催化转化纤维素制备乙酰丙酸γ-戊内酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在资源逐渐匮乏的今天,可持续发展成为我们追求的目标,生物质资源作为唯一可再生的碳资源正得到越来越多的关注。纤维素作为自然界中总量最多的植物生物质,可以通过化学催化转化的方式得到人类需要的材料、燃料以及化学品。最新的研究显示通过水解、加氢、热解和脱水等反应可以有效地转化纤维制备葡萄糖、山梨糖醇、乙二醇、合成气、芳香烃以及呋喃化合物。上述化合物被称为未来生物精炼的“积木”(Building Blocks),是生物质基的平台化合物,能够衍生出更多的化学品或商品,有可能成为未来化学、材料和燃料的基础。乙酰丙酸也是来自纤维素的平台化合物之一,可以通过纤维素酸水解、脱水获得。它在燃料和高分子材料领域具有巨大的潜力,极有可能成为用途广泛的大宗化学品。从乙酰丙酸出发可以制备乙酰丙酸酯和γ-戊内酯,它们可以代替乙醇在汽油中作为添加剂使用。γ-戊内酯还可以通过各种化学催化的方法获得戊酸酯、5-壬酮、丁烯和长链烯烃,这些化合物具有更高的热值,可以作为高品位燃料的候选。在高分子材料领域,乙酰丙酸可以代替丙酮与苯酚反应,制备水溶性双酚A,这种单体在聚碳酸酯和环氧树脂生产方面应用前景广阔。而γ-戊内酯则可以用来生产α-亚甲基-γ-戊内酯,该单体聚合后制成的材料具有较高的玻璃化转化温度,可以在特殊场合代替聚丙烯酸酯。
     尽管乙酰丙酸γ-戊内酯具有优良的性质和广泛的用途,但从纤维素原料出发制备上述两种化合物仍然存在一定的技术障碍,包括无机酸对设备的腐蚀性以及污染、缺乏高效地乙酰丙酸分离方法和γ-戊内酯及其衍生物制备过程中需要外部H2供给。本文针对乙酰丙酸γ-戊内酯制备的技术障碍,提出了新的工艺路线,并在实验室规模开展了研究。
     在第1章中,我们简要介绍了目前生物质基化学品和生物燃料的发展状况,并介绍了生物质基平台化合物和“积木”的概念。详细综述了目前国内外纤维素化学催化转化、乙酰丙酸γ-戊内酯合成与利用的最新研究进展。指出了生物质转化和绿色化学的关系。
     第2章介绍了介孔固体酸催化纤维素制备乙酰丙酸的研究内容。利用该催化剂,我们首次成功的实现了固体酸催化的纤维素到乙酰丙酸的转化,乙酰丙酸的产率高达50 mol%,并且通过在催化剂中引入磁性材料,完成了催化剂的循化使用。通过对比实验证明该固体酸的催化效率高于硫酸,结合催化剂的结构特征,我们对此给出了可能的解释:催化剂介孔孔道内具有很高的酸浓度,有助于碳水化合物脱水,生成乙酰丙酸
     在接下来的两章中,我们将甲酸原位还原乙酰丙酸作为主要研究内容,首次提出在水相中利用当量的副产物甲酸还原乙酰丙酸的思路。该路线不仅体现了反应的原子经济性,避免了使用外部H2,还最大程度地降低了转化过程的分离能耗。研究结果表明,RuCl3/PPh3能够在水相条件下转化摩尔比1:1的甲酸和乙酰丙酸,高产率地得到γ-戊内酯。值得注意的是,甲酸原位生成的CO2可以促进疏水的膦配体PPh3在水相反应体系中发挥作用,解释了为什么RuCl3/PPh3在水相中拥有较高的催化效率,这也为廉价的PPh3替代水溶性膦配体提供了可能。另外,我们还提出了一种两步催化甲酸和乙酰丙酸制备γ-戊内酯的方法。该方法分别使用非均相催化剂Ru-P-SiO2和Ru/TiO2催化甲酸分解和乙酰丙酸加氢,成功地实现了催化剂的循环使用,为固定床连续法生产γ-戊内酯奠定了基础。
     综上所述,本文以纤维素制备乙酰丙酸γ-戊内酯的绿色催化转化为研究内容,实现了固体酸催化制备乙酰丙酸的绿色过程;完成了甲酸作为还原剂制备γ-戊内酯过程中反应的耦合,解决了反应体系内部氢源的自给。
With the aim of sustainable future, increasing attentions have been devoted tovarious routes for the production of biofuels and biochemicals via chemical andbiological catalysis. Taking amount of feedstock, food supply and processingcapacity into consideration, chemical transformation of cellulosic materials intobiofuels and biochemicals has to be emphasized. Current investigations show thatefficient conversion of cellulose to glucose, sorbitol, glycol, syngas, aromatics andfurans has been achieved via hydrolysis, hydrogenation, catalytic pyrolysis anddehydration. All of them are“building blocks”for biorefinery which is of greatpotentials to be the future chemicals, materials, and energy base.
