拟南芥乙酰转移酶相关基因RAT1和RAT2的分子遗传学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以GUS-CCT2 (CRY2的C端)为诱饵,筛选拟南芥cDNA文库,筛选到了与之相互作用的蛋白RAT1(Related to acetyltransferase 1),通过同源分析,找到与RAT1高同源性的蛋白(89.7%),称为RAT2。RAT1和RAT2与γ-CA1、γ-CA2、γ-CA3(Y碳酸酐酶)是同源的,同时也与细菌的丝氨酸乙酰转移酶同源。它们都与线粒体复合体Ⅰ有关。RAT1和RAT2蛋白定位在线粒体中,RAT1还定位在细胞核内。rat1和rat2单突变体没有特殊表型。在rat1单突变体与rat2单突变体的杂交后代中得不到rat1rat2双突变体。通过对R1r1r2r2和r1r1R2r2的花粉及胚胎观察,发现rat1rat2双突变体会胚胎致死,且通过转入35S-RAT2到R1r1r2r2植株中,这种致死表型能够恢复。由于得不到rat1rat2双突变植株,构建了rat2/RAT1-RNAi植株。发现rat2/RAT1-RNAi植株能够正常生长发育,只是生长发育延迟,在长日照条件下开花晚。实时定量PCR研究结果表明,在rat2/RAT1-RNAi植株体内,FT的表达降低了,其它开花基因的表达水平与野生型相当。所以rat2/RAT1-RNAi植株开花晚是由于FT的减少引起的。在对RAT1和RAT2的生化分析中发现,在体外,RAT1没有碳酸酐酶活性,但有明显的乙酰转移酶活性。我们推测由于RAT1与RAT2定位于线粒体中,且能与复合体1作用,RAT1和RAT2就很可能通过影响能量代谢来起作用。在突变体中,由于能量供应不足,而导致了上述的一系列表型。另,rat1、rat2单突变体没有表型,而rat1rat2双突变体胚胎致死,说明RAT1与RAT2在植物体内的功能是冗余的。RAT1进核是否与CRY2的功能有关还需要继续研究。
RAT1 was found to interact with GUS-CCT2 (C-terminal of CRY2) in the screening of Arabidopsis cDNA library, using GUS-CCT2 as the bait. RAT2 is 89.7% identical to RAT1. They are 61-64% identical to Arabidopsis gamma carbonic anhydrases 1,2, and 3 (γCA1-3), and are about 33% identical to bacterial serine acetyltransferases. They were reported to associate with mitochondria complexⅠ. RAT2 was showed to localize in mitochondria, and RAT1 could be detected both in mitochondria and nucleus. The rat1 and rat2 monogenic mutants showed no abnormal phenotype, but we can not find the ratlrat2 double mutant plants in the cross progenies. After analysis of R1r1r2r2 and r1r1R2r2 plants' pollens and embryos, we found that ratlrat2 double mutant is embryo lethal. And the embryo lethal phenotype can be rescued by transgenic expression of RAT2 in R1r1r2r2 (35S-RAT2/R1r1r2r2). The rat2 knock-out and RAT1-knock-down (RNAi) lines (r2rli) showed retarded growth and delayed development. Under long day conditions, the r2r1i lines are late-flowering, correlating with reduced FT expression. In vitro biochemical experiments indicated that the RAT1 protein showed no carbonic anhydrase activity but a protein acetyltransferase activity. We postulate RAT1 and RAT2 protein tightly associated with mitochondrial energy metabolism, for they were localized in mitochondrial and can interact with complexⅠ. So in mutant plants, the abnormal phenotypes may were all caused by insufficient supply of energy. On the other hand, we can see that RAT1 and RAT2 act redundantly in vivo. The function of RAT1 in the nucleus is unclear.
引文
[1]Cashmore AR, Jarillo JA, Wu YJ, Liu D. Cryptochromes:blue light receptors for plants and animals. Science 1999; 284:760-5.
    [2]Park HW, Kim ST, Sancar A, Deisenhofer J. Crystal structure of DNA photolyase from Escherichia coli. Science 1995; 268:1866-72.
    [3]Lin C. Blue light receptors and signal transduction. Plant Cell 2002; 14 Suppl:S207-25.
    [4]Lin C, Shalitin D. Cryptochrome structure and signal transduction. Annu Rev Plant Biol 2003; 54:469-96.
    [5]Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR, Machius M, et al. Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc Natl Acad Sci U S A 2004; 101:12142-7.
