5-羟基乙酰丙酸及其新型可生物降解聚合物的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以生物质为资源合成可生物降解高分子材料,是解决高分子材料产业发展中资源短缺和环境污染等问题的一条可行途径。为开辟从生物质资源合成可生物降解高分子材料的新方法和新路线,本文从来源于生物质资源的乙酰丙酸出发,首先合成出5-羟基乙酰丙酸(5-HLA)单体,然后通过熔融缩聚,首次合成出聚5-羟基乙酰丙酸(PHLA)及其与二元醇、乳酸的共聚物,得到了一系列基于5-HLA的新型可生物降解聚合物,对单体合成和熔融缩聚的规律、聚合机理、聚合物的结构、性能以及降解行为等进行了系统的研究。
     以乙酰丙酸为原料,通过溴化,得到中间产物5-溴乙酰丙酸甲酯;又经一步水解、乙醚连续萃取和重结晶,得到了5-羟基乙酰丙酸。优化了溴化反应温度、液溴滴加速率、反应介质用量等溴化反应条件;同时利用3-溴乙酰丙酸甲酯等溴化物的分子内重排和歧化反应,对溴化反应生成的副产物回收再利用,将5-溴乙酰丙酸甲酯的产率从文献值30%提高到45%。一步水解法与文献的二步法相比,操作时间短,产率大大增加。
     为了得到5-羟基乙酰丙酸的内酯化产物,进而通过开环聚合得到新型脂肪族聚酯,设计了以三氟化硼/乙醚为催化剂进行5-羟基乙酰丙酸的内酯化反应路线,结果却得到了二聚体1,6,9,13-四氧双螺[4.2.4.2]十四烷-2,10-二酮(又称阿尔泰内酯),它是中药九节菖蒲的化学成分之一。采用气质联用、核磁、红外、元素分析和多晶/单晶X射线衍射等方法对所得二聚体的结构进行了表征,并讨论了有关的反应机理。阿尔泰内酯非常稳定,难以进行开环聚合。
     为此,进行了对5-HLA的直接熔融缩聚研究,首次合成出低分子量的聚5-羟基乙酰丙酸。考察了反应条件如催化剂种类、催化剂用量、反应时间、反应温度等对缩聚反应的影响,发现以氯化亚锡/对甲基苯磺酸为催化剂时所得缩聚产物的分子量较高,颜色较浅。较佳的反应条件为170℃、18 h、氯化亚锡/对甲基苯磺酸为催化剂、用量0.7%,所得PHLA的分子量为M_w=2550,M_n=1660。并采用红外、核磁氢谱、核磁碳谱、X射线衍射、示差扫描量热以及热重分析等方法对这种新型的脂肪族聚酯的分子结构和热性能进行了表征,发现PHLA中存在烯醇式结构,易在聚合物分子内和分子间形成氢键,导致该聚合物具有异常高的玻璃化温度(M_n=1600时,T_g=128℃)。
     根据5-羟基乙酰丙酸或聚(5-羟基乙酰丙酸)中存在烯醇式结构的特点,将5-HLA与乙二醇(EG)、1,3-丙二醇(PO)、1,4-丁二醇(BDO)等二元醇进行熔融共缩聚,利用羟基与羧基的酯化缩合反应和烯醇式羟基与醇羟基之间的醚化缩合反应,首次实现了5-HLA与二元醇的非线性共缩聚反应,得到了化学交联的可生物降解聚合物聚(5-羟基乙酰丙酸-二元醇)(PHLA-diols)。该反应简单、易行,5-HLA与二元醇经脱水后加入催化剂,即可很快地生成交联聚合物。考察了二元醇、反应温度、单体配比、催化剂用量等反应条件对非线性缩聚产物结构和性能的影响。反应温度与催化剂用量的提高均会促进交联反应的进行,反应产物的凝胶含量增加;改变单体配比可在很宽的范围内调节反应产物的凝胶含量和T_g,改变二元醇的种类也可实现T_g的调节。在5-HLA/BDO体系中,发现在5-HLA/BDO的摩尔比为95/5~20/80的范围内均可以得到具有交联结构的共聚物PHLA-BDO,当5-HLA/BDO的摩尔比为40/60~80/20时,PHLA-BDO的凝胶含量可达90%以上。这些交联产物的玻璃化温度在-35.6℃~65.1℃范围内变化。因而5-羟基乙酰丙酸与二元醇共缩聚既可得到柔性的交联弹性体材料,又可得到刚性的半交联聚合物。但这些刚性的半交联聚合物经溶剂抽提后,玻璃化温度下降,也变为弹性体。这种玻璃化温度在抽提前后的变化可归结为交联点的形成破坏了分子内或分子间原有的氢键所致。红外表征结果表明聚合物链结构中存在酯键、烯醚键、双键,基本证实了推测的反应机理。
     此外,根据PHLA分子量低而玻璃化温度高、而聚乳酸分子量高而玻璃化温度低的特点,对5-HLA和乳酸的共缩聚反应进行了探索,以提高PHLA的分子量和聚乳酸的玻璃化温度。考察了单体配比、反应温度以及反应时间等条件对共缩聚反应的影响以及共聚物PHLA-LLA和PHLA-DLLA的结构和性能的变化规律。发现引入少量的L-乳酸(LLA)或DL-乳酸(DLLA)与5-HLA共聚,对提高聚合物分子量并无明显效果。引入少量5-HLA与L-乳酸共缩聚,可提高聚L-乳酸的玻璃化温度,而对于5-HLA与DL-乳酸的共聚物PHLA-DLLA,只有在5-羟基乙酰丙酸的共聚比例较高时,才能使其玻璃化温度有所提高。
     研究了PHLA、PHLA-BDO、PHLA-LLA、PHLA-DLLA的水解降解行为。由于存在脂肪族酯键,这些聚合物均能发生水解降解。与传统的脂肪族聚酯在降
    解的初始阶段不失重的规律不同,这些聚合物由于分子量较低,均从降解一开始就持续、平稳地失重。PHLA在37℃下在水中降解4周失重达50%,在PBS缓冲溶液中降解更快。PHLA-BDO由于化学交联网络结构的存在,降解失重速度比PHLA慢,样品降解6周后,重量损失30%左右。5-HLA与乳酸的共聚物随组成的不同,降解速率有较大的差别;结晶性的PHLA-LLA的降解速度比无定形的PHLA-DLLA要慢。
Synthesizing biodegradable polymers such as polylactic acid from renewable biomass resource is one feasible way to solve the problems of environment pollution and resource shortage in current polymer industries. In this work, novel biodegradable polymers have been synthesized from biomass via a new synthetic route. In brief, 5-hydroxylavulinic acid (5-HLA), an apparent hydroxyl acid monomer, was first synthesized from levulinic acid (LA), a platform chemical derived from biomass resources; then, novel aliphatic polyesters including poly(5-hydroxylevulinic acid) (PHLA), poly(5- hydroxylevulinic acid -co- diol)s (PHLA-DO), poly(5-hydroxylevulinic acid -co- lactic acid)s (PHLA-LA) were synthezied via melt polycondensation of 5-HLA or co-polycondensation of 5-HLA with diols or lactic acids. The monomer synthesis, the polycondensation and copolycondensation reactions, the polymerization mechanism, the structures and properties and in vitro degradation behaviors of the resulting polymers and copolymers were studied systemically.
