组蛋白甲基化位点结合结构域的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组蛋白的翻译后修饰是表观遗传调控的重要手段之一,一般发生在组蛋白柔性的N端尾巴上,包括甲基化、乙酰化、磷酸化和泛素化等。组蛋白的这些翻译后修饰位点往往包含特定的生物学信息,被称为“组蛋白密码”。“组蛋白密码”可以被一些含有特定结构域的蛋白和蛋白复合物识别,启动下游的生物学过程。过去几十年来,人们通过生物化学及生物物理学等方法鉴定出许多可以特异性地结合组蛋白翻译后修饰位点的结构域。人们根据这些结构域氨基酸序列的同源性以及与组蛋白翻译后修饰位点的结合方式,将它们分为Bromo结构域、PHD结构域、WD40repeat结构域及Royal超家族结构域等一些结构域超家族。基于组蛋白翻译后修饰的多样性,这些结构域涉及到细胞内大部分生物学过程,而且目前发现许多疾病的发生与组蛋白翻译后修饰位点结合结构域的功能异常有关。相比较其他的翻译后修饰方式,组蛋白的甲基化具有更为复杂的修饰模式和调控方式,其结合结构域也相应地更为多样。本论文主要针对Royal超家族中特异性结合组蛋白甲基化赖氨酸的结构域展开一系列的结构和功能的研究,论文分为三部分:
     第一部分为酿酒酵母SAGA复合物Sgf29亚基的结构与功能的研究。我们分别解析了Sgf29的C端tandem Tudor结构域的单体,及其与H3K4me2和H3K4me3多肽的复合物的晶体结构。Sgf29的tandem Tudor结构域的两个Tudor结构域均参与与H3K4me2/3的相互作用,两个Tudor结构域以‘'face-to-face"的方式排列,并各自含有一个带负电的结合口袋和芳香族口袋,分别与组蛋白H3A1和甲基化H3K4结合,这种新颖的结合方式使得Sgf29的tandem Tudor结构域具有更严格的底物选择性。此外,我们的体内和体外实验指出Sgf29不直接影响SAGA复合物的乙酰转移酶活性,而是通过其C端tandem Tudor(?)结构域与甲基化H3K4的相互作用调控SAGA复合物在染色质上的定位,从而影响组蛋白H3的乙酰化水平,进而调控基因的转录。
     第二部分为人源异染色蛋白Cbx3(HPly)的结构和功能的研究。HP1蛋白N端Chromo结构域一直以来被人们认为可以特异性识别甲基化组蛋白H3K9,调控基因转录及DNA损伤修复等过程。我们分别解析了Cbx3Chromo结构域与组蛋白H1K26me2多肽及其与组蛋白甲基转移酶G9aK185me3多肽的复合物的晶体结构,测定了Cbx3Chromo (?)吉构域与这两种甲基化多肽的解离常数,指出Cbx3可以通过结合甲基化的组蛋白和非组蛋白蛋白发挥调控基因表达的功能。
     第三部分主要是针对人源有丝分裂M期磷蛋白Mpp8的结构和功能的研究。我们分别解析了Mpp8Chromo结构域单体及其与组蛋白H3K9me3多肽的复合物的晶体结构。阐明了Mpp8Chromo结构域识别H3K9me3的分子机制,并发现Mpp8的Chromo结构域以同二聚体形式存在,在此基础上提出了同二聚体形式的Mpp8通过其Chromo结构域识别甲基化H3K9并抑制基因转录的两种模型。
Histone post-translational modifications (PTMs) is a principle component of epigenetic regulations. N-terminal tails of histones are the most accessible regions that are subjected to various PTMs such as methylation, acetylation, phosphorylation and ubiquitination and so on. PTMs are believed to function in a combinatorial pattern referred to as the "histone code". The major function of PTMs is to create sites for the recruitment of proteins with specific binding modules which subsequently stimulate downstream biological processes. In the past decades, a wealth of conserved protein domains have been identified through biochemical and biophysical assays, which specifically bind histone PTMs, including bromodomain, PHD domain, WD40repeat and domains of Royal-superfamily and so on. On account of the variety of PTMs, PTM-binding modules are involed in nearly all biological processes. Currently, numerous of PTM-binding modules have been reported to be implicated in different human disease. More complex than other PTMs, histone methylation is recognized by much more different binding modules due to the diversity of methyl lysine signals. This dissertation focuses on the members of Royal-superfamily that specifically binding methylated lysine residues.