    [6]Todo T. Functional diversity of the DNA photolyase/blue light receptor family. Mutat Res 1999; 434:89-97.
    [7]Ahmad M, Cashmore AR. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 1993; 366:162-6.
    [8]Guo H, Yang H, Mockler TC, Lin C. Regulation of flowering time by Arabidopsis photoreceptors. Science 1998; 279:1360-3.
    [9]Ahmad M, Jarillo JA, Smirnova O, Cashmore AR. The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1998; 1:939-48.
    [10]Kleine T, Lockhart P, Batschauer A. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J 2003; 35:93-103.
    [11]Selby CP, Sancar A. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc Natl Acad Sci U S A 2006; 103:17696-700.
    [12]Fankhauser C, Chory J. Light control of plant development. Annu Rev Cell Dev Biol 1997; 13:203-29.
    [13]Von Arnim A, Deng XW. LIGHT CONTROL OF SEEDLING DEVELOPMENT. Annu Rev Plant Physiol Plant Mol Biol 1996; 47:215-243.
    [14]Koornneef M, Rolff E, Spruit C. Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.). Heynh. Z. Pflanzenphysiol. Bd.1980; 100:147-160.
    [15]Lin C, Ahmad M, Gordon D, Cashmore AR. Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. Proc Natl Acad Sci U S A 1995; 92:8423-7.
    [16]Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci U S A 1998; 95:2686-90.
    [17]Casal JJ, Mazzella MA. Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis. Plant Physiol 1998; 118:19-25.
    [18]Neff MM, Chory J. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol 1998; 118:27-35.
    [19]Mazzella MA, Cerdan PD, Staneloni RJ, Casal JJ. Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development 2001; 128:2291-9.
    [20]Mas P, Devlin PF, Panda S, Kay SA. Functional interaction of phytochrome B and cryptochrome 2. Nature 2000; 408:207-11.
    [21]Zhao X, Yu X, Foo E, Symons GM, Lopez J, Bendehakkalu KT, et al. A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiol 2007; 145:106-18.
    [22]Ahmad M, Lin C, Cashmore AR. Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant J 1995; 8:653-8.
    [23]Lin C, Ahmad M, Cashmore AR. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant J 1996; 10:893-902.
    [24]Parks BM, Folta KM, Spalding EP. Photocontrol of stem growth. Curr Opin Plant Biol 2001; 4:436-40.
    [25]Spalding EP. Ion channels and the transduction of light signals. Plant Cell Environ 2000; 23:665-74.
    [26]Folta KM, Spalding EP. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J 2001; 26:471-8.
    [27]Sakamoto K, Briggs WR. Cellular and subcellular localization of phototropin 1. Plant Cell 2002; 14:1723-35.
    [28]Liscum E, Briggs WR. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 1995; 7:473-85.
    [29]Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, et al. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 2001; 13:2589-607.
    [30]Chun L, Kawakami A, Christopher DA. Phytochrome A mediates blue light and UV-A-dependent chloroplast gene transcription in green leaves. Plant Physiol 2001; 125:1957-66.
    [31]Thum KE, Kim M, Christopher DA, Mullet JE. Cryptochrome 1, cryptochrome 2, and phytochrome a co-activate the chloroplast psbD blue light-responsive promoter. Plant Cell 2001; 13:2747-60.
    [32]Lin C. Plant blue-light receptors. Trends Plant Sci 2000a; 5:337-42.
    [33]Yanovsky MJ, Kay SA. Molecular basis of seasonal time measurement in Arabidopsis. Nature 2002; 419:308-12.
    [34]Mouradov A, Cremer F, Coupland G. Control of flowering time:interacting pathways as a basis for diversity. Plant Cell 2002; 14 Suppl:S111-30.
    [35]Mockler T, Yang H, Yu X, Parikh D, Cheng YC, Dolan S, et al. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci U S A 2003; 100:2140-5.
    [36]Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 2004; 303:1003-6.
    [37]Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, et al. COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 2008; 20:292-306.
    [38]Somers DE, Devlin PF, Kay SA. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 1998; 282:1488-90.
    [39]El-Din EA, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 2001; 29:435-40.
    [40]Koornneef M, Hanhart CJ, van VJ. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 1991; 229:57-66.
    [41]Mockler TC, Guo H, Yang H, Duong H, Lin C. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 1999; 126:2073-82.
    [42]Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 2008; 322: 1535-9.
    [43]Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y, Cashmore AR. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 2000; 103:815-27.
