): 4469-4471.
    [34]Ray D, Mittal N, Chung W J. Phosphorous pentoxide mediated synthesis of 5-HMF in ionic liquid at low temperature[J]. Carbohydrate research,2011,346(14): 2145-2148.
    [35]Fan C, Guan H, Zhang H, et al. Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt[J]. Biomass and Bioenergy,2011,35(7): 2659-2665.
    [36]Zhao Q, Wang L, Zhao S, et al. High selective production of 5-hydroymethylfurfural from fructose by a solid heteropolyacid catalyst[J]. Fuel,2011,90(6):2289-2293.
    [37]Zhang Y, Degirmenci V, Li C, et al. Phosphotungstic Acid Encapsulated in Metal-Organic Framework as Catalysts for Carbohydrate Dehydration to 5-Hydroxymethylfurfural[J]. ChemSusChem,2011,4(1):59-64.
    [38]Qu Y, Huang C, Zhang J, et al. Efficient dehydration of fructose to 5-hydroxymethylfurfural catalyzed by a recyclable sulfonated organic heteropolyacid salt[J]. Bioresource Technology, 2012,106:170-172.
    [39]Qi X, Watanabe M, Aida T M, et al. Fast Transformation of Glucose and Di-/Polysaccharides into 5-Hydroxymethylfurfural by Microwave Heating in an Ionic Liquid/Catalyst System[J]. ChemSusChem,2010,3(9):1071-1077.
    [40]Yong G, Zhang Y, Ying J Y. Efficient Catalytic System for the Selective Production of 5-Hydroxymethylfurfural from Glucose and Fructose[J]. Angewandte Chemie,2008,120(48): 9485-9488.
    [41]Ilgen F, Ott D, Kralisch D, et al. Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures[J]. Green Chemistry,2009,11(12):1948-1954.
    [42]Yuan Z, Xu C C, Cheng S, et al. Catalytic conversion of glucose to 5-hydroxymethyl furfural using inexpensive co-catalysts and solvents[J]. Carbohydrate Research,2011,346(13): 2019-2023.
    [43]De S, Dutta S, Saha B. Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethylfurfural with aluminium chloride catalyst in water[J]. Green Chemistry,2011, 13(10):2859-2868.
    [44]Tong X, Li M, Yan N, et al. Defunctionalization of fructose and sucrose: Iron-catalyzed production of 5-hydroxymethylfurfural from fructose and sucrose[J]. Catalysis Today,2011, 175(1):524-527.
    [45]Wei Z, Li Y, Thushara D, et al. Novel dehydration of carbohydrates to 5-hydroxymethylfurfural catalyzed by Ir and Au chlorides in ionic liquids [J]. Journal of the Taiwan Institute of Chemical Engineers,2011,42(2):363-370.
    [46]Wei Z, Liu Y, Thushara D, et al. Entrainer-intensified vacuum reactive distillation process for the separation of 5-hydroxylmethylfurfural from the dehydration of carbohydrates catalyzed by a metal salt-ionic liquid[J]. Green Chemistry,2012,14(4):1220-1226.
    [47]Zhang Z, Wang Q, Xie H, et al. Catalytic Conversion of Carbohydrates into 5-Hydroxymethylfurfural by Germanium (IV) Chloride in Ionic Liquids[J]. ChemSusChem, 2011,4(1):131-138.
    [48]Wang F, Shi A W, Qin X X, et al. Dehydration of fructose to 5-hydroxymethylfurfural by rare earth metal trifluoromethanesulfonates in organic solvents[J]. Carbohydrate Research,2011, 346(7):982-985.
    [49]Liu J, Tang Y, Wu K, et al. Conversion of fructose into 5-hydroxymethylfurfural (HMF) and its derivatives promoted by inorganic salt in alcohol[J]. Carbohydrate Research,2012,350:20-24.
    [50]Chan J Y G, Zhang Y. Selective Conversion of Fructose to 5-Hydroxymethylfurfural Catalyzed by Tungsten Salts at Low Temperatures[J]. ChemSusChem,2009,2(8):731-734.
    [51]Moreau C, Finiels A, Vanoye L. Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst[J]. Journal of Molecular Catalysis A: Chemical,2006,253(1):165-169.
    [52]Hu S, Zhang Z, Zhou Y, et al. Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials[J]. Green Chemistry,2008,10(12):1280-1283.
    [53]Hu S, Zhang Z, Zhou Y, et al. Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids[J]. Green Chemistry,2009,11(6):873-877.
    [54]Lima S, Neves P, Antunes M M, et al. Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids[J]. Applied Catalysis A:General, 2009,363(1):93-99.
    [55]Tong X, Li Y. Efficient and Selective Dehydration of Fructose to 5-Hydroxymethylfurfural Catalyzed by Bransted-Acidic Ionic Liquids[J]. ChemSusChem,2010,3(3):350-355.
    [56]Jadhav A H, Kim H, Hwang I T. Efficient selective dehydration of fructose and sucrose into 5-hydroxymethylfurfural (HMF) using dicationic room temperature ionic liquids as a catalyst[J]. Catalysis Communications,2012,21:96-103.
    [57]Bao Q, Qiao K, Tomida D, et al. Preparation of 5-hydroymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid[J]. Catalysis Communications,2008,9(6): 1383-1388.
    [58]Sidhpuria K B, Daniel-da-Silva A L, Trindade T, et al. Supported ionic liquid silica nanoparticles (SILnPs) as an efficient and recyclable heterogeneous catalyst for the dehydration of fructose to 5-hydroxymethylfurfural[J]. Green Chemistry,2011,13(2):340-349.
    [59]Caruso T, Vasca E. Electrogenerated acid as an efficient catalyst for the preparation of 5-hydroxymethylfurfural[J]. Electrochemistry Communications,2010,12(9):1149-1153.