     In Chapter2, we solved the crystal structures of the tandem Tudor domain of Saccharomyces cerevisiae Sgf29and their complexes with H3K4me2and H3K4me3peptides, respectively, and show that Sgf29selectively binds H3K4me2/3marks. The tandem Tudor domains in Sgf29tightly pack against each other face-to-face. The H3A1and K4me3binding pockets created by each of the tandem Tudor domains and the fixed distance between these two pockets are the structural determinants in conferring Sgf29the ability of selectively recognizing H3K4me2/3, not other histone lysine sites. Our in vitro and in vivo functional assays show that Sgf29recognizes methylated H3K4to recruit the SAGA complex to target genes, underscoring the importance of Sgf29in gene regulation.
     Chapter3presents our work on chromodomain of heterchromatin protein HP1γ (Cbx3). HP1proteins have been identified to be involved multiple biological processes including gene transcription and DNA repair. We determined the crystal structures of the human Cbx3chromodomain in complex with dimethylated histone H1K26and trimethylated G9aK185peptides, respectively. Our in vitro assay indicates Cbx3chromodomain can bind to both H1K26me2and G9aK185me3with comparable binding affinities compared to H3K9me3. The complex structures unveil that the Cbx3chromodomain specifically binds methylated histone H1K26and G9aK185through a conserved mechanism.
     In Chapter4, we reported the crystal structures of human MPP8(hMPP8) chromodomain both in apo-form and in complex with the trimethylated histone H3lysine9(H3K9me3) peptide (residue1-15). Consistent with the high sequence homology of MPP8with Polycomb and HP1chromodomains, the complex structure of hMPP8-H3K9me3uncovers the detailed molecular mechanism of recruitment of MPP8chromodomain by HK9me3as well as its unexpected homodimerization. Based on the homodimerization, we build two models showing that the simultaneous binding of two histone tails to hMpp8homodimer either from the same nucleosome or from two separated nucleosomes.
引文
[1]Waddington, C. H. (1957) The strategy of the genes; a discussion of some aspects of theroetical biology, Macmillan, New York.
    [2]Holliday, R. (1994) Epigenetics:an overview, Dev Genet 15,453-457.
    [3]Nakao, M. (2001) Epigenetics:interaction of DNA methylation and chromatin, Gene 278, 25-31.
    [4]Kumar, S., Cheng, X., Klimasauskas, S., et al. (1994) The DNA (cytosine-5) methyltransferases, Nucleic Acids Res 22,1-10.
    [5]Goll, M. G., and Bestor, T. H. (2005) Eukaryotic cytosine methyltransferases, Annu Rev Biochem 74,481-514.
    [6]Bird, A. (2002) DNA methylation patterns and epigenetic memory, Genes Dev 16,6-21.
    [7]Lister, R., Pelizzola, M., Dowen, R. H., et al. (2009) Human DNA methylomes at base resolution show widespread epigenomic differences, Nature 462,315-322.
    [8]Ng, H. H., and Bird, A. (1999) DNA methylation and chromatin modification, Curr Opin Genet Dev 9,158-163.
    [9]De Carvalho, D. D., You, J. S., and Jones, P. A. (2010) DNA methylation and cellular reprogramming, Trends Cell Biol 20,609-617.
    [10]Pradhan, S., Bacolla, A., Wells, R. D., et al. (1999) Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation, J Biol Chem 274,33002-33010.
    [11]Chen, Z. X., and Riggs, A. D. (2011) DNA methylation and demethylation in mammals, J Biol Chem 286,18347-18353.
    [12]Jones, P. A., and Liang, G. (2009) Rethinking how DNA methylation patterns are maintained, Nat Rev Genet 10,805-811.
    [13]Okano, M., Bell, D. W., Haber, D. A., et al. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development, Cell 99, 247-257.
    [14]Bird, A. P., and Wolffe, A. P. (1999) Methylation-induced repression--belts, braces, and chromatin, Cell 99,451-454.
    [15]Kornberg, R. D., and Lorch, Y. (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome, Cell 98,285-294.
    [16]Hargreaves, D. C., and Crabtree, G. R. (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms, Cell Res 21,396-420.