    In the synthesis of 5-HLA, LA was first brominated using liquid bromine (Br_2) to give an intermediate product methyl 5-bromolevulinate (5-MBL), which was then hydrolyzed in one step to produce 5-HLA. After extraction of the hydrolysis product with diethyl ether and then recrystallization of the extract in chloroform, pure 5-HLA crystal was obtained with a yield of 28% (based on LA). In the bromization reaction of LA, the reaction conditions such as reaction temperature, drop rate of Br_2 and reaction medium were optimized. Methyl 3-bromolevulinate (3-MBL) in the side product was partially converted to methyl 5-bromolevulinate (5-MBL) through a rearrangement reaction, thus the side product was partially reused and the yield of 5-MBL was enhanced from an ever reported value of 30% to 45%. The one-step hydrolysis of 5-MBL resulted in shorter reaction time and higher yield and is thus better than the two-step hydrolysis reported in literature.
    In an attempt to synthesize a lactone monomer form 5-HLA using BF_3·OEt_2 as catalyst, 1,6,9,13-tetraoxadispiro [4.2.4.2] tetradecane-2,10-dione (or altaicadispirolactone, ADPL), a dimer of the 5-HLA, rather than the expected γ-keto-δ-valerolactone (KVL) was synthesized. ADPL is one of the chemical components of Anemone altaica C.A.May, a traditional Chinese medicinal herb. Structure of the dimer was characterized by GC-MS, ~1H-NMR, ~(13)C-NMR, FT-IR, element analysis and polycrystal/single crystal XRD, respectively. Two plausible mechanisms for the cyclolactonization reaction were presented. However, this compound is too steady to be polymerized in ring-opening manner.
    Then, the melt polycondensation of 5-HLA was studied and low molecular weight poly(5-hydroxylevulinic acid (PHLA) was synthesized for the first time. The effects of reaction conditions such as catalyst type and amount, reaction time and reaction temperature on the polycondensation were examined. It was found that catalysts including Sn, SnO, SnCl_2·2H_2O and Sn(Oct)_2 exhibited catalytic activity for the polycondensation reaction, among which SnCl_2·2H_2O was the most effective one when it was used together with p-toluenesulfonic acid (TSA). PHLA with M_W of about 2550 was synthesized in the presence of SnCl_2·2H_2O/TSA at 170℃ and under reduced pressure for 18 hours. The microstructure and thermal properties of PHLA were characterized with FTIR, ~1H-NMR, ~(13)C-NMR, DSC and TGA. It was found that PHLA possesses unexpected high glass transition temperature (M_n = 1600, T_g, 128 ℃). This is very different from ordinary aliphatic polyesters which usually have T_gs lower than 60℃. The high T_g is attributed to the formation of intra- and intermolecular hydrogen bonds because of existence of a characteristic keto-enol tautomerizm equilibrium in the polymer structure.