     Levulinic acid, also a“building block”derived from cellulose, is a fascinatingcompound because it offers several promising routes for biofuels as well asbiochemicals. Starting from levulinic acid, levulinic esters andγ-valerolactone canbe obtained through addition of alkenes and hydrogenation respectively. Both can beblended with gasoline as ethanol. With regard to energy density, polarity and boilingpoint, the derivatives of levulinic acid orγ-valerolactone, such as valerate,5-nonanone, butene and C8+ alkenes, are more attractive in fuel applications.Moreover, levulinic acid andγ-valerolactone can also be converted to monomers.For instance, reaction with levulinic acid and phenol provides bisphenol A which isusually synthesized from acetone and plays important roles in polycarbonate andepoxy resin production. However, problems including the use of wasteful andcorrosive mineral acid, the efficient separation of levulinic acid and external H2supply, remain as bottleneck of the routes from cellulose to levulinic acid andγ-valerolactone.
     In chapter 1, we introduced the current state of the transformation of biomasstowards biofuels and biochemicals as well as the concept of“building blocks”brieflyThe chemical conversion of cellulose, synthesis and application of leculinic acid andγ-valerolactone were carefully reviewed. Besides,the relationship between biomassconversion and green chemistry were also commented.
     In chapter 2, levulinic acid was produced from cellulose by magnetic solid acidwith mesopores. The process may find important applications for the liquid fuels andvaluable chemicals production based on levulinic acid. By contrast with H2SO4, the catalysts are more efficient to convert microcrystalline cellulose into LA and catalyst separation can be readily achieved by magnetic force.
     The in-situ reduction of levulinic acid using by-product formic acid was reported in chapter 3 and 4. We creatively proposed the transformation of levulinic acid in water with equimolar formic acid toγ-valerolactone. The success of this new route not only improves the atom economy of the process, but also avoids the energy-costly step to separate LA from the aqueous solution mixture of LA and formic acid. We have demonstrated that by using inexpensive RuCl3/PPh3, 1:1 aqueous mixture of levulinic acid and formic acid can be catalytically converted toγ-valerolactone in high yields. A striking positive CO2 effect on Ru-catalyzed hydrogenation is also observed, which may be used to explain the good performance of aqueous hydrogenation using water insoluble ligand. Moreover, by using heterogeneous catalyst Ru-P-SiO2 for decomposition of fomic acid and Ru/TiO2 for hydrogenation of levulinic acid, an efficient two-step process forγ-valerolactone production has been developed. The two catalysts can be used repetitively for at least 8 times without deactivation
     In summary, two key problems concerning levulinic acid andγ-valerolactone production has been solved. First, levulinic acid has been prepared from cellulosic feed via a“green”dehydration process using magnetic mesoporous solid acids. Second, levulinic acid formed in aqueous medium can be reduced toγ-valerolactone by robust catalysts without using external H2.
引文
[1] Sustainable Bioenergy: A Framework for Decision Makers, 2007.
    [2] Biomass as Feedstock for A Bioenergy and Bioproducts Industry: The Technical Feasibility for A Billion-ton Annual Supply, 2005.
    [3]中国科学院生物质资源领域战略研究组,中国至2050年生物质资源科技发展路线图,科学出版社, 2009.
    [4]朱锡锋,生物质热解原理与技术,中国科学技术大学出版社, 2006.
    [5]袁振宏,吴创之,马隆龙,生物质能利用原理与技术,化学工业出版社, 2005.
    [6] T. Werpy, G. Petersen, Top Value Added Chemicals From Biomass Volume I, Results of Screening for Potential Candidates from Sugars and Synthesis Gas 2004.