    [17]Vignali, M, Hassan, A. H., Neely, K. E., et al. (2000) ATP-dependent chromatin-remodeling complexes, Mol Cell Biol 20,1899-1910.
    [18]Eisen, J. A., Sweder, K. S., and Hanawalt, P. C. (1995) Evolution of the SNF2 family of proteins:subfamilies with distinct sequences and functions, Nucleic Acids Res 23, 2715-2723.
    [19]Ho, L., and Crabtree, G. R. (2010) Chromatin remodelling during development, Nature 463, 474-484.
    [20]Logie, C., Tse, C., Hansen, J. C., et al. (1999) The core histone N-terminal domains are required for multiple rounds of catalytic chromatin remodeling by the SW1/SNF and RSC complexes, Biochemistry 38,2514-2522.
    [21]Morozov, A., Yung, E., and Kalpana, G. V. (1998) Structure-function analysis of integrase interactor 1/hSNF5Ll reveals differential properties of two repeat motifs present in the highly conserved region, Proc Natl Acad Sci USA 95,1120-1125.
    [22]Quinn, J., Fyrberg, A. M., Ganster, R. W., et al. (1996) DNA-binding properties of the yeast SWI/SNF complex, Nature 379,844-847.
    [23]Wang, W., Chi, T., Xue, Y., et al. (1998) Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/SNF-related complexes, Proc Natl Aca Sci U S A 95,492-498.
    [24]Gutierrez, J. L., Chandy, M., Carrozza, M. J., et al. (2007) Activation domains drive nucleosome eviction by SWI/SNF, EMBO J 26,730-740.
    [25]Phelan, M. L., Sif, S., Narlikar, G. J., et al. (1999) Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits, Mol Cell 3,247-253.
    [26]Henikoff, S. (2008) Nucleosome destabilization in the epigenetic regulation of gene expression, Nat Rev Genet 9,15-26.
    [27]Whitehouse, I., Flaus, A., Cairns, B. R., et al. (1999) Nucleosome mobilization catalysed by the yeast SWI/SNF complex, Nature 400,784-787.
    [28]Logie, C., and Peterson, C. L. (1997) Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays, EMBO J16,6772-6782.
    [29]TheENCODEProjectConsortium. (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project, Science 306,636-640.
    [30]Zhou, H., Hu, H., and Lai, M. (2010) Non-coding RNAs and their epigenetic regulatory mechanisms, Biol Cell 102,645-655.
    [31]Kim, T. K., Hemberg, M., Gray, J. M., et al. (2010) Widespread transcription at neuronal activity-regulated enhancers, Nature 465,182-187.
    [32]De Santa, F., Barozzi, I., Mietton, F., et al. (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers, PLoS Biol 8, e1000384.
    [33]Orom, U. A., Derrien, T., Beringer, M., et al. (2010) Long noncoding RNAs with enhancer-like function in human cells, Cell 143,46-58.
    [34]Ponting, C. P., Oliver, P. L., and Reik, W. (2009) Evolution and functions of long noncoding RNAs, Cell 136,629-641.
    [35]Kaikkonen, M. U., Lam, M. T., and Glass, C. K. (2011) Non-coding RNAs as regulators of gene expression and epigenetics, Cardiovasc Res 90,430-440.
    [36]Wassenegger, M., Heimes, S., Riedel, L., et al. (1994) RNA-directed de novo methylation of genomic sequences in plants, Cell 76,567-576.
    [37]Zhang, H., and Zhu, J. K. (2011) RNA-directed DNA methylation, Curr Opin Plant Biol 14, 142-147.
    [38]Sinkkonen, L., Hugenschmidt, T., Berninger, P., et al. (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells, Nat Struct Mo I Biol 15,259-267.
    [39]Camblong, J., Iglesias, N., Fickentscher, C., et al. (2007) Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae, Cell 131, 706-717.
    [40]Yang, P. K., and Kuroda, M. I. (2007) Noncoding RNAs and intranuclear positioning in monoallelic gene expression, Cell 128,777-786.
    [41]Erwin, J. A., and Lee, J. T. (2008) New twists in X-chromosome inactivation, Curr Opin Cell Biol 20,349-355.
    [42]Uhler, J. P., Hertel, C., and Svejstrup, J. Q. (2007) A role for noncoding transcription in activation of the yeast PHO5 gene, Proc Natl Acad Sci U S A 104,8011-8016.