    Because of the existence the enol structure of 5-HLA, it is no longer merely a bifunctional hydroxyl acid monomer, but a trifunctional monomer. To utilize the enol hydroxyl of 5-HLA or PHLA, 5-HLA or oligomer of 5-HLA was copolycondensed with diol monomers such as butanediol (BDO), 1,3-propanediol (PDO) and ethylene glycol (EG). Crosslinked polymers were synthesized for the first time from these apparent 2-2 functional monomer systems via the esterification of the hydroxyl with
    the carboxyl and the etherification of enol hydroxyl with the alcohol hydroxyl. Briefly, in a preferable synthesis route, 5-HLA was first dehydrated together with BDO under vacuum, and then a catalyst was added into the resulting prepolymer and the reaction was continued at atmospheric pressure, as a result, an crosslinked polymer was produced in short time. It is no longer soluble but swellable in tetrahydrofuran (THF, a good solvent for PHLA). The change of gel content was tracked with time under various reaction conditions: diols, monomer ratios, reaction temperature and catalyst amount. The crosslinking reaction was accelerated with increasing temperature or catalyst concentration or using longer diol. The gel content and T_g of the copolymer could be manipulated by changing the monomer feed ratio. The length of the diol also affects the T_g. For the 5-HLA/BDO system, crosslinked polymers PHLA-BDO were produced within a 5-HLA/BDO molar ratio range from 95/5 to 20/80, and gel contents higher than 90% were reached in a 5-HLA/BDO molar ratio range from 40/60 to 80/20. The T_gs range from -35.6℃ to 65.1℃. Therefore, both soft crosslinked elastomers and rigid semi-crosslinked polymers could be obtained. But the rigid semi-crosslinked polymers changed to soft elastomers with decreased T_gs after extraction with THF. The decrease of T_g of the crosslinked polymer (compared with PHLA) may be attributed to the destroy of the hydrogen bonds because of the formation of the crosslinking point. The FT-IR spectrum of crosslinked PHLA-BDO validates the existence of ester bond, vinyl ether and double bond in the chain structure. This demonstrates the crosslinking mechanism suggested.
    As an attempt to increase the molecular weight of PHLA and T_g of poly(L-lactic acid) (PLLA) and poly(D,L-lactic acid) (PDLLA), the copolycondensation of 5-HLA with L-lactic acid (LLA) and D,L-lactic acid (DLLA) was carried out respectively. The effects of the reaction conditions including monomer feed ratios, reaction temperature, catalyst amount and reaction time were investigated, and the structure and thermal properties of the resulting copolymer were studied. But in the copolycondensation with high 5-HLA/LLA or 5-HLA/DLLA ratio, the molecular weight of PHLA-LLA and PHLA-DLLA were not increased as compared with PHLA homopolymer. Obvious increase in molecular weight was only observed when the
    content of L-lactic acid or DL-lactic acid was higher than 90%. In copolycondensation with low 5-HLA/LLA ratio, addition of small amount of 5-HLA resulted in an obvious increase of T_g of the PHLA-LLA copolymer as compared with the PLLA homopolymer with same molecular weight. But it was not the case for PHLA-DLLA. Only when the content of 5-HLA is high enough, the T_g of PHLA-DLLA could be raised.
    The in vitro degradation behaviors of PHLA, PHLA-BDO, PHLA-LLA and PHLA-DLLA were examined at 37℃. It was found that PHLA degraded more rapidly in phosphate buffer saline (PBS) than in deionized water, but the sample degraded in PBS was no longer soluble in THF. Therefore, most of the degradation was performed in deionized water. Because of the hydrolytically sensitive aliphatic ester bonds in the structures of these polymers, they degraded readily in water. Weight loss appeared from the beginning of the degradation process possibly because of the lower molecular weight or existence of sol in the crosslinked samples. The weight loss of PHLA reached 40% after 4 weeks. But PHLA-BDO degraded more slowly because of crosslink. Its weight loss only reached 30% after 6 weeks. The degradation rate of PHLA-LLA and PHLA-DLLA was different according to the type of lactic acid and monomer ratios. Crystalline PHLA-LLA degraded more slowly than amphorous PHLA-DLLA.
引文
[1] Bozell J. J., Moens L., Elliott D.C., Wang Y., Neuenscwander G. G., Fitzpatrick S. W., Bilski R. J., Jarnefeld J. L., Production of levulinic acid and use as a platform chemical for derived products. Resource, Conservation & Recycling 2000, 28, 227~239.
    [2] Lee C. W., Urakawa R., Copolymerization of γ-valerolactone and β-butyrolactone. Eur. Polym. J. 1998, 34(1): 117~122
    [3] Lin W. J., Comparison of thermal characteristics and degradation properties of ε -caprolactone copolymers. J. Biomed. Mater Res. 1999, 47(3): 420~423
    [4] 陈洪章,李佐虎,纤维素原料微生物与生物质全利用.生物技术通报.2002,(2):25-29,34
    [5] 欧阳平凯,可持续发展的支柱——工业生物技术.江苏科技信息.2004,11:9-13
    [6] 朱灵峰,范彩玲,梁庚白,朱金梭,张百良,生物质合成气制甲醇的研究.郑州大学学报(理学版).2004,36(3):76-79
    [7] 郭秀兰,赵月春,黄鹤,生物质催化气化合成甲醇.能源工程.2004,(1):28-31
    [8] 汪俊锋,常杰,阴秀丽,付严,生物质气催化合成甲醇的研究.燃料化学学报.2005,33(1):58-61.