    [60]Vigier K D O, Benguerba A, Barrault J, et al. Conversion of fructose and inulin to 5-hydroxymethylfurfural in sustainable betaine hydrochloride-based media[J]. Green Chemistry, 2012,14(2):285-289.
    [61]Li C, Zhao Z K, Cai H, et al. Microwave-promoted conversion of concentrated fructose into 5-hydroxymethylfurfural in ionic liquids in the absence of catalysts[J]. Biomass and bioenergy, 2011,35(5):2013-2017.
    [62]Ryu J, Choi J W, Suh D J, et al. Dual catalytic function of 1,3-dialkylimidzolium halide ionic liquid on the dehydration of fructose to 5-hydroxymethylfurfural[J]. Catalysis Communications, 2012,24:11-15.
    [63]Yan H, Yang Y, Tong D, et al. Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42-/ZrO2 and SO42-/ZrO2-Al2O3 solid acid catalysts[J]. Catalysis Communications,2009, 10(11):1558-1563.
    [64]Tong X, Ma Y, Li Y. An efficient catalytic dehydration of fructose and sucrose to 5-hydroxymethylfurfural with protic ionic liquids[J]. Carbohydrate research,2010,345(12): 1698-1701.
    [65]Tong X, Ma Y, Li Y. Biomass into chemicals:Conversion of sugars to furan derivatives by catalytic processesfJ]. Applied Catalysis A: General,2010,385(1):1-13.
    [66]Karinen R, Vilonen K, Niemela M. Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural[J]. ChemSusChem,2011, 4(8):1002-1016.
    [67]Zhang Y, Pidko E A, Hensen E J M. Molecular aspects of glucose dehydration by chromium chlorides in ionic liquids[J]. Chemistry-A European Journal,2011,17(19):5281-5288.
    [68]Binder J B, Raines R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. Journal of the American Chemical Society,2009,131(5):1979-1985.
    [69]Cao Q, Guo X, Guan J, et al. A process for efficient conversion of fructose into 5-hydroxymethylfurfuraI in ammonium salts[J]. Applied Catalysis A: General,2011,403(1): 98-103.
    [70]Chen T, Lin L. Conversion of Glucose in CPL-LiCl to 5-Hydroxymethylfurfural[J]. Chinese Journal of Chemistry,2010,28(9):1773-1776.
    [71]Hu L, Sun Y, Lin L. Efficient conversion of glucose into 5-hydroxymethylfurfural by chromium (III) chloride in inexpensive ionic liquid[J]. Industrial & Engineering Chemistry Research,2012, 51(3):1099-1104.
    [72]Jadhav H, Taarning E, Pedersen C M, et al. Harishandra Jadhav, Esben Taarning, Christian Marcus Pedersen, Mikael Bols[J]. Tetrahedron Letters,2012,53(8):983-985.
    [73]Hu S, Zhang Z, Song J, et al. Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid[J]. Green Chemistry,2009,11(11): 1746-1749.
    [74]Yang Y, Hu C, Abu-Omar M M. Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlC13-6H2O catalyst in a biphasic solvent system[J]. Green Chemistry,2012,14(2):509-513.
    [75]Yasuda M, Nakamura Y, Matsumoto J, et al. Transformation of Glucose to 5-Hydroxymethyl-2-furfural by SiO2-MgCl2 Composite[J]. Bulletin of the Chemical Society of Japan,2011,84(4):416-418.
    [76]Beckerle K, Okuda J. Conversion of glucose and cellobiose into 5-hydroxymethylfurfural (HMF) by rare earth metal salts in N,N'-dimethylacetamide (DMA)[J]. Journal of Molecular Catalysis A: Chemical,2012,356:158-164.
    [77]Stahlberg T, Sorensen M G, Riisager A. Direct conversion of glucose to 5-(hydroxymethyl) furfural in ionic liquids with lanthanide catalysts[J]. Green Chemistry,2010,12(2):321-325.
    [78]Qi X, Watanabe M, Aida T M, et al. Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid-water mixtures[J]. Bioresource Technology,2012,109: 224-228.
    [79]Nakajima K, Baba Y, Noma R, et al. Nb2O5-nH2O as a Heterogeneous Catalyst with Water-Tolerant Lewis Acid Sites[J]. Journal of the American Chemical Society,2011,133(12): 4224-4227.
    [80]Yang F, Liu Q, Bai X, et al. Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst[J]. Bioresource technology,2011,102(3):3424-3429.
    [81]Kitano M, Nakajima K, Kondo J N, et al. Protonated titanate nanotubes as solid acid catalyst[J]. Journal of the American Chemical Society,2010,132(19):6622-6623.
    [82]Degirmenci V, Pidko E A, Magusin P C M M, et al. Towards a Selective Heterogeneous Catalyst for Glucose Dehydration to 5-Hydroxymethylfurfural in Water:CrCl2 Catalysis in a Thin Immobilized Ionic Liquid Layer[J]. ChemCatChem,2011,3(6):969-972.
    [83]Guo F, Fang Z, Zhou T J. Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide-ionic liquid mixtures[J]. Bioresource technology,2012.
    [84]Ohara M, Takagaki A, Nishimura S, et al. Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts[J]. Applied Catalysis A: General,2010,383(1):149-155.
    [85]Takagaki A, Ohara M, Nishimura S, et al. A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides[J]. Chemical Communications,2009 (41):6276-6278.
    [86]Tuteja J, Nishimura S, Ebitani K. One-Pot Synthesis of Furans from Various Saccharides Using a Combination of Solid Acid and Base Catalysts[J]. Bulletin of the Chemical Society of Japan, 2012,85(3):275-281.
    [87]Nikolla E, Roman-Leshkov Y, Moliner M, et al. "One-Pot" Synthesis of 5-(Hydroxymethyl) furfural from Carbohydrates using Tin-Beta Zeolite[J]. ACS Catalysis,2011,1(4):408-410.
    [88]Azadi P, Carrasquillo-Flores R, Pagan-Torres Y J, et al. Catalytic conversion of biomass using solvents derived from lignin[J]. Green Chemistry,2012,14(6):1573-1576.