    [44]Wang H, Ma LG, Li JM, Zhao HY, Deng XW. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 2001; 294:154-8.
    [45]Sang Y, Li QH, Rubio V, Zhang YC, Mao J, Deng XW, et al. N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell 2005; 17:1569-84.
    [46]Osterlund MT, Hardtke CS, Wei N, Deng XW. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 2000; 405:462-6.
    [47]Wu G, Spalding EP. Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings. Proc Natl Acad Sci U S A 2007; 104:18813-8.
    [48]Kleiner O, Kircher S, Harter K, Batschauer A. Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant J 1999; 19:289-96.
    [49]Yu X, Klejnot J, Zhao X, Shalitin D, Maymon M, Yang H, et al. Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell 2007; 19:3146-56.
    [50]Yu X, Shalitin D, Liu X, Maymon M, Klejnot J, Yang H, et al. Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2. Proc Natl Acad Sci U S A 2007; 104:7289-94.
    [51]Yu X, Sayegh R, Maymon M, Warpeha K, Klejnot J, Yang H, et al. Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation. Plant Cell 2009; 21:118-30.
    [52]A. Harvey Millar, Joshua L. Heazlewood, Hans-Peter Braun et al. The plant mitochondrial proteome. TRENDS in Plant Science 2005; 10:36-43.
    [53]Friedrich, T. and Bottcher, B. The gross structure of the respiratory Complex I:a Lego system. Biochim. Biophys. Acta 2004; 1608:1-9.
    [54]Carroll, J. et al. Analysis of the subunit composition of Complex I from bovine heart mitochondria. Mol. Cell. Proteomics 2003; 2:117-126.
    [55]Yankovskaya, V. et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 2003; 299:700-704.
    [56]Berry, E.A. et al. Structure and function of cytochrome be complexes. Annu. Rev. Biochem.2000; 69:1005-1075.
    [57]Michel, H. et al. Cytochrome c oxidase:structure and spectroscopy. Annu. Rev. Biophys. Biomol. Struct.1998; 27:329-356.
    [58]H. Eubel, L. jansch, H.-P. Braun. New insights into the respiratory chain of plant: mitochondria supercomplexes and a unique composition of complex Ⅱ. Plant physiol. 2003; 133:274-286.
    [59]N. V. Dudkina, H. Eubel, W. Keegstra, E.J. Boekema, H.-P. Braun. Structure of a mitochondrial supercomplex formed by respiratory-chain complexes Ⅰ and Ⅲ. Proc. Natl. Acad. Sci. U.S.A.2005; 102:3225-3229.
    [60]Runswick, M.J. et al. Presence of an acyl carrier protein in NADH:ubiquinone oxidoreductase from bovine heart mitochondria. FEBS Lett.1991; 286:121-124.
    [61]Millar, A.H. et al. Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol.2003; 133:443-447.
    [62]Sunderhaus, S. et al. Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex Ⅰ in plants. J. Biol. Chem. 2006; 281:6482-6488.
    [63]Dutilleul, C. et al. Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 2003; 15:1212-1226.
    [64]Siedow, J.N. and Umbach, A.L. Plant mitochondrial electron transfer and molecular biology. Plant Cell 1995; 7,821-831.
    [65]H.-P. Braun, E. Zabaleta. Carbonic anhydrase subunits of the mitochondrial NADH dehydrogenase complex (complex Ⅰ) in plants. Physiol. Plant.2007; 129:114-122.
    [66]M. Perales, H. eubel, J. Heinemeyer, A. Colaneri, H.-P. Braun. Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex Ⅰ+Ⅲ levels and alters mitochondrial physiology in Arabidopsis. J. Mol. Biol.2005; 350:263-277.
    [67]Hewett-Emmett D. Evolution and distribution of the carbonic anhydrase gene families. EXS 2000; 2000:29-76.
    [68]Perales M, Parisi G, Fornasari MS, Zabaleta E. Gamma carbonic anhydrase like complex interact with plant mitochondrial complex Ⅰ.Plant Mol. Biol.2004; 56:947-957.
    [69]Villarreal F, Martin V, H.-P Braun et al. Ectopic expression of mitochondrial gamma carbonic anhydrase 2 causes male sterility by anther indehiscence. Plant Mol. Biol.2009; 19:652-663.
    [70]Alber BE, Ferry JG. A carbonic anhydrase from the archaeon Mthanosarcina thermophila. Proc. Natl. Acad. Sci. U.S.A.1994; 91:6909-6913.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700