    [43]Peterson, C. L., and Laniel, M. A. (2004) Histones and histone modifications, Curr Biol 14, R546-551.
    [44]Kouzarides, T. (2007) Chromatin modifications and their function, Cell 128,693-705.
    [45]Luger, K., Mader, A. W., Richmond, R. K., et al. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature 389,251-260.
    [46]Jenuwein, T., and Allis, C. D. (2001) Translating the histone code, Science 293,1074-1080.
    [47]Bannister, A. J., and Kouzarides, T. (2011) Regulation of chromatin by histone modifications, Cell Res 21,381-395.
    [48]Berndsen, C. E., and Denu, J. M. (2008) Catalysis and substrate selection by histone/protein lysine acetyltransferases, Curr Opin Struct Biol 18,682-689.
    [49]Parthun, M. R., Widom, J., and Gottschling, D. E. (1996) The major cytoplasmic histone acetyltransferase in yeast:links to chromatin replication and histone metabolism, Cell 87, 85-94.
    [50]Sklenar, A. R., and Parthun, M. R. (2004) Characterization of yeast histone H3-specific type B histone acetyltransferases identifies an ADA2-independent Gcn5p activity, BMC Biochem 5,11.
    [51]Ikura, T., Tashiro, S., Kakino, A., et al. (2007) DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics, Mol Cell Biol27,7028-7040.
    [52]Hodawadekar, S. C., and Marmorstein, R. (2007) Chemistry of acetyl transfer by histone modifying enzymes:structure, mechanism and implications for effector design, Oncogene 26,5528-5540.
    [53]Vempati, R. K., Jayani, R. S., Notani, D., et al. (2010) p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals, J Biol Chem 285, 28553-28564.
    [54]Tjeertes, J. V., Miller, K. M., and Jackson, S. P. (2009) Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells, EMBO J 28, 1878-1889.
    [55]Yang, X. J., and Seto, E. (2008) The Rpd3/Hdal family of lysine deacetylases:from bacteria and yeast to mice and men, Nat Rev Mol Cell Biol 9,206-218.
    [56]Dovey, O. M., Foster, C. T., and Cowley, S. M. (2010) Histone deacetylase 1 (HDACl), but not HDAC2, controls embryonic stem cell differentiation, Proc Natl Acad Sci U S A 107, 8242-8247.
    [57]Oki, M., Aihara, H., and Ito, T. (2007) Role of histone phosphorylation in chromatin dynamics and its implications in diseases, Subcell Biochem 41,319-336.
    [58]Clayton, A. L., Rose, S., Barratt, M. J., et al. (2000) Phosphoacetylation of histone H3 on c-fos-and c-jun-associated nucleosomes upon gene activation, EMBO J 19,3714-3726.
    [59]Lo, W. S., Trievel, R. C., Rojas, J. R., et al. (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14, Mol Cell 5,917-926.
    [60]Lau, P. N., and Cheung, P. (2011) Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing, Proc Natl Acad Sci U S A 108,2801-2806.
    [61]Hershko, A., and Ciechanover, A. (1998) The ubiquitin system, Annu Rev Biochem 67, 425-479.
    [62]Wang, H., Wang, L., Erdjument-Bromage, H., et al. (2004) Role of histone H2A ubiquitination in Polycomb silencing, Nature 431,873-878.
    [63]Sarcinella, E., Zuzarte, P. C., Lau, P. N., et al. (2007) Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin, Mol Cell Biol 27,6457-6468.
    [64]Zhu, B., Zheng, Y, Pham, A. D., et al. (2005) Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation, Mol Cell 20,601-611.
    [65]Pavri, R., Zhu, B., Li, G., et al. (2006) Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase Ⅱ, Cell 125,703-717.
    [66]Yan, Q., Dutt, S., Xu, R., et al. (2009) BBAP monoubiquitylates histone H4 at lysine 91 and selectively modulates the DNA damage response, Mol Cell 36,110-120.
    [67]Gill, G. (2004) SUMO and ubiquitin in the nucleus:different functions, similar mechanisms?, Genes Dev 18,2046-2059.
    [68]Sternsdorf, T., Jensen, K., and Freemont, P. S. (2003) Sumo, Curr Biol 13, R258-259.