    [89]Huang R, Qi W, Su R, et al. Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural[J]. Chemical Communications,2010,46(7):1115-1117.
    [90]Hansen T S, Mielby J, Riisager A. Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water[J]. Green chemistry,2011,13(1): 109-114.
    [91]Stahlberg T, Rodriguez-Rodriguez S, Fristrup P, et al. Metal-Free Dehydration of Glucose to 5-(Hydroxymethyl) furfural in Ionic Liquids with Boric Acid as a Promoter[J]. Chemistry-A European Journal,2011,17(5):1456-1464.
    [92]Khokhlova E A, Kachala V V, Ananikov V P. The First Molecular Level Monitoring of Carbohydrate Conversion to 5-Hydroxymethylfurfural in Ionic Liquids. B2O3—An Efficient Dual-Function Metal-Free Promoter for Environmentally Benign Applications[J]. ChemSusChem,2012,5(4):783-789.
    [93]Chun J A, Lee J W, Yi Y B, et al. Catalytic production of hydroxymethylfurfural from sucrose using l-methyl-3-octylimidazolium chloride ionic liquid[J]. Korean Journal of Chemical Engineering,2010,27(3):930-935.
    [94]Wang C, Fu L, Tong X, et al. Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions[J]. Carbohydrate Research,2012,347(1):182-185.
    [95]Zhang Z, Zhao Z K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid[J]. Bioresource technology,2010,101(3):1111-1114.
    [96]Zhang Y, Du H, Qian X, et al. Ionic Liquid-Water Mixtures:Enhanced Kw for Efficient Cellulosic Biomass Conversion[J]. Energy & Fuels,2010,24(4): 2410-2417.
    [97]Su Y, Brown H M, Huang X, et al. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical[J]. Applied Catalysis A: General, 2009,361(1):117-122.
    [98]Kim B, Jeong J, Lee D, et al. Direct transformation of cellulose into 5-hydroxymethyl-2-furfural using a combination of metal chlorides in imidazolium ionic liquid[J]. Green Chemistry,2011, 13(6):1503-1506.
    [99]Wang P, Yu H, Zhan S, et al. Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid[J]. Bioresource technology,2011,102(5): 4179-4183.
    [100]Dutta S, De S, Alam M I, et al. Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts[J]. Journal of Catalysis,2012,288:8-15.
    [101]Zhao S, Cheng M, Li J, et al. One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Bronsted-Lewis-surfactant-combined heteropolyacid catalyst[J]. Chemical Communications,2011,47(7):2176-2178.
    [102]Werpy T, Petersen G, Aden A, et al. Top Value Added Chemicals From Biomass. Volume 1-Results of Screening for Potential Candidates From Sugars and Synthesis Gas[R]. DEPARTMENT OF ENERGY WASHINGTON DC,2004. http://www.nrel.gov/docs/fv04osti/35523.pdf.
    [103]Pagliaro M, Ciriminna R, Kimura H, et al. From Glycerol to Value-Added Products[J]. Angewandte Chemie International Edition,2007,46(24):4434-4440.
    [104]Jerome F, Pouilloux Y, Barrault J. Rational design of solid catalysts for the selective use of glycerol as a natural organic building block[J]. ChemSusChem,2008,1(7):586-613.
    [105]Zhou C H C, Beltramini J N, Fan Y X, et al. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals[J]. Chemical Society Reviews,2008, 37(3):527-549.
    [106]Behr A, Eilting J, Irawadi K, et al. Improved utilisation of renewable resources:New important derivatives of glycerol[J]. Green Chemistry,2008,10(1):13-30.
    [107]da Silva G P, Mack M, Contiero J. Glycerol:a promising and abundant carbon source for industrial microbiology [J]. Biotechnology advances,2009,27(1):30-39.
    [108]Nagorski R W, Richard J P. Mechanistic Imperatives for Enzymatic Catalysis of Aldose-Ketose Isomerization:Isomerization of Glyceraldehyde in Weakly Alkaline Aqueous Solution Occurs with Intramolecular Transfer of a Hydride Ion[J]. Journal of the American Chemical Society, 1996,118(31):7432-7433.
    [109]Nagorski R W, Richard J P. Mechanistic imperatives for aldose-ketose isomerization in water: Specific, general base-and metal ion-catalyzed isomerization of glyceraldehyde with proton and hydride transfer[J]. Journal of the American Chemical Society,2001,123(5):794-802.
    [110]Berl W G, Feazel C E. The Kinetics of Hexose Formation from Trioses in Alkaline Solution 1[J]. Journal of the American Chemical Society,1951,73(5):2054-2057.
    [[111]Gutsche C D, Redmore D, Buriks R S, et al. Base-catalyzed triose condensations[J]. Journal of the American Chemical Society,1967,89(5):1235-1245.
    [112]Fu Y, Deng J, Guo Q, et al. Method For Preparing Hydroxymethylfurfural:U.S. Patent US 2012/0172607 A1 [P].2012-01-09.
    [113]FU Y, Deng J, Guo Q, et al. METHOD FOR PREPARING HYDROXYMETHYLFURFURAL: European Patent EP 2495239[P].2012-09-05.
    [114]Amarasekara A S, Williams L T D, Ebede C C. Mechanism of the dehydration of D-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150℃:an NMR study[J]. Carbohydrate research,2008,343(18):3021-3024.
    [115]Antal Jr M J, Mok W S L, Richards G N. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose[J]. Carbohydrate research,1990, 199(1):91-109.
    [116]Assary R S, Redfern P C, Greeley J, et al. Mechanistic Insights into the Decomposition of Fructose to Hydroxy Methyl Furfural in Neutral and Acidic Environments Using High-Level Quantum Chemical Methods[J]. The Journal of Physical Chemistry B,2011,115(15): 4341-4349.