    [7] a) J. J. Bozell, G. R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited, Green Chemistry 2010, 12, 539-554; b) X. H. Qi, M. Watanabe, T. M. Aida and R. L. Smith, Selective Conversion of D-Fructose to 5-Hydroxymethylfurfural by Ion-Exchange Resin in Acetone/Dimethyl sulfoxide Solvent Mixtures, Ind. Eng. Chem. Res. 2008, 47, 9234-9239; c) G. J. M. Gruter, L. E. Manzer, A. S. V. De Sousa Dias, F. Dautzenberg and J. Purmova, Hydroxymehtylfurfural ethers and esters prepared in ionic liquids, WO2009030512 2009.
    [8] B. M. Trost, The Atom Economy - a Search for Synthetic Efficiency, Science 1991, 254, 1471-1477.
    [9] P. T. Anastas, J. C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, New York, 1998, p. 29-54.
    [10] J. H. Clark, V. Budarin, F. E. I. Deswarte, J. J. E. Hardy, F. M. Kerton, A. J. Hunt, R. Luque, D. J. Macquarrie, K. Milkowski, A. Rodriguez, O. Samuel, S. J. Tavener, R. J. White, A. J. Wilson, Green chemistry and the biorefinery: A partnership for a sustainable future, Green Chemistry 2006, 8, 853-860.
    [11] D. Klemm, B. Heublein, H. P. Fink, A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material, Angewandte Chemie-International Edition 2005, 44, 3358-3393.
    [12] R. Rinaldi, F. Schuth, Acid Hydrolysis of Cellulose as the Entry Point into Biorefinery Schemes, Chemsuschem 2009, 2, 1096-1107.
    [13] R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, Dissolution of cellose with ionic liquids, Journal of the American Chemical Society 2002, 124, 4974-4975.
    [14] C. Z. Li, Z. K. B. Zhao, Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid, AdvancedSynthesis & Catalysis 2007, 349, 1847-1850.
    [15] C. Z. Li, Q. Wang, Z. K. Zhao, Acid in ionic liquid: An efficient system for hydrolysis of lignocellulose, Green Chemistry 2008, 10, 177-182.
    [16] J. B. Binder, R. T. Raines, Fermentable sugars by chemical hydrolysis of biomass, Proceedings of the National Academy of Sciences of the United States of America 2010, 107, 4516-4521.
    [17] R. Rinaldi, R. Palkovits, F. Schuth, Depolymerization of Cellulose Using Solid Catalysts in Ionic Liquids, Angewandte Chemie-International Edition 2008, 47, 8047-8050.
    [18] R. Rinaldi, N. Meine, J. vom Stein, R. Palkovits, F. Schuth, Which Controls the Depolymerization of Cellulose in Ionic Liquids: The Solid Acid Catalyst or Cellulose?, Chemsuschem 2010, 3, 266-276.
    [19] R. Rinaldi, P. Engel, J. Buchs, A. C. Spiess, F. Schuth, An Integrated Catalytic Approach to Fermentable Sugars from Cellulose, Chemsuschem 2010, 3, 1151-1153.
    [20] A. Onda, T. Ochi, K. Yanagisawa, Selective hydrolysis of cellulose into glucose over solid acid catalysts, Green Chemistry 2008, 10, 1033-1037.
    [21] A. Onda, T. Ochi, K. Yanagisawa, Hydrolysis of Cellulose Selectively into Glucose Over Sulfonated Activated-Carbon Catalyst Under Hydrothermal Conditions, Topics in Catalysis 2009, 52, 801-807.
    [22] a) S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups, Journal of the American Chemical Society 2008, 130, 12787-12793; b) M. Kitano, D. Yamaguchi, S. Suganuma, K. Nakajima, H. Kato, S. Hayashi, M. Hara, Adsorption-Enhanced Hydrolysis of beta-1,4-Glucan on Graphene-Based Amorphous Carbon Bearing SO3H, COOH, and OH Groups, Langmuir 2009, 25, 5068-5075; c) D. Yamaguchi, M. Kitano, S. Suganuma, K. Nakajima, H. Kato, M. Hara, Hydrolysis of Cellulose by a Solid Acid Catalyst under Optimal Reaction Conditions, Journal of Physical Chemistry C 2009, 113, 3181-3188.