    [9] 闵恩泽,利用可再生农林生物质资源的炼油厂——推动化学工业边入“碳水化合物”新时代.化学进展.2006,18(2):131-141
    [10] 金增辉,稻米生物质能源的开发与利用.粮食与饲料工业.2005,(7):1-3
    [11] 岑沛霖,穆江华,赵春晖,林建平,从可再生资源获得新型绿色“平台化合物”乙酰丙酸的研究与开发.生物加工过程.2003,1(1):17-22
    [12] 常春,马晓建,岑沛霖,新型绿色平台化合物乙酰丙酸的生产及应用研究进展.化工进展.2005,24(4):350-356
    [13] 张晓燕,赵广杰,刘志军,木质生物质的生物分解及生物转化研究进展.林业科学.2006,42(3):85-93
    [14] 蔡磊,吕秀阳,何龙,夏文莉,任其龙,新平台化合物乙酰丙酸制备方法研究进展.现代化工.2003,23(4):14-16
    [15] Werpy T., Petersen G., Top value added chemicals from biomass, volume Ⅰ: results of screening for potential candidates from sugars and synthesis gas. 2004.
    [16] Olah G. A., Fung A. P. Malhotra R., Synthetic methods and reactions; 99. Preparation of cyclic ethers over superacidic perfluorinated resin-sulfonic acid (Nation-h) catalyst. Synthesis. 1981, (6): 474-476
    [17] Elliott D. C., Frye J. G. Jr., Hydrogeneated 5-carbon compound and method of making oxopentanoic acid, catalytic hydrogenation and ring opening and with drawl of a hydrogenated product. US 5 883 266. 1999
    [18] Ha H. J., Lee S. K., Ha Y. J., Park J. W., Selective bromination of ketones. A convenient synthesis of 5-aminolevulinic acid. Synth. Commun. 1994, 24(18): 2557-2562.
    [19] Zav'yalov S. I.; Zavozin A. G., Synthesis of 5 - amino - 4 - ox-opentanoic acid hydrochloride. Izv. Akad. Nauk SSSR, Ser. Khim. 1987, (18): 1796-1799.
    [20] Metcalf B. W., Adams J. L., Production of intermediates for enzyme inhibitors. US4325877, 1982.
    [21] Moens L., Lakewood C., Synthesis of an acid addition salt of δ-aminolevulinic acid from 5 - bromolevulinic acid ester. US5907058, 1999.
    [22] Isoda Y., Azuma M., Preparation of bis(hydroxyaryl)pentanoic acids. Japanese patent 08053390 to Honshu Chemical Ind. 1996.
    [23] Thomas J. J., Barile R G., Conversion of cellulose hydrolysis products to fuels and chemical feedstocks. Energy Biomass Wastes, 1984, (8): 1461-1494
    [24] Rebeiz C. A., Juvik J. A., Rebeiz C. C., Photodynamic herbicides: 1. Concept and phenomenology. Pestic. Biochem. Physiol. 1988, 30: 11-27.
    [25] Fitch R. M., Chow C. D., Synthesis of an arylene/alkylene polyether from diphenolic acid and rosenmund reduction to the polyether aldehyde. Journal of Polymer Science: Part A-1: Polymer Chemistry. 5(2): 381-390
    [26] Fischer R. P., Hartraxft G. R., Diphenolic acid ester polycarbonates. Journal of Applied Polymer Science. 1966, 10(2): 245-252
    [27] 王素娟,赵宝辉,焦会云,超支化聚酯的合成及表征.河北大学学报(自然科学版).2004,24(1):51-54
    [28] Park D. W., Ha D. H., Park J. Y., Moon J. Y., Lee H. S., Synthesis of aromatic polyesters bearing pendant carboxyl groups by phase transfer catalysis. Reaction Kinetics and Catalysis Letters. 2001, 72(2): 219-227.
    [29] Kim K. H., Moon J. Y., Ha D. H., Park D. W., Synthesis of aromatic polyesters using polymeric catalysts having quaternary ammonium salt groups. React Kinet Catal Lett. 2002, 75(2): 385-395.
    [30] Wang C. H., Nakamura S., Synthesis of aromatic polyesters having pendant carboxyl groups in the side chains and conversion of the carboxyl groups to other reactive groups. Journal of polymer science part A: polymer chemistry. 1995, 33(13): 2157-2163.
    [31] Fitxpatrick S. W., Manufacture of fufural and levulinic acid by acid degradation oflignocelluloaic. WP 8 910 362. 1990.
    [32] Fitxpatrick S. W., Production of livulinic acid by the hydrolysis of carbohydrate-containing materials. WP 9 640 609, 1997.
    [33] Lin W. J., Comparison of thermal characteristics and degradation properties of ε-caprolactone copolymers. Journal of Biomedical Material Research, 1999, 47(3): 420-423.
    [34] 张萍,吴林波,李伯耿,三氟化硼-乙醚络合物催化γ-戊内酯与ε-己内酯开 坏共聚的研究.高分子学报.2006.(3):510-515
    [35] Biofine Incorporated. Production of levulinic acid from carbohydrate containing materials. WO 9640609, 1996-12-19.
    [36] Biofine Incorporated. Production of levulinic acid from carbohydrate containing materials. US 5608105, 1997-03-04.
    [37] Rappe C., A new synthesis of 5-bromo- and 5-hydroxylaevulic acid. Arkiv For Kemi. 1959, 14: 467-473
    [38] WolffL., Ann. 1891. 264: 229.
    [39] Hurd C. D., Ferraro J. R., The bromination oflevulinic acid. J. Org. Chem. 1951, 16(10): 1639-1642.
    [40] Rappe C., On the bromination of laevulic acid. 1958, ARKIV FOR KEMI. 13(43): 425-437.
    [41] Zav'yalov S. I., Zavozin A. G. Akad I., Nawk SSSR, Ser. Khim. 1987, (8): 1796-1799.