    [117]Guan J, Cao Q, Guo X, et al. The mechanism of glucose conversion to 5-hydroxymethylfurfural catalyzed by metal chlorides in ionic liquid: A theoretical study[J]. Computational and Theoretical Chemistry,2011,963(2):453-462.
    [118]Qian X. Mechanisms and Energetics for Bronsted Acid-Catalyzed Glucose Condensation, Dehydration and Isomerization Reactions[J]. Topics in Catalysis,2012,55(3-4): 218-226.
    [119]Binder J B, Cefali A V, Blank J J, et al. Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural[J]. Energy & Environmental Science,2010,3(6):765-771.
    [120]Moliner M, Roman-Leshkov Y, Davis M E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proceedings of the National Academy of Sciences, 2010,107(14):6164-6168.
    [121]Pidko E A, Degirmenci V, van Santen R A, et al. Glucose activation by transient Cr2+ dimers[J]. Angewandte Chemie International Edition,2010,49(14): 2530-2534.
    [122]Roman-Leshkov Y, Moliner M, Labinger J A, et al. Mechanism of glucose isomerization using a solid Lewis acid catalyst in water[J]. Angewandte Chemie International Edition,2010,49(47): 8954-8957.
    [123]Mallakpour S, Rafiee Z. New developments in polymer science and technology using combination of ionic liquids and microwave irradiation [J]. Progress in Polymer Science,2011, 36(12):1754-1765.
    [124]Li C, Zhang Z, Zhao Z K. Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation[J]. Tetrahedron Letters, 2009,50(38):5403-5405.
    [125]Hu L, Sun Y, Lin L. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural[J]. Progress in Chemistry,2012,24(4):483-491.
    [126]Zakrzewska M E, Bogel-Lukasik E, Bogel-Lukasik R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block[J]. Chemical reviews, 2011,111(2):397-417.
    [127]Zakrzewska M E, Bogel-Lukasik E, Bogel-Lukasik R. Solubility of carbohydrates in ionic liquids[J]. Energy & Fuels,2010,24(2):737-745.
    [128]Chidambaram M, Bell A T. A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids[J]. Green Chemistry,2010,12(7):1253-1262.
    [129]Mushrif S H, Caratzoulas S, Vlachos D G. Understanding solvent effects in the selective conversion of fructose to 5-hydroxymethyl-furfural:a molecular dynamics investigation[J]. Physical Chemistry Chemical Physics,2012,14(8):2637-2644.
    [130]Marcotullio G, De Jong W. Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions[J]. Green chemistry,2010,12(10):1739-1746.
    [131]Lange J P, van der Heide E, van Buijtenen J, et al. Furfural—A Promising Platform for Lignocellulosic Biofuels[J]. ChemSusChem,2012,5(1):150-166.
    [132]Thananatthanachon T, Rauchfuss T B. Efficient Production of the Liquid Fuel 2,5-Dimethylfuran from Fructose Using Formic Acid as a Reagent[J]. Angewandte Chemie International Edition,2010,49(37):6616-6618.
    [133]Mascal M, Nikitin E B. Direct, High-Yield Conversion of Cellulose into Biofuel[J]. Angewandte Chemie International Edition,2008,47(41):7924-7926.
    [134]Balakrishnan M, Sacia E R, Bell A T. Etherification and reductive etherification of 5-(hydroxymethyl) furfural:5-(alkoxymethyl) furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates[J]. Green Chemistry,2012,14(6):1626-1634.
    [135]Lanzafame P, Temi D M, Perathoner S, et al. Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts[J]. Catalysis Today,2011,175(1):435-441.
    [136]Kumari N, Olesen J K, Pedersen C M, et al. Synthesis of 5-Bromomethylfurfural from Cellulose as a Potential Intermediate for Biofuel[J]. European Journal of Organic Chemistry, 2011,2011(7):1266-1270.
    [137]Barrett C J, Chheda J N, Huber G W, et al. Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water[J]. Applied catalysis B:environmental,2006,66(1):111-118.
    [138]Fakhfakh N, Cognet P, Cabassud M, et al. Stoichio-kinetic modeling and optimization of chemical synthesis:Application to the aldolic condensation of furfural on acetone[J]. Chemical Engineering and Processing:Process Intensification,2008,47(3):349-362.
    [139]West R M, Liu Z Y, Peter M, et al. Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system[J]. Journal of Molecular Catalysis A: Chemical,2008,296(1):18-27.
    [140]Faba L, Diaz E, Ordonez S. Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides[J]. Applied Catalysis B:Environmental,2012,113:201-211.
    [141]Sadaba I, Ojeda M, Mariscal R, et al. Catalytic and structural properties of co-precipitated Mg-Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone[J]. Applied Catalysis B:Environmental,2011,101(3):638-648.
    [142]Shen W, Tompsett G A, Hammond K D, et al. Liquid phase aldol condensation reactions with MgO-ZrO2 and shape-selective nitrogen-substituted NaY[J]. Applied Catalysis A:General,2011, 392(1):57-68.
    [143]Chatterjee M, Matsushima K, Ikushima Y, et al. Production of linear alkane via hydrogenative ring opening of a furfural-derived compound in supercritical carbon dioxide[J]. Green Chemistry, 2010,12(5):779-782.
    [144]Xing R, Subrahmanyam A V, Olcay H, et al. Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions[J]. Green chemistry,2010,12(11): 1933-1946.
    [145]Chheda J N, Dumesic J A. An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates[J]. Catalysis Today,2007,123(1):59-70.
    [146]Chheda J N, Huber G W, Dumesic J A. Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals[J]. Angewandte Chemie International Edition, 2007,46(38):7164-7183.
    [147]Dedsuksophon W, Faungnawakij K, Champreda V, et al. Hydrolysis/dehydration/aldol-condensation/hydrogenation of lignocellulosic biomass and biomass-derived carbohydrates in the presence of Pd/WO3-ZrO2 in a single reactor[J]. Bioresource technology,2011,102(2): 2040-2046.