    [23] J. F. Pang, A. Q. Wang, M. Y. Zheng, T. Zhang, Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures, Chemical Communications 2010, 46, 6935-6937.
    [24] D. M. Lai, L. Deng, J. Li, B. Liao, Q. X. Guo, Y. Fu, Hydrolysis of Cellulose into Glucose by Magnetic Solid Acid, Chemsuschem 2011, 4, 55-58.
    [25] G. W. Huber, J. N. Chheda, C. J. Barrett, J. A. Dumesic, Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates, Science 2005, 308, 1446-1450.
    [26] G. W. Huber, R. D. Cortright, J. A. Dumesic, Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates, Angewandte Chemie-International Edition 2004, 43, 1549-1551.
    [27] Y. Roman-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Production of dimethylfuran forliquid fuels from biomass-derived carbohydrates, Nature 2007, 447, 982-U985.
    [28] a) A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals, Chemical Reviews 2007, 107, 2411-2502; b) Schiavo, V.; Descotes, G.; Mentech, Catalytic-Hydrogenation of 5-Hydroxymethylfurfural in Aqueous-Medium, J. Bull. Soc. Chim. Fr. 1991, 704-711; c) Morikawa, S.; Nakamura, Y. Bull. Chem. Soc. Jpn. 1980, 53, 3705; d) Wisniak, J.; Hershko, W. M.; Leibowit, R.; Stein, S. Ind. Eng. Chem. Prod. Res. DeV. 1974, 13, 75-83; e) Dias, A. S.; Pillinger, M.; Valente, A. A., Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts, J. Catal. 2005, 229, 414-423; f) Moens, L. ACS Symp. Ser. 2001, 784, 37; g) Dunlop, A. P.; Smith, S., Preparation of succinic acid, 2676186, 1955; h) Manzer, L. E., Production of 5-methyl-N-aryl-2-pyrrolidone and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid esters with nitro compounds, 2004192934, 2003.
    [29] J. Horvat, B. Klaic, B. Metelko, V. Sunjic, Mechanism of levulinic acid formation, Tetrahedron Letters 1985, 26, 2111-2114
    [30] Y. Roman-Leshkov, J. N. Chheda, J. A. Dumesic, Phase modifiers promote efficient production of hydroxymethylfurfural from fructose, Science 2006, 312, 1933-1937.
    [31] H. B. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural, Science 2007, 316, 1597-1600.
    [32] G. Yong, Y. G. Zhang, J. Y. Ying, Efficient Catalytic System for the Selective Production of 5-Hhydroxymethylfurfural from Glucose and Fructose, Angewandte Chemie-International Edition 2008, 47, 9345-9348.
    [33] E. A. Pidko, V. Degirmenci, R. A. van Santen, E. J. M. Hensen, Glucose Activation by Transient Cr2+ Dimers, Angewandte Chemie-International Edition 2010, 49, 2530-2534.
    [34] S. Q. Hu, Z. F. Zhang, J. L. Song, Y. X. Zhou, B. X. Han, Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid, Green Chemistry 2009, 11, 1746-1749.
    [35] J. B. Binder, R. T. Raines, Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals, Journal of the American Chemical Society 2009, 131, 1979-1985.
    [36] S. Yu, H. M. Brown, X. W. Huang, X. D. Zhou, J. E. Amonette, Z. C. Zhang, Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical, Applied Catalysis a-General 2009, 361, 117-122.
    [37] M. Mascal, E. B. Nikitin, Direct, high-yield conversion of cellulose into biofuel, Angewandte Chemie-International Edition 2008, 47, 7924-7926.
    [38] M. Mascal, E. B. Nikitin, Towards the Efficient, Total Glycan Utilization of Biomass,Chemsuschem 2009, 2, 423-426.
    [39] M. Mascal, E. B. Nikitin, High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural, Green Chemistry 2010, 12, 370-373.
    [40] I. T. Horvath, H. Mehdi, V. Fabos, L. Boda, L. T. Mika, gamma-Valerolactone - a sustainable liquid for energy and carbon-based chemicals, Green Chemistry 2008, 10, 238-242.
    [41] H. Mehdi, V. Fabos, R. Tuba, A. Bodor, L. T. Mika, I. T. Horvath, Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: From sucrose to levulinic acid, gamma-valerolactone, 1,4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes, Topics in Catalysis 2008, 48, 49-54.