    [42] Manny A. J., Kjelleberg S., Kumar N., Nys R., Read R. W., Steinberg P., Reinvestigation of the Sulfuric Acid - Catalysed Cyclisation of Brominated 2-Alkyllevulinic Acids to 3-Alkyl- 5- methylene-2(5-H)-furanones. Tetrahedron, 1997, 53(46): 15813-15826.
    [43] Machonald S. F., Methyl 5-bromolevulinate. Can.J.Chem. 1974, 52: 3257-3258.
    [44] Ann-Christine A., Indra K. V., Aliphatic Polyesters: Synthesis, Properties and Applications. Advances in Polymer Science. 2001, 157: 1-40.
    [45] Fkuda K., An overview of the activities of the Biodegradable Plastic Society. Biodegrable Polymers and Plastics, 1992, p 169.
    [46] 王身国,可生物降解的高分子类型、合成和应用,化学通报.1997,(2):45-48.
    [47] 张其锦,王冰,罗筱烈,汪志勇,双羟基封端聚己内酯的合成与表征.应用化学,1994,11(2):57-61.
    [48] 刘建飞,沈之荃,孙俊权,稀土乙酰丙酮盐催化聚合ε-己内酯和丙交酯.应用化学,1995,12(6):59-61
    [49] Xu L., Jiang L, Sun W., Shen Z., Ma S., Novel Sm(PPh_2)_2 initiator for the synthesis of poly(ε-caprolactone) with linear and starshaped structure. Polymer bulletin. 2002, 49: 17-23.
    [50] Xu J., Shi W., Synthesis and crystallization kinetics of silsesquioxane-based hybrid star poly(ε-carprolactone). Polymer. 2006, 47(14): 5161-5173.
    [51] Gross R. A., Kumar A., Kalra B, Polymer synthesis by in vitro enzyme catalysis. Chemical Reviews. 2001, 101 (7): 2097-2124.
    [52] Foresti M. L., Ferreira M. L., Synthesis of polycaprolactone using free/supported enzymatic and non-enzymatic catalysts. Macromolecular rapid communications. 2004, 25(24): 2025-2028.
    [53] Goh J. C. H., Shao X. X., Hutmacher D. W., Tissue engineering approach to osteochondral repair and regeneation. Journal of mechanics in medicine and biology, 2004, 4(4): 463-483.
    [54] Groot J. H. D. E., Penning A. J., Coenen J., Triple-layer artifical skin: porous 50/50 copoly(L-lactide/ε-carprolactone) template for neodermis regeneration. J. Mat. Sci. Lett., 1997, 16(2): 152-154.
    [55] 刘焕来,王海,叶淑琴,孙洪范,杨菁,唐丽娜,宋存先,新型聚己内酯/聚醚嵌段共聚物的合成及其释放蛋白药物的研究.国外医学:生物医学工程分册.2005,28(4):254-257.
    [56] Rohner D., Hutmacher D. W., See P., Tan K., Yeow V., Tan S., Lee S., Hammer B., Individually CAD-CAM technique designed, bioresorbable 3-dimensional polycaprolactone framework for experimental reconstruction of craniofacial defects in the pig. Mund- Kiefer- und Gesichtschir, 2002, 6(3): 162-167.
    [57] Dezhu M., Luo X., Zhang R., Nishi T., Miscibility and spherulites in blends of poly(ε-caprolactone) with ethylene terephthalate-caprolactone copolyester. Polymer. 1996, 37(9): 1575-1581
    [58] Kricheldorf H. R., Syntheses and application of polylactides. Chemosphere. 2001, 43(1): 49-54.
    [59] Kricheldorf H. R., Kreiser-Saunders I., Stricker A., Polylactones 48. Sn(Oct)_2-initiated polymerizations of lactide: a mechanistic study. Macromolecules. 2000, 33: 702-709.
    [60] Kohn F. E., Ommen J. G., Feifen J., The mechanism of the ring-opening polymerization of lactide and glycolide. Eur. Polym. J. 1983, 19(12): 1081-1088.
    [61] Dubois P., Jacobs C., Jérome R., Teyssiè P., Macromolecular engineering of polylactones and polylactides. 4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide. Macromolecules. 1991, 24(9): 2266-2270.
    [62] Carothers W. H., Dorough G L, Van Natta F. J., Studies of polymerization and formation. X. the reversible polymerization of six-member cyclic ester. J. Am. Chem. Soc., 1932, 54: 761-773.
    [63] Filachione E.M., Fischer C., H. Lactic Acid condensation polymers. Ind. & Eng. Chem., 1944, 36(3): 223-228.
    [64] Fukuzaki H., Yoshikazu A., Yoshida M., Asano M., Kumakura M., Low-molecular-weight copolymers composed of L-lactic acid and various DL-hydroxy acids as biodegradable carriers. Die makromolekulare chemic. 1989, 190(10): 2571-2577.
    [65] Woo S l, Kim B O,, Polymerazition of aqueous lactic acid to prepare high molecular weight poly (lactic acid) by chain extending with hexamethylene diisocyanate. Polymer Buletin. 1995, 35(4): 415-421.
    [66] Kaitian X., Kozluca A., Denkbas E. B., Piskin E., Synthesis of PDLLA homopolymers with different molecular weights. J Appl Polym. Sci, 1996, 59(3): 561-563.
    [67] Otera J., Kawada K., Yano T., Direct condensation polymerization of L-lactic acid by distannoxane. Chem. Lett., 1996, 3: 225-226.