    [148]Xu W, Liu X, Ren J, et al. A novel mesoporous Pd/cobalt aluminate bifunctional catalyst for aldol condensation and following hydrogenation [J]. Catalysis Communications,2010,11(8): 721-726.
    [149]Mascal M, Nikitin E B. High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl) furfural, levulinic acid, and levulinic esters via 5-(chloromethyl) furfural[J]. Green Chemistry,2010,12(3):370-373.
    [150]Girisuta B, Janssen L, Heeres H J. A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid[J]. Green chemistry,2006,8(8):701-709.
    [151]Van de Vyver S, Thomas J, Geboers J, et al. Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s[J]. Energy & EnvironmentalScience, 2011,4(9):3601-3610.
    [152]Serrano-Ruiz J C, Luque R, Sepulveda-Escribano A. Transformations of biomass-derived platform molecules:from high added-value chemicals to fuels via aqueous-phase processing[J]. Chemical Society Reviews,2011,40(11):5266-5281.
    [153]CHANG C, MA X, CEN P. Kinetic studies on wheat straw hydrolysis to levulinic acid[J]. Chinese Journal of Chemical Engineering,2009,17(5):835-839.
    [154]Girisuta B, Janssen L, Heeres H J. Green chemicals:A kinetic study on the conversion of glucose to levulinic acid[J]. Chemical Engineering Research and Design,2006,84(5):339-349.
    [155]Girisuta B, Danon B, Manurung R, et al. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid[J]. Bioresource technology, 2008,99(17):8367-8375.
    [156]Rackemann D W, Doherty W O S. The conversion of lignocellulosics to levulinic acid[J]. Biofuels, Bioproducts and Biorefining,2011,5(2):198-214.
    [157]Shen J, Wyman C E. Hydrochloric acid-catalyzed levulinic acid formation from cellulose:data and kinetic model to maximize yields[J]. AIChE Journal,2012,58(1):236-246.
    [158]Chen H, Yu B, Jin S. Production of levulinic acid from steam exploded rice straw via solid superacid[J]. Bioresource technology,2011,102(3):3568-3570.
    [159]Hegner J, Pereira K C, DeBoef B, et al. Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis[J]. Tetrahedron Letters,2010,51(17):2356-2358.
    [160]Potvin J, Sorlien E, Hegner J, et al. Effect of NaCl on the conversion of cellulose to glucose and levulinic acid via solid supported acid catalysis[J]. Tetrahedron Letters,2011,52(44): 5891-5893.
    [161]Ya'aini N, Amin N A S, Yussuf M A M. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst[J]. Bioresource Technology,2012,116:58-65.
    [162]Xiang X, He L, Yang Y, et al. A One-Pot Two-Step Approach for the Catalytic Conversion of Glucose into 2,5-Diformylfuran[J]. Catalysis Letters,2011,141(5):735-741.
    [163]Alonso D M, Bond J Q, Dumesic J A. Catalytic conversion of biomass to biofuels[J]. Green chemistry,2010,12(9):1493-1513.
    [164]Dharne S, Bokade V V. Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay[J]. Journal of Natural Gas Chemistry,2011,20(1):18-24.
    [165]Hu X, Li C Z. Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery[J]. Green Chemistry,2011,13(7):1676-1679.
    [166]Pasquale G, Vazquez P, Romanelli G, et al. Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst[J]. Catalysis Communications,2012,18:115-120.
    [167]Peng L, Lin L, Zhang J, et al. Solid acid catalyzed glucose conversion to ethyl levulinate[J]. Applied Catalysis A: General,2011,397(1):259-265.
    [168]Peng L, Lin L, Li H, et al. Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts[J]. Applied Energy,2011,88(12):4590-4596.
    [169]Peng L, Lin L, Li H. Extremely low sulfuric acid catalyst system for synthesis of methyl levulinate from glucose[J]. Industrial Crops and Products,2012,40:136-144.
    [170]Rataboul F, Essayem N. Cellulose Reactivity in Supercritical Methanol in the Presence of Solid Acid Catalysts:Direct Synthesis of Methyl-levulinate[J]. Industrial & Engineering Chemistry Research,2010,50(2):799-805.
    [171]Saravanamurugan S, Riisager A. Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono-and disaccharides[J]. Catalysis Communications,2012,17:71-75.
    [172]Alonso D M, Wettstein S G, Bond J Q, et al. Production of biofuels from cellulose and corn stover using alkylphenol solvents[J]. ChemSusChem,2011,4(8):1078-1081.
    [173]Braden D J, Henao C A, Heltzel J, et al. Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid[J]. Green chemistry,2011,13(7):1755-1765.
    [174]Du X L, He L, Zhao S, et al. Hydrogen-Independent Reductive Transformation of Carbohydrate Biomass into γ-Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts[J]. Angewandte Chemie International Edition,2011,50(34):7815-7819.
    [175]Galletti A M R, Antonetti C, De Luise V, et al. A sustainable process for the production of y-valerolactone by hydrogenation of biomass-derived levulinic acid[J]. Green Chemistry,2012, 14(3):688-694.
    [176]Wettstein S G, Bond J Q, Alonso D M, et al. RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to y-valerolactone[J]. Applied Catalysis B:Environmental,2012, 117:321-329.
    [177]Deng L, Li J, Lai D M, et al. Catalytic conversion of biomass-derived carbohydrates into y-valerolactone without using an external H2 supply [J]. Angewandte Chemie International Edition,2009,48(35):6529-6532.
    [178]Bozell J J, Moens L, Elliott D C, et al. Production of levulinic acid and use as a platform chemical for derived products[J]. Resources, conservation and recycling,2000,28(3):227-239.
    [179]Mehdi H, Fabos V, Tuba R, et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass:From sucrose to levulinic acid, y-valerolactone, 1,4-pentanediol,2-methyl-tetrahydrofuran, and alkanes[J]. Topics in Catalysis,2008,48(1-4): 49-54.