    [42] A. F. William, E. C. John, Method for the production of levulinic, 6054611 2000.
    [43] G. W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering, Chemical Reviews 2006, 106, 4044-4098.
    [44] G. W. Huber, J. W. Shabaker, J. A. Dumesic, Raney Ni-Sn catalyst for H-2 production from biomass-derived hydrocarbons, Science 2003, 300, 2075-2077.
    [45] D. A. Simonetti, J. Rass-Hansen, E. L. Kunkes, R. R. Soares, J. A. Dumesic, Coupling of glycerol processing with Fischer-Tropsch synthesis for production of liquid fuels, Green Chemistry 2007, 9, 1073-1083.
    [46] A. Fukuoka, P. L. Dhepe, Catalytic conversion of cellulose into sugar alcohols, Angewandte Chemie-International Edition 2006, 45, 5161-5163.
    [47] C. Luo, S. A. Wang, H. C. Liu, Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water, Angewandte Chemie-International Edition 2007, 46, 7636-7639.
    [48] R. Palkovits, K. Tajvidi, J. Procelewska, R. Rinaldi, A. Ruppert, Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts, Green Chemistry 2010, 12, 972-978.
    [49] N. Ji, T. Zhang, M. Y. Zheng, A. Q. Wang, H. Wang, X. D. Wang, J. G. G. Chen, Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts, Angewandte Chemie-International Edition 2008, 47, 8510-8513.
    [50] P. J. Dauenhauer, B. J. Dreyer, N. J. Degenstein, L. D. Schmidt, Millisecond reforming of solid biomass for sustainable fuels, Angewandte Chemie-International Edition 2007, 46, 5864-5867.
    [51] D. Fabbri, C. Torri, I. Mancini, Pyrolysis of cellulose catalysed by nanopowder metal oxides: production and characterisation of a chiral hydroxylactone and its role as building block, Green Chemistry 2007, 9, 1374-1379.
    [52] Z. Wang, Q. Lu, X. F. Zhu, Y. Zhang, Catalytic Fast Pyrolysis of Cellulose to PrepareLevoglucosenone Using Sulfated Zirconia, Chemsuschem 2011, 4, 79-84.
    [53] G. N. Sheldrake, D. Schleck, Dicationic molten salts (ionic liquids) as re-usable media for the controlled pyrolysis of cellulose to anhydrosugars, Green Chemistry 2007, 9, 1044-1046.
    [54] T. R. Carlson, T. R. Vispute, G. W. Huber, Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds, Chemsuschem 2008, 1, 397-400.
    [55] M. G. Viswas, A. H. Milford, Method and apparatus for the production of levulinic acid, 5859263 1999.
    [56]蔡磊,吕秀阳,何龙,夏文莉,任其龙,新平台化合物乙酰丙酸制备方法研究进展,现代化工23, 14-16.
    [57] J. P. Lange, W. D. van de Graaf, R. J. Haan, Conversion of Furfuryl Alcohol into Ethyl Levulinate using Solid Acid Catalysts, Chemsuschem 2009, 2, 437-441.
    [58] Z. H. Zhang, K. Dong, Z. B. Zhao, Efficient Conversion of Furfuryl Alcohol into Alkyl Levulinates Catalyzed by an Organic–Inorganic Hybrid Solid Acid Catalyst, Chemsuschem 2011, 4, 112-118.
    [59] L. E. Manzer, K. W. Hutchenson, Production of 5-methyl-dihydro-furan-2-one from levulinic acid in supercritical media, US2004/0254384 A1 2004.
    [60] R. A. Bourne, J. G. Stevens, J. Ke, M. Poliakoff, Maximising opportunities in supercritical chemistry: the continuous conversion of levulinic acid to gamma-valerolactone in CO2, Chemical Communications 2007, 4632-4634.
    [61] P. J. Fagan, E. Korovessi, L. E. Manzer, R. Mehta, S. M. Thomas, Preparation of levulinic acid esters and from biomass and olefins, 2003.
    [62] F. M. A. Geilen, B. Engendahl, A. Harwardt, W. Marquardt, J. Klankermayer, W. Leitner, Selective and Flexible Transformation of Biomass-Derived Platform Chemicals by a Multifunctional Catalytic System, Angewandte Chemie-International Edition 2010, 49, 5510-5514.