    [68] Hiltunen K., Seppala J. V., Harkonen M., Effect of catalyst and polymerization conditions on the preparation of low molecular weight lactic acid polymers. Macromolecules, 1997, 30(3): 373-379.
    [69] Moon S. I, Lee C. W., Miyamoto M., Kimura Y., Melt polycondensation of L-lactic acid with Sn (Ⅱ) catalysts activated by various protonacids: a direct manufacturing route to high molecular weight poly(L-lactic acid). Journal of polymer science: Part A: polymer chemistry. 2000, 38: 1673-1679.
    [70] Moon S. I., Kimura Y., Melt polycondensation of L-lactic acid to poly(L-lactic acid) with Sn (Ⅱ) catalysts combined with various metal alkoxides. 2003, Polym. Int. 52: 299-303.
    [71] 段久芳,郑玉斌,徐亮,生物降解材料聚乙醇酸及乙醇酸共聚物的新发展.塑料科技.2004,(1):53-59.
    [72] Soliman N. A., Berekaa M. M., and Abdel-Fattah Y. R., Polyglutamic acid (PGA) production by Bacillus sp. SAB-26: application of Plackett-Burman experimental design to evaluate culture requirements. Applied microbiology and biotechnology. 2005, 69(3): 259-267.
    [73] Ashiuchi M., Misono H., Biochemistry and molecular genetics of polyglutamate synthesis. Applied Microbiology and Biotechnology. 2002, 59(1): 9-14.
    [74] 杨记,张佩华,几种常用的可生物降解医用材料.上海纺织科技.200129(4):10-11.
    [75] 吴殊斌,姚琛,李新松,聚(丙交酯-co-乙交酯)/β-磷酸三钙复合物的电纺研究.高分子学报.2006.(1):11-15
    [76] 罗丙红,廖凯荣,全大萍,卢泽俭,陈用烈,丙交酯-乙交酯共聚中的酯交换及共聚物结构和性质研究.高分子学报.2003,(6):803-808
    [77] 齐再前,徐梁华,乙交酯/ε-己内酯共聚物的合成和表征.北京化工大学学报(自然科学版).2002,29(3):42-45
    [78] Zhang H., Cui W., Bei J., Wang S., Preparation of poly(lactide-co-glycolide-co-caprolactone) nanoparticles and their degradation behaviour in aqueous solution. Polymer degradation and stability. 2006, 91(9): 1929-1936.
    [79] Athanasiou K. A., Niederaner G. G., Agrawal C. M., Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996, 17(2): 93-102
    [80] Lu L., Peter S. J., Lyman M. D., Lai H. L., Leite S. M., Tamada J. A., Vacanti J. P., Langer R., Mikos A. G., In vitro degradation of porous poly(1-1actic acid) foams. Biomaterials. 2000, 21 (15): 1595-1605
    [81] Mathur V. K., Composite materials from local resources. Construction and building materials. 2005, 20(7): 470-477.
    [82] 郭元强,梁学海,纤维素/聚乙二醇共混物的相容性及形态结构研究.纤维素科学与技术,1999,7(1):9-14.
    [83] 陈礼跷,魏金芳,赵玲,利用甲壳素制取生物降解塑料的探讨.中国塑料,1996,10(2):6-11.
    [84] Huang J., Biodegradable Plastics: A Review. Adv. Polym. technol, 1990, 10(1): 23-30.
    [85] 胡靖,李斌,张宏伟,胡绪才,刘纪元,索荣,BDM型淀粉基生物降解地膜的研制及应用.现代塑料加工应用,1994,6(2):1-5.
    [86] 贺爱军,降解塑料的开发进展.化工新型材料.2002,30(3):1-6.
    [87] 陈和生,孙振亚,生物降解塑料的研究进展.塑料科技.2000,(8):36-39.
    [88] 张捷,于九皋,多糖类生物降解材料的研究进展.中国塑料,1995,9(6):17-91
    [89] Fink D., Rojas-Chapana J., Petrov A. H. Petrov A., Kuppers U., Wilhelm M., Apel P. Y., Zrineh A., The "artificial ostrich eggshell" project: Sterilizing polymer foils for food industry and medicine. Solar Energy Materials and Solar Cells. 2006, 90(10): 1458-1470.
    [90] 丁锐,李光吉,生物高分子聚苹果酸及其衍生物的合成与应用前景.高分子通报.2005,(2):47-56.
    [91] 王淑芳,刘静,陈广新,杨超,微生物合成的β-羟基丁酸与β-羟基戊酸酯共聚物(PHBV)/有机化蒙脱土(OMMT)纳米复合材料生物降解性的研究。南开大学学报(自然科学版),2005,38(1):12-17.
    [92] Steinbüchel A., Hein S., Biochemical and Molecular Basis of Microbial Synthesis of Polyhydroxyalkanoates in Microorganisms. Advances in Biochemical Engineering/Biotechnology. 2001, 71: 81-123.
    [93] Scott G., Gilead D., Degradable Polymers, Chapman & Hall, London, 1995: 41.
    [94] 罗明典,生物可降解塑料制品的发展趋势.现代化工.1998,18(2):14-16.
    [95] 包装工程中的功能性包装材料分析,来自印刷包装商务网.网站地址为:Http://www.lc18.net/ypnew_view.asp?id=2842.