    [180]Bond J Q, Alonso D M, Wang D, et al. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels[J]. Science,2010,327(5969):1110-1114.
    [181]Bond J Q, Wang D, Alonso D M, et al. Interconversion between γ-valerolactone and pentenoic acid combined with decarboxylation to form butene over silica/alumina[J]. Journal of Catalysis, 2011,281(2):290-299.
    [182]Manzer L E. Catalytic synthesis of α-methylene-y-valerolactone:a biomass-derived acrylic monomer[J]. Applied Catalysis A:General,2004,272(1):249-256.
    [183]Patel A D, Serrano-Ruiz J C, Dumesic J A, et al. Techno-economic analysis of 5-nonanone production from levulinic acid[J]. Chemical Engineering Journal,2010,160(1):311-321.
    [184]Serrano-Ruiz J C, Braden D J, West R M, et al. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen[J]. Applied Catalysis B:Environmental,2010,100(1):184-189.
    [185]Guo Y, Li K, Yu X, et al. Mesoporous H3PW12O40-silica composite:Efficient and reusable solid acid catalyst for the synthesis of diphenolic acid from levulinic acid[J]. Applied catalysis. B, Environmental,2008,81(3-4):182-191.
    [186]Van de Vyver S, Geboers J, Helsen S, et al. Thiol-promoted catalytic synthesis of diphenolic acid with sulfonated hyperbranched poly(arylene oxindole)s[J]. Chemical Communications, 2012,48(29):3497-3499.
    [187]Yu X, Guo Y, Li K, et al. Catalytic synthesis of diphenolic acid from levulinic acid over cesium partly substituted Wells-Dawson type heteropolyacid[J]. Journal of Molecular Catalysis A: Chemical,2008,290(1):44-53.
    [188]Gallezot P. Conversion of biomass to selected chemical products[J]. Chemical Society Reviews, 2012,41(4):1538-1558.
    [189]Hopkins K T, Wilson W D, Bender B C, et al. Extended aromatic furan amidino derivatives as anti-Pneumocystis carinii agents[J]. Journal of medicinal chemistry,1998,41(20):3872-3878.
    [190]Del Poeta M, Schell W A, Dykstra C C, et al. Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agents[J]. Antimicrobial agents and chemotherapy,1998,42(10):2495-2502.
    [191]Lewkowski J. Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives[J].Arkivoc,2001,1:17-54. https://www.arkat-usa.org/get-file/20028/
    [192]Richter D T, Lash T D. Oxidation with dilute aqueous ferric chloride solutions greatly improves yields in the '4+1'synthesis of sapphyrins[J]. Tetrahedron letters,1999,40(37):6735-6738.
    [193]Howarth O W, Morgan G G, McKee V, et al. Conformational choice in disilver cryptates; an 1H NMR and structural study[J]. Journal of the Chemical Society, Dalton Transactions,1999 (12): 2097-2102.
    [194]Firouzabadi H, Ghaderi E. Barium manganate. An efficient oxidizing reagent for oxidation of primary and secondary alcohols to carbonyl compounds[J]. Tetrahedron Letters,1978,19(9): 839-840.
    [195]Amarasekara A S, Green D, McMillan E. Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn (Ⅲ)-salen catalysts[J]. Catalysis Communications,2008,9(2): 286-288.
    [196]Cottier L, Descotes G, Lewkowski J, et al. Oxidation of 5-hydroxymethylfurfural under sonochemical conditions [J]. Polish journal of chemistry,1994,68(4):693-698.
    [197]Cottier L, Descotes G, Lewkowski J, et al. Oxidation of 5-Hydroxymethylfurfural and Derivatives to Furanaldehydes with 2,2,6,6-Tetramethylpiperidine Oxide Radical—Co-oxidant Pairs[J]. J. Heterocyclic Chem,1995,32:927-930.
    [198]Moreau C, Durand R, Pourcheron C, et al. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furan-dicarboxaldehyde in the presence of titania supported vanadia catalysts[J]. Studies in Surface Science and Catalysis,1997,108:399-406.
    [199]Partenheimer W, Grushin V V. Synthesis of 2,5-Diformylfuran and Furan-2,5-Dicarboxylic Acid by Catalytic Air-Oxidation of 5-Hydroxymethylfurfural. Unexpectedly Selective Aerobic Oxidation of Benzyl Alcohol to Benzaldehyde with Metal=Bromide Catalysts[J]. Advanced Synthesis & Catalysis,2001,343(1):102-111.
    [200]Halliday G A, Young R J, Grushin V V. One-pot, two-step, practical catalytic synthesis of 2,5-diformylfuran from fructose[J]. Organic Letters,2003,5(11):2003-2005.
    [201]Carlini C, Patrono P, Galletti A M R, et al. Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate[J]. Applied Catalysis A:General,2005,289(2):197-204.
    [202]Navarro O C, Canos A C, Chornet S I. Chemicals from biomass:aerobic oxidation of 5-hydroxymethyl-2-furaldehyde into diformylfurane catalyzed by immobilized vanadyl-pyridine complexes on polymeric and organofunctionalized mesoporous supports[J]. Topics in Catalysis, 2009,52(3):304-314.
    [203]Lilga M A, Hallen R T, Gray M. Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF)[J]. Topics in Catalysis,2010,53(15-18):1264-1269.
    [204]Ma J P, Du Z T, Xu J, et al. Efficient Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran, and Synthesis of a Fluorescent Material[J]. ChemSusChem,2011,4(1): 51-54.
    [205]Takagaki A, Takahashi M, Nishimura S, et al. One-Pot Synthesis of 2,5-Diformylfuran from Carbohydrate Derivatives by Sulfonated Resin and Hydrotalcite-Supported Ruthenium Catalysts[J].ACS Catalysis,2011,1(11):1562-1565.