    [63] Y. H. Guo, K. X. Li, J. H. Clark, The synthesis of diphenolic acid using the periodic mesoporous H3PW12O40-silica composite catalysed reaction of levulinic acid, Green Chemistry 2007, 9, 839-841.
    [64] J. Q. Bond, D. M. Alonso, D. Wang, R. M. West, J. A. Dumesic, Integrated Catalytic Conversion ofγ-Valerolactone to Liquid Alkenes for Transportation Fuels, Science 2010, 327, 1110-1114.
    [65] J. C. Serrano-Ruiz, D. Wang, J. A. Dumesic, Catalytic upgrading of levulinic acid to 5-nonanone, Green Chemistry 2010, 12, 574-577.
    [66] D. M. Alonso, J. Q. Bond, J. C. Serrano-Ruiz, J. A. Dumesic, Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C-9 alkenes, Green Chemistry 2010,12, 992-999.
    [67] J. P. Lange, R. Price, P. M. Ayoub, J. Louis, L. Petrus, L. Clarke, H. Gosselink, Valeric Biofuels: A Platform of Cellulosic Transportation Fuels, Angewandte Chemie-International Edition 2010, 49, 4479-4483.
    [68] L. E. Manzer, Catalytic synthesis of alpha-methylene-gamma-valerolactone: a biomass-derived acrylic monomer, Applied Catalysis a-General 2004, 272, 249-256.
    [69] J. P. Lange, J. Z. Vestering, R. J. Haan, Towards 'bio-based' Nylon: conversion of gamma-valerolactone to methyl pentenoate under catalytic distillation conditions, Chemical Communications 2007, 3488-3490.
    [70] E. I. Gurbuz, D. M. Alonso, J. Q. Bond, J. A. Dumesic, Reactive Extraction of Levulinate Esters and Conversion to g-Valerolactone for Production of Liquid Fuels, Chususchem 2011, 4, early view.
    [1] A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals, Chemical Reviews 2007, 107, 2411-2502.
    [2] T. Werpy, G. Petersen, Top Value Added Chemicals From Biomass Volume I, Results of Screening for Potential Candidates from Sugars and Synthesis Gas 2004.
    [3] J. C. Serrano-Ruiz, D. J. Braden, R. M. West, J. A. Dumesic, Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen, Applied Catalysis B-Environmental 2010, 100, 184-189.
    [4] E. I. Gurbuz, D. M. Alonso, J. Q. Bond, J. A. Dumesic, Reactive Extraction of Levulinate Esters and Conversion to g-Valerolactone for Production of Liquid Fuels, Chususchem 2011, 4, early view.
    [5] G. W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering, Chemical Reviews 2006, 106, 4044-4098.
    [6] R. Rinaldi, F. Schuth, Acid Hydrolysis of Cellulose as the Entry Point into Biorefinery Schemes, Chemsuschem 2009, 2, 1096-1107.
    [7] J. Hegner, K. C. Pereira, B. DeBoef, B. L. Lucht, Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis, Tetrahedron Letters 2010, 51, 2356-2358.
    [8] D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka, G. D. Stucky, Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups, Chemistry of Materials 2000, 12, 2448-2459.
    [9] A. Onda, T. Ochi, K. Yanagisawa, Selective hydrolysis of cellulose into glucose over solid acid catalysts, Green Chemistry 2008, 10, 1033-1037.
    [1] L. E. Manzer, Catalytic synthesis of alpha-methylene-gamma-valerolactone: a biomass-derived acrylic monomer, Applied Catalysis a-General 2004, 272, 249-256.
    [2] J. P. Lange, J. Z. Vestering, R. J. Haan, Towards 'bio-based' Nylon: conversion of gamma-valerolactone to methyl pentenoate under catalytic distillation conditions, Chemical Communications 2007, 3488-3490.
    [3] P. J. Fagan, E. Korovessi, L. E. Manzer, R. Mehta, S. M. Thomas, Preparation of levulinic acid esters and from biomass and olefins, WO03/085071 A1 2003.
    [4] X. F. Wu, X. G. Li, F. King, J. L. Xiao, Insight into and practical application of pH-controlled asymmetric transfer hydrogenation of aromatic ketones in water, Angewandte Chemie-International Edition 2005, 44, 3407-3411.