    [69]Wilson, V. G., and Rangasamy, D. (2001) Intracellular targeting of proteins by sumoylation, Exp Cell Res 271,57-65.
    [70]Ghioni, P., D'Alessandra, Y., Mansueto, G., et al. (2005) The protein stability and transcriptional activity of p63alpha are regulated by SUMO-1 conjugation, Cell Cycle 4, 183-190.
    [71]Shiio, Y., and Eisenman, R. N. (2003) Histone sumoylation is associated with transcriptional repression, Proc Natl Acad Sci U S A 100,13225-13230.
    [72]Nathan, D., Ingvarsdottir, K., Sterner, D. E., et al. (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications, Genes Dev 20,966-976.
    [73]Hassa, P. O., Haenni, S. S., Elser, M., et al. (2006) Nuclear ADP-ribosylation reactions in mammalian cells:where are we today and where are we going?, Microbiol Mol Biol Rev 70, 789-829.
    [74]Krishnakumar, R., and Kraus, W. L. (2010) PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway, Mol Cell 39,736-749.
    [75]Messner, S., Altmeyer, M., Zhao, H., et al. (2010) PARP1 ADP-ribosylates lysine residues of the core histone tails, Nucleic Acids Res 38,6350-6362.
    [76]Nelson, C. J., Santos-Rosa, H., and Kouzarides, T. (2006) Proline isomerization of histone H3 regulates lysine methylation and gene expression, Cell 126,905-916.
    [77]Cuthbert, G. L., Daujat, S., Snowden, A. W., et al. (2004) Histone deimination antagonizes arginine methylation, Cell 118,545-553.
    [78]Wang, Y., Wysocka, J., Sayegh, J., et al. (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination, Science 306,279-283.
    [79]Sakabe, K., Wang, Z., and Hart, G. W. (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code, Proc Natl Acad Sci U S A 107,19915-19920.
    [80]Klose, R. J., and Zhang, Y. (2007) Regulation of histone methylation by demethylimination and demethylation, Nat Rev Mol Cell Biol 8,307-318.
    [81]Lan, F., and Shi, Y. (2009) Epigenetic regulation:methylation of histone and non-histone proteins, Sci China C Life Sci 52,311-322.
    [82]Ng, S. S., Yue, W. W., Oppermann, U., et al. (2009) Dynamic protein methylation in chromatin biology, Cell Mol Life Sci 66,407-422.
    [83]Mosammaparast, N., and Shi, Y. (2010) Reversal of histone methylation:biochemical and molecular mechanisms of histone demethylases, Annu Rev Biochem 79,155-179.
    [84]Zinner, R., Albiez, H., Walter, J., et al. (2006) Histone lysine methylation patterns in human cell types are arranged in distinct three-dimensional nuclear zones, Histochem Cell Biol 125, 3-19.
    [85]Wysocka, J, Swigut, T., Xiao, H., et al. (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling, Nature 442,86-90.
    [86]Yoh, S. M., Lucas, J. S., and Jones, K. A. (2008) The Iwsl:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation, Genes Dev 22,3422-3434.
    [87]Yuan, W., Xu, M., Huang, C., et al. (2011) H3K36 methylation antagonizes PRC2-mediated H3K27 methylation, J Biol Chem 286,7983-7989.
    [88]Santos-Rosa, H., Schneider, R., Bannister, A. J., et al. (2002) Active genes are tri-methylated at K4 of histone H3, Nature 419,407-411.
    [89]Heintzman, N. D., Hon, G. C., Hawkins, R. D., et al. (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression, Nature 459,108-112.
    [90]Xu, L., Zhao, Z., Dong, A., et al. (2008) Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana, Mol Cell Biol 28,1348-1360.
    [91]Stewart, M. D., Li, J., and Wong, J. (2005) Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment, Mol Cell Biol 25,2525-2538.
    [92]Yamamoto, K., and Sonoda, M. (2003) Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1, Biochem Biophys Res Commun 301,287-292.
    [93]Schotta, G., Lachner, M., Sarma, K., et al. (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin, Genes Dev 18,1251-1262.
    [94]Sims, J. K., Houston, S. I., Magazinnik, T., et al. (2006) A trans-tail histone code defined by monomethylated H4 Lys-20 and H3 Lys-9 demarcates distinct regions of silent chromatin, J Biol Chem 281,12760-12766.