    [206]Yang Z Z, Deng J, Pan T, et al. A one-pot approach for conversion of fructose to 2,5-diformylfuran by combination of Fe304-SBA-SO3H and K-OMS-2[J]. Green Chemistry, 2012,14(11):2986-2989.
    [207]Gandini A, Belgacem M N. Furans in polymer chemistry[J]. Progress in Polymer Science,1997, 22(6):1203-1379.
    [208]Davis S E, Houk L R, Tamargo E C, et al. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts[J]. Catalysis Today,2011,160(1):55-60.
    [209]Davis S E, Zope B N, Davis R J. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts[J]. Green Chemistry,2012,14(1):143-147.
    [210]Casanova O, Iborra S, Corma A. Biomass into Chemicals: Aerobic Oxidation of 5-Hydroxymethyl-2-furfural into 2,5-Furandicarboxylic Acid with Gold Nanoparticle Catalysts[J]. ChemSusChem,2009,2(12):1138-1144.
    [211]Gorbanev Y Y, Klitgaard S K, Woodley J M, et al. Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature[J]. ChemSusChem,2009,2(7): 672-675.
    [212]Pasini T, Piccinini M, Blosi M, et al. Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles[J]. Green Chemistry,2011,13(8):2091-2099.
    [213]Saha B, Dutta S, Abu-Omar M M. Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts[J]. Catalysis Science & Technology,2012,2(1): 79-81.
    [214]KumaraGupta N. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure[J]. Green Chemistry,2011,13(4):824-827.
    [215]Ribeiro M L, Schuchardt U. Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2,5-furandicarboxylic acid[J]. Catalysis Communications,2003,4(2):83-86.
    [216]Kroger M, Prüβe U, Vorlop K D. A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose[J]. Topics in Catalysis,2000,13(3):237-242.
    [217]Kraus G A, Guney T. A direct synthesis of 5-alkoxymethylfurfural ethers from fructose via sulfonic acid-functionalized ionic liquids[J]. Green Chemistry,2012,14(6):1593-1596.
    [1]Painter R M, Pearson D M, Waymouth R M. Selective catalytic oxidation of glycerol to dihydroxyacetone[J]. Angewandte Chemie International Edition,2010,49(49):9456-9459.
    [2]Kimura H, Tsuto K, Wakisaka T, et al. Selective oxidation of glycerol on a platinum-bismuth catalyst[J]. Applied Catalysis A: General,1993,96(2):217-228.
    [3]蒋挺大,吴昌贤.略谈甲醛聚糖研究的进展[J].化学通报,1981,5:51-54.
    [4]魏双绍,赵晓燕.甲醛制甘油新工艺[J].中氮肥,2001,1:6-10.
    [5]Socha R F, Weiss A H, Sakharov M M. Homogeneously catalyzed condensation of formaldehyde to carbohydrates:VII. An overall formose reaction model[J]. Journal of Catalysis,1981,67(1): 207-217.
    [6]Matsumoto T, Yamamoto H, Inoue S. Selective formation of triose from formaldehyde catalyzed by thiazolium salt[J]. Journal of the American Chemical Society,1984,106(17):4829-4832.
    [7]Matsumoto T, Inoue S. Selective formation of triose from formaldehyde catalysed by ethylbenzothiazolium bromide[J]. Journal of the Chemical Society, Chemical Communications, 1983 (4):171-172.
    [8]Yamashita K, Wakao N, Nango M, et al. Formose reaction by polymer-supported thiazolium salts[J]. Journal of Polymer Science Part A:Polymer Chemistry,1992,30(10):2247-2250.
    [9]Avison C A C B P, Dobson I D, Gracey B P, et al. Synthesis of alpha-hydroxy ketones:European Patent EP 0474387[P].1992-03-11.
    [10]Avison C A C B P, Dobson I D, Gracey B P, et al. Production of hydroxyketones:European Patent EP 0480646[P].1992-04-15.
    [11]Baldwin J E, Walker J A. Competing [1-3]-and [3,3]-sigmatropic rearrangements of electron-rich olefins[J]. Journal of the American Chemical Society,1974,96(2):596-597.
    [12]Deng J, Pan T, Xu Q, et al. Linked strategy for the production of fuels via formose reaction[J]. Scientific reports,2013,3:1244.
    [1]Berl W G, Feazel C E. The Kinetics of Hexose Formation from Trioses in Alkaline Solutionl[J]. Journal of the American Chemical Society,1951,73(5):2054-2057.
    [2]Gutsche C D, Redmore D, Buriks R S, et al. Base-catalyzed triose condensations[J]. Journal of the American Chemical Society,1967,89(5):1235-1245.
    [3]Sowden J C, Pohlen E K. The Reaction of D-Glycerose-3-C14 with Alkalil[J]. Journal of the American Chemical Society,1958,80(1):242-244.
    [4]Angyal S J, Bethell G S, Beveridge R J. The separation of sugars and of polyols on cation-exchange resins in the calcium form[J]. Carbohydrate research,1979,73(1):9-18.
    [5]Deng J, Pan T, Xu Q, et al. Linked strategy for the production of fuels via formose reaction[J]. Scientific reports,2013,3:1244.
    [1]Li C, Wang Q, Zhao Z K. Acid in ionic liquid:An efficient system for hydrolysis of lignocellulose[J]. Green Chemistry,2008,10(2):177-182.
    [2]Yang F, Liu Q, Yue M, et al. Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural[J]. Chemical Communications,2011,47(15):4469-4471.
    [3]Roman-Leshkov Y, Chheda J N, Dumesic J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science,2006,312(5782):1933-1937.
    [4]Nakajima K, Baba Y, Noma R, et al. Nb2O5-nH2O as a Heterogeneous Catalyst with Water-Tolerant Lewis Acid Sites[J]. Journal of the American Chemical Society,2011,133(12): 4224-4227.
    [5]Deng J, Pan T, Xu Q, et al. Linked strategy for the production of fuels via formose reaction[J]. Scientific reports,2013,3:1244.