    [96] 傅杰,李世普,生物可降解高分子材料在医学领域的应用(Ⅰ)——生物可降解高分子材料.武汉工业大学学报.1999,21(2):1-4.
    [97] 张晟,王亚辉,张新民,熊成东,邓先模,在药物缓释体系中应用的可生物降解材料.合成化学,1999,7(4):394~400
    [98] Heller J., Chemically self-regulated drug delivery systems. J. Controlled Rel. 1988, 8: 111-125.
    [99] Kost J. Langer R., Responsive polymer systems for controlled delivery of therapeutics. Trends Biotechol. 1992, 10: 127-131.
    [100] Langer R. Vacanti J. P., Tissue engineering. Science, 1993, 260(5110): 920-926.
    [101] Chen G., Ushida T., Tateishi T., Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates. Biomaterials, 2001, 22: 2563-2567.
    [102] 赵志远,唐智荣,张一,孙康,吴人洁,冠状动脉支架及其可降解高分子应用的研究进展.功能高分子学报.2005,18(3):534-539.
    [103] Gopferich A., Mechanisms of polymer degradation and erosion. Biomaterials. 1996, 17(2): 103-114.
    [104] W.施纳贝尔著.陈用烈,张培尧,宋中键译.聚合物降解原理及应用.p197.
    [105] Lewis D. H., Controlled release of bioactive agents from lactide/glycolide polymers. In Chasin, M., Langer, R., Biodegradable Polymers as Drug Delivery Systems. Marcel Dekker, New York, 1990, 1-41.
    [106] Sudesh K., Abe H., Doi Y., Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 2000, 25(10): 1503-1555.
    [107] Doi Y., Biodegradation of microbial polyesters. Microbial Polyesters. VCH Publishers, New York, 1990, 135-152
    [108] Pitt C. G., Poly-ε-caprolactone and its copolymers. In Chasin, M., Langer, R., Biodegradable Polymers as Drug Delivery Systems. Marcel Dekker, New York, 1990, 71-120.
    [109] 吴林波,组织工程三维多孔支架的制备、性能、降解及应用.2003,复旦大学博士后出站报告,p87-90.
    [110] Wu X. S., Wang N., Synthesis, characterization, biodegradation and drug delivery application of biodegradable lactic/glycolic acid polymers. Part: Biodegradation. J. Biomater. Sci. Polym Ed, 2001, 12(1): 21-34.
    [111] Brashear R. L., Accelerated degradation of biodegradable poly(ester)s by acidic catalysts. Ph.D. Thesis. 2001, University of Iowa. 10-12.
    [112] Lin W. J., Degradation on poly(epsilon-caprolactone) and its blends. Ph. D. Dissertation. 1995, University of Iowa.
    [113] Pitt C. G., Chasalow F. L., Hibionada Y. M., Klimas D. M.. Aliphatic polyesters. Ⅰ. The degradation of poly(e-caprolactone) in-vivo. J. Appl. Polym. Sci. 1981, 26(11): 3779-3787.
    [1] He M., Zhang J., Hu C., Studies on the Chemical Components of Clematis chinensis. Journal of Chinese Pharmaceutical Sciences, 2001, 10 (4): 181-182.
    [2] 巨勇,贾忠建,朱子清,九节菖蒲化学成分研究(Ⅱ).高等学校化学学报,1987,8(2):149-150.
    [3] Rappe C. A., New synthesis of 5-bromo- and 5-hydroxylaevulic acid. Arkiv For Kemi, 1959, 14: 467-473.
    [4] Li S., Li Y., Synthesis of (+)-altaicadispirolactone. Synthetic Communications. 1996, 26(9): 1801-1804.
    [5] Machonald S. F., Methyl 5-bromolevulinate. Can. J.Chem., 1974, 52: 3257-3258.
    [6] Mariotti A., Method for obtaining 5-halolevulinic acid alkyl esters. WO 2003045895, 2003.
    [7] Gallucci R. R., Going R. Chlorination of Aliphatic Ketones in Methanol. J. Org. Chem. 1981, 46, 2532-2538.
    [8] 王彦广,张殊佳,《有机化学》.化学工业出版社.P244。
    [9] Rappe C., On the bromination of laevulic acid. ARKIV FOR KEMI. 1958, Band 13 nr 43: 425-437.
    [10] Rappe C., The rearrangement of 3-bromolaevulic acid to 5-bromolaevulic acid. ARKIV FOR KEMI. 1962, Band 20 nr 4: 51-53.
    [1] 朱树新主编,《开环聚合》.化学工业出版社.1987.p1.
    [2] Christian R. V., Brown H. D., Hixon R. M., Derivatives of γ-valerolactone, 1,4-pentanediol and 1,4-di-(β-cyanoethoxy)-pentane. J. Am. Chem. Soc. 1947, 69: 1961-1963.
    [3] Veeraraghavan R. P., Herbert C. B., Sangeeta P., Efficient intramolecular asymmetric reductions of α-, β-, and γ-keto acids with diisopinocampheylborane. Organic letters. 2001, 3: 17-18.
    [4] 巨勇,贾忠建,朱子清,九节菖蒲化学成分研究(Ⅱ).高等学校化学学报.1987,8(2):149-150
    [1] Moon S. I., Lee C. W., Miyamoto M., Kimura Y., Melt polycondensation of L-lactic acid with Sn(Ⅱ) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight poly(L-lactic acid). Journal of Polymer Science: Part A: Polymer Chemistry, 2000, 38: 1673-1679.