    [5] J. R. Hyde, B. Walsh, J. Singh, M. Poliakoff, Continuous hydrogenation reactions in supercritical CO2 "without gases'', Green Chemistry 2005, 7, 357-361.
    [6] H. Mehdi, V. Fabos, R. Tuba, A. Bodor, L. T. Mika, I. T. Horvath, Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: From sucrose to levulinic acid, gamma-valerolactone, 1,4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes, Topics in Catalysis 2008, 48, 49-54.
    [7] C. Fellay, P. J. Dyson, G. Laurenczy, A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst, Angewandte Chemie-International Edition 2008, 47, 3966-3968.
    [8] B. Loges, A. Boddien, H. Junge, M. Beller, Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells, Angewandte Chemie-International Edition 2008, 47, 3962-3965.
    [9] X. C. Zhou, Y. J. Huang, W. Xing, C. P. Liu, J. H. Liao, T. H. Lu, High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C, Chemical Communications 2008, 3540-3542.
    [10] E. Garcia-Verdugo, Z. M. Liu, E. Ramirez, J. Garcia-Serna, J. Fraga-Dubreuil, J. R. Hyde, P. A. Hamley, M. Poliakoff, In situ generation of hydrogen for continuous hydrogenation reactions in high temperature water, Green Chemistry 2006, 8, 359-364.
    [11] L. E. Manzer, Production of 5-methylbutyrolactone from levulinic acid, WO02/074760 A1 2002.
    [12] K. Oskada, K. Ikaria, S. Yoshikawa, Preparation and properties of hydridetriphenylphosphine runthenium complexes, Journal of Organometallic Chemstry 1982, 231, 79-90.
    [13] a) M. Glinski, J. Kijenski, A. Jakubowski, Ketones from monocarboxylic acids - Catalytic ketonization over oxide system, Appl. Catal. A:Gen. 1995, 128, 209-217; b) M. Renz, Ketonization of carboxylic acids by decarboxylation: Mechanism and scope, Eur. J. Org. Chem 2005, 979-988; c) O. Nagashima, S. Sato, R. Takahashi, T. Sodesawa, Ketonization of carboxylic acids over CeO2-based composite oxides, J. Mol. Catal. A:Chem. 2005, 227, 231-239; d) T. S. Hendren, K. M. Dooley, Kinetics of catalyzed acid/acid and acid/aldehyde condensation reactions to non-symmetric ketones, Catal. Today 2003, 85, 333-351.
    [14] M. Glinski, A. Koziol, D. Lomot, Z. Kaszkur, Catalytic ketonization over oxide catalysts - Part XII. Selective reduction of carboxylic acids by formic acid, Applied Catalysis a-General 2007, 323, 77-85.
    [15] K. N. Houk, A. Jabbari, H. K. Hall, C. Aleman, Why delta-valerolactone polymerizes and gamma-butyrolactone does not, Journal of Organic Chemistry 2008, 73, 2674-2678.
    [16] A. F. William, E. C. John, Method for the production of levulinic, 6054611 2000.
    [17] R. A. Bourne, J. G. Stevens, J. Ke, M. Poliakoff, Maximising opportunities in supercritical chemistry: the continuous conversion of levulinic acid to gamma-valerolactone in CO2, Chemical Communications 2007, 4632-4634.
    [18] P. G. Jessop, B. Subramaniam, Gas-expanded liquids, Chemical Reviews 2007, 107, 2666-2694.
    [1] L. Deng, J. Li, D. M. Lai, Y. Fu, Q. X. Guo, Catalytic Conversion of Biomass-Derived Carbohydrates into gamma-Valerolactone without Using an External H2 Supply, Angewandte Chemie-International Edition 2009, 48, 6529-6532.
    [2] H. Heeres, R. Handana, D. Chunai, C. B. Rasrendra, B. Girisuta, H. J. Heeres, Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to gamma-valerolactone using ruthenium catalysts, Green Chemistry 2009, 11, 1247-1255.
    [3] J. C. Serrano-Ruiz, D. J. Braden, R. M. West, J. A. Dumesic, Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen, Applied Catalysis B-Environmental 2010, 100, 184-189.
    [4] J. R. Hyde, B. Walsh, J. Singh, M. Poliakoff, Continuous hydrogenation reactions in supercritical CO2 "without gases'', Green Chemistry 2005, 7, 357-361.