    [1]Huber G W, Chheda J, Barrett C B, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science,2005,308:1446-2079.
    [2]Deng J, Pan T, Xu Q, et al. Linked strategy for the production of fuels via formose reaction[J]. Scientific reports,2013,3:1244.
    [3]Cook G, Epstein K, Brown H, The Biomass Economy[R]. National Renewable Energy Laboratory, 2002, p:5. http://www.nrel.gov/docs/fy02osti/31967.pdf
    [4]Roman-Leshkov Y, Barrett C J, Liu Z Y, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature,2007,447(7147):982-985.
    [5]Ancerewicz J, Vogel P. A New Approach to the Synthesis of Long-Chain Polypropionates Based on the Diels-Alder Monoadditions of 2,2'-Ethylidenebis [3,5-dimethylfuran][J]. Helvetica chimica acta,1996,79(5):1393-1414.
    [6]Friedrich M, Waechtler A, de Meijere A. Extending the Scope of a Known Furan Synthesis-A Novel Route to 1,2,4-Trisubstituted Pyrroles[J]. Synlett,2007,2002(04):619-621.
    [7]Crews C, Factors affecting the formation of furan in heated foods[R]. Food Standards Agency Aviation House, London,2007, Appendix page:19. http://www.foodbase.org.uk//admintools/reportdocuments/397-1-699 Factors Affecting Furan F ormation.pdf.
    [8]Spath P L, Dayton D C. Preliminary screening-technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas[R]. NATIONAL RENEWABLE ENERGY LAB GOLDEN CO,2003. http://www.nrel.gov/docs/fy04osti/34929.pdf.
    [1]曾文南,卢懿.斑蝥素及其衍生物的合成与活性研究进展[J].有机化学,2006,26(5):579-591.
    [2]Baba Y, Hirukawa N, Sodeoka M. Optically active cantharidin analogues possessing selective inhibitory activity on Ser/Thr protein phosphatase 2B (calcineurin):implications for the binding mode[J]. Bioorganic & medicinal chemistry,2005,13(17):5164-5170.
    [3]Baba Y, Hirukawa N, Tanohira N, et al. Structure-based design of a highly selective catalytic site-directed inhibitor of Ser/Thr protein phosphatase 2B (calcineurin)[J]. Journal of the American Chemical Society,2003,125(32):9740-9749.
    [4]Bures E, Spinazze P G, Beese G, et al. Regioselective Preparation of 2,4-,3,4-, and 2,3,4-Substituted Furan Rings.1. [1,4] O→C and [1,4] C→O Silyl Migrations of Silyl Ethers and Esters Attached to Furan and Thiophene Rings[J]. The Journal of Organic Chemistry,1997, 62(25):8741-8749.
    [5]傅尧,邓晋,朱明山,等.一种4-羟甲基糠醛和2,4-呋喃二甲酸的制备方法.中国102718734A[P].2012-10-10.
    [6]Dewar M J S, Riddle R M. Factors influencing the stabilities of nematic liquid crystals[J]. Journal of the American Chemical Society,1975,97(23):6658-6662.
    [7]Lew B W. Method of producing dehydromucic acid:U.S. Patent 3,326,944[P].1967-06-20.
    [1]Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering[J]. Chemical reviews,2006,106:4044-4098.
    [2]国家自然科学基金委员会化学科学部,有机化学学科前沿与展望[M],北京:科学出版社,2011.
    [3]Gutsche C D, Redmore D, Buriks R S, et al. Base-catalyzed triose condensations[J]. Journal of the American Chemical Society,1967,89(5):1235-1245.
    [4]Cleaves II H J. The prebiotic geochemistry of formaldehyde[J]. Precambrian Research,2008, 164(3):111-118.
    [5]Iqbal Z, Novalin S. The Formose Reaction: A Tool to Produce Synthetic Carbohydrates Within a Regenerative Life Support System[J]. Current Organic Chemistry,2012,16(6):769-788.
    [6]Novalin S, Iqbal Z. Investigations on the formose reaction with partial formaldehyde conversion: A chance for the production of synthetic carbohydrates[J]. Emirates Journal of Food and Agriculture,2011,23(4):338.
    [7]Lichtenthaler F W. Carbohydrates as organic raw materials[C]//Carbohydrates as organic raw materials. VCH Verlagsgesellschaft mbH,1991. p 80.
    [8]Bozell J J, Petersen G R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's "top 10" revisited[J]. Green Chemistry,2010,12(4):539-554.
    [9]Katritzky A R, Hur D, Kirichenko K, et al. Synthesis of 2,4-disubstituted furans and 4,6-diaryl-substituted 2,3-benzo-1,3a,6a-triazapentalenes[J]. ARKIVOC,2004,2:109-121. http://www.arkat-usa.org/get-file.php?fileid= 19864
    [10]Nieman J A, Keay B A. A facile preparation of 2,4-disubstituted furans[J]. Tetrahedron letters, 1994,35(30):5335-5338.
    [11]Mascal M, Nikitin E B. Direct, High-Yield Conversion of Cellulose into Biofuel[J]. Angewandte Chemie International Edition,2008,47(41):7924-7926.
    [12]Mascal M, Nikitin E B. Dramatic Advancements in the Saccharide to 5-(Chloromethyl) furfural Conversion Reaction[J]. ChemSusChem,2009,2(9):859-861.
    [13]Mascal M, Nikitin E B. High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl) furfural, levulinic acid, and levulinic esters via 5-(chloromethyl) furfural[J]. Green Chemistry,2010,12(3):370-373.
    [14]Kumari N, Olesen J K, Pedersen C M, et al. Synthesis of 5-Bromomethylfurfural from Cellulose as a Potential Intermediate for Biofuel[J]. European Journal of Organic Chemistry,2011,2011(7): 1266-1270.
    [15]Geilen F, Engendahl B, Harwardt A, et al. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system[J]. Angewandte Chemie International Edition,2010,49(32):5510-5514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700