    [2] Moon S I, Kimura Y., Melt polycondensation of L-lactic acid to poly(L-lactic acid) with Sn (Ⅱ) catalysts combined with various metal alkoxides. 2003, Polym. Int. 52: 299-303.
    [3] Kim K. W., Woo S. I., Synthesis of high-molecular-weight poly(L-lactic acid) by direct polycondensation. Macromol. Chem. Phys. 2002, 203(15): 2245-2250.
    [4] Scholz C. and Gross R. A., Polymers from renewable resources: polymers from renewable resources biopolyesters and biocatalysis. ACS symposium series 764. 2000, p200.
    [5] Pretsch E.,Btihlmann P.,Affolter C.,《波谱数据表—有机化合物的结构解析》.荣国斌译,华东理工大学出版社.2002年10月第一版.
    [6] 徐寿昌,《有机化学》(第一版),高等教育出版社,1993.
    [7] Marois Y., Zhang Z., Vert M., Deng X., Lenz R., Guidoin R., Mechanism and rate of degradation of polyhydroxyoctanoate films in aqeous medial: A long-term in vitro study. Journal of Biomedical Materials Research. 2000, 49(2): 216-224.
    [8] Chu C. C., An in vitro study of the effect of buffer on the degradation of poly(glycolic acid) sutures. J Biomed Mater Res. 1981, 15: 19-27.
    [9] Makino K., Ohshima H., Kondo T., Mechanism of hydrolytic degration of poIy(L- lactide) microcapsules: effects of pH, ionic strength and buffer concentration. J Microencapsulation. 1986, 3: 203-212.
    [10] Brashear R. L., Accelerated degradation of biodegradable poly(ester)s by acidic catalysts. Ph.D. Dissertation. 2001, University of Iowa. p10-12.
    [1] Woo S. I., Kim B. O., Polymerazition of aqueous lactic acid to prepare high molecular weight poly (lactic acid) by chain extending with hexamethylene diisocyanate. Polymer Buletin. 1995, 35(4): 415-421.
    [2] Kylma J., Seppala J. V., Synthesis and characterization of a biodegradable thermoplastic poly(ester-urethane) elastomer. Macromolecules. 1997, 30: 2876 2882.
    [3] Shirahama H., Kawaguchi Y., Aludin M. S., Yasuda H., Synthesis and enzymatic degradation of high molecular weight aliphatic polyesters. J Appl Polym Sci. 2001, 80 (3): 340-347.
    [4] Davaran S., Entezami A., Synthesis and hydrolysis of polyurethanes containing ibuprofen pendent groups source. Journal of Bioactive and Compatible Polymers. 1997, 12(1): 47-58.
    [5] Worner C., Müller P., Mülhaupt R., 1, 3-Oxazoline intermediates in reactive processing applications: 3. Bis(1,3-xazolin-2-yl)-terminated oligotetrahydrofuran liquid rubbers and preparation of the corresponding segmented copolyetheresteramides. Polymer. 1998. 39(3): 611-620.
    [6] 钱震宇,郭宝华,史建中,徐军,双恶唑啉扩链尼龙1010.高分子学报.2004.(4):506-510.
    [7] Haralabakopoulos A. A., Tsiourvas D., Paleos C. M., Chain extension of poly(ethylene terephthalate) by reactive blending using diepoxides. J Appl Polym Sci. 1999, 71(13): 2121-2127.
    [8] 赵京波,杨万泰,合成生物降解性聚酯的进展.高分子通报.1999.(2):11-21.
    [9] 汪朝阳,赵耀明,王浚,扩链法合成聚乳酸类生物降解材料.合成化学,2003, 11(2): 106-110.
    [10] van der Rest G., Chamot-Rooke J., Mourgues P., McMahon T. B., Audier H. E., Ter-body intermediates in the gas phase: reaction of ionized enols with tert-butanol. J. Am. Soc. Mass Spectrom. 2001, 12: 938-947.
    [11] 徐寿昌.《有机化学》(第二版).高等教育出版社.p237.
    [1] Iannace S., Nicolais L., Isothermal crystallization and chain mobility of poly(l-lactide). J. Appl. Polym. Sci. 1997, 64(5):911-919.
    [2] 张留成,李佐邦等合编,《缩合聚合》.化学工业出版社,1986.
    [3] Hiltunen K., Seppala J. V., Harkonen M., Effect of catalyst and polymerization conditions on the preparation of low molecular weight lactic acid polymers. Macromolecules, 1997, 30(3): 373-379.
    [4] Gopferich A., Mechanisms of polymer degradation and erosion. Biomaterials. 1996, 17(2): 103-114.
    [5] Li S., Garreau H., Vert M., Structure-property relationships in the case of the degradation of massive poly(α- hydroxyl acids) in aqueous media. Part 2 Degrdation of lactide-glycolide copolymers: PLA37.5GA25 and PLA75GA25. Journal of materials science: materials in medicine. 1990, 1: 131-139
    [6] Qian H., Bei J., Wang S., Synthesis, characterizaiton and degradation of ABA block coplymer of L-lactide and ε-caprolactone. Polymer Degradation and Stability. 2000, 68(3): 423-429.
    [7] Wu X. S., Wang N., Synthesis, characterization, biodegradation, and drug delibery application of biodegradable lactic/glycolic acid polymer. Part Ⅱ: Biodegradation. J. Biomater. Sci. Polymer Edn. 2001, 12(1): 21-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700