    [5] E. Garcia-Verdugo, Z. M. Liu, E. Ramirez, J. Garcia-Serna, J. Fraga-Dubreuil, J. R. Hyde, P. A. Hamley, M. Poliakoff, In situ generation of hydrogen for continuous hydrogenation reactions in high temperature water, Green Chemistry 2006, 8, 359-364.
    [6] H. X. Li, J. Chen, Y. Wan, W. Chai, F. Zhang, Y. F. Lu, Aqueous medium Ullmann reaction over a novel Pd/Ph-Al-MCM-41 as a new route of clean organic synthesis, Green Chemistry 2007, 9, 273-280.
    [7] G. H. Liu, Y. Q. Sun, J. Y. Wang, C. S. Sun, F. Zhang, H. X. Li, Microwave-assisted tandem allylation-isomerization reaction catalyzed by a mesostructured bifunctional catalyst in aqueous media, Green Chemistry 2009, 11, 1477-1481.
    [8] a) S. Enthaler, Carbon Dioxide-The Hydrogen-Storage Material of the Future?, Chemsuschem 2008, 1, 801-804; b) F. Joo, Breakthroughs in Hydrogen Storage-Formic Acid as a Sustainable Storage Material for Hydrogen, Chemsuschem 2008, 1, 805-808; c) Z. F. Zhang, S. Q. Hu, J. L. Song, W. J. Li, G. Y. Yang, B. X. Han, Hydrogenation of CO2 to Formic Acid Promoted by a Diamine-Functionalized Ionic Liquid, Chemsuschem 2009, 2, 234-238; d) D. Preti, S. Squarcialupi, G. Fachinetti, Production of HCOOH/NEt3 Adducts by CO2/H2 Incorporation into Neat NEt3, Angewandte Chemie-International Edition 2010, 49, 2581-2584; e) X. L. Li, X. Y. Ma, F. Shi, Y. Q. Deng, Hydrogen Generation from Formic Acid Decomposition with a Ruthenium Catalyst Promoted by Functionalized Ionic Liquids, Chemsuschem 2010, 3, 71-74.
    [9] X. C. Zhou, Y. J. Huang, W. Xing, C. P. Liu, J. H. Liao, T. H. Lu, High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C, Chemical Communications2008, 3540-3542.
    [10] a) B. Loges, A. Boddien, H. Junge, M. Beller, Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H-2/O-2 fuel cells, Angewandte Chemie-International Edition 2008, 47, 3962-3965; b) A. Boddien, B. Loges, H. Junge, M. Beller, Hydrogen Generation at Ambient Conditions: Application in Fuel Cells, Chemsuschem 2008, 1, 751-758; c) H. Junge, A. Boddien, F. Capitta, B. Loges, J. R. Noyes, S. Gladiali, M. Beller, Improved hydrogen generation from formic acid, Tetrahedron Letters 2009, 50, 1603-1606.
    [11] C. Fellay, P. J. Dyson, G. Laurenczy, A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst, Angewandte Chemie-International Edition 2008, 47, 3966-3968.
    [12] C. Fellay, N. Yan, P. J. Dyson, G. Laurenczy, Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation: A Mechanistic Study, Chemistry-a European Journal 2009, 15, 3752-3760.
    [13] Frisch, M. J. et al; Gaussian 03, revision C. 02; Gaussian, Inc.: Wallingford, CT, 2004.
    [14] a) A. D. Becke, Density-Functional Thermochemistry .3. The Role of Exact Exchange, Journal of Chemical Physics 1993, 98, 5648-5652; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
    [15] W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 299–310.
    [16] a) K. Fukui, Acc. Chem. Res. 1981, 14, 363–368; b) C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154–2161; c) C. Gonzalez, H. B. Schlegel, Reaction-Path Following in Mass-Weighted Internal Coordinates, Journal of Physical Chemistry 1990, 94, 5523-5527.
    [17] P. Fuentealba, H. Preuss, H. Stoll, L. V. Szentpaly, Chem. Phys. Lett. 1989, 89, 418.
    [18] a) V. Barone, M. Cossi, Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, Journal of Physical Chemistry A 1998, 102, 1995-2001; b) M. Cossi, N. Rega, G. Scalmani, V. Barone, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, Journal of Computational Chemistry 2003, 24, 669-681.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700