    [95]Lund, A. H., and van Lohuizen, M. (2004) Polycomb complexes and silencing mechanisms, Curr Opin Cell Biol 16,239-246.
    [96]Brown, M. A., Sims, R. J.,3rd, Gottlieb, P. D., et al. (2006) Identification and characterization of Smyd2:a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex, Mol Cancer 5,26.
    [97]Rybtsova, N., Leimgruber, E., Seguin-Estevez, Q., et al. (2007) Transcription-coupled deposition of histone modifications during MHC class Ⅱ gene activation, Nucleic Acids Res 35,3431-3441.
    [98]Min, J., Feng, Q., Li, Z., et al. (2003) Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase, Cell 112,711-723.
    [99]Varier, R. A., and Timmers, H. T. (2011) Histone lysine methylation and demethylation pathways in cancer, Biochim Biophys Acta 1815,75-89.
    [100]Litt, M., Qiu, Y., and Huang, S. (2009) Histone arginine methylations:their roles in chromatin dynamics and transcriptional regulation, Biosci Rep 29,131-141.
    [101]Izzo, A., and Schneider, R. (2010) Chatting histone modifications in mammals, Brief Fund Genomics 9,429-443.
    [102]Huang, S., Litt, M., and Felsenfeld, G. (2005) Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications, Genes Dev 19,1885-1893.
    [103]Zhao, Q., Rank, G., Tan, Y. T., et al. (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing, Nat Struct Mol Biol 16,304-311.
    [104]Majumder, S., Alinari, L., Roy, S., et al. (2010) Methylation of histone H3 and H4 by PRMT5 regulates ribosomal RNA gene transcription, J Cell Biochem 109,553-563.
    [105]An, W., Kim, J., and Roeder, R. G. (2004) Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53, Cell 117,735-748.
    [106]Di Lorenzo, A., and Bedford, M. T. (2011) Histone arginine methylation, FEBS Lett 585, 2024-2031.
    [107]Hyllus, D., Stein, C., Schnabel, K., et al. (2007) PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation, Genes Dev 21,3369-3380.
    [108]Iberg, A. N., Espejo, A., Cheng, D., et al. (2008) Arginine methylation of the histone H3 tail impedes effector binding, J Biol Chem 283,3006-3010.
    [109]Shi, Y., Lan, F., Matson, C., et al. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1, Cell 119,941-953.
    [110]Fang, R., Barbera, A. J., Xu, Y., et al. (2010) Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation, Mol Cell 39,222-233.
    [111]Metzger, E., Wissmann, M., Yin, N., et al. (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription, Nature 437,436-439.
    [112]Lee, M. G., Wynder, C, Cooch, N., et al. (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation, Nature 437,432-435.
    [113]Tsukada, Y., Fang, J., Erdjument-Bromage, H., et al. (2006) Histone demethylation by a family of JmjC domain-containing proteins, Nature 439,811-816.
    [114]Liu, W., Tanasa, B., Tyurina, O. V, et al. (2010) PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression, Nature 466,508-512.
    [115]Ooga, M., Inoue, A., Kageyama, S., et al. (2008) Changes in H3K79 methylation during preimplantation development in mice, Biol Reprod 78,413-424.
    [116]Clifton, I. J., McDonough, M. A., Ehrismann, D., et al. (2006) Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins, J Inorg Biochem 100,644-669.
    [117]Webby, C. J., Wolf, A., Gromak, N., et al. (2009) Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing, Science 325,90-93.
    [118]Mantri, M., Krojer, T., Bagg, E. A., et al. (2010) Crystal Structure of the 2-Oxoglutarate-and Fe(Ⅱ)-Dependent Lysyl Hydroxylase JM JD6, J Mol Biol.
    [119]Nakayama, J., Rice, J. C., Strahl, B. D., et al. (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly, Science 292,110-113.
    [120]Lee, J. S., Shukla, A., Schneider, J., et al. (2007) Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS, Cell 131,1084-1096.
    [121]Taverna, S. D., Ilin, S., Rogers, R. S., et al. (2006) Yngl PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs, Mol Cell 24,785-796.
    [122]Rea, S., Eisenhaber, F., O'Carroll, D., et al. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases, Nature 406,593-599.
    [123]Edmondson, D. G., Davie, J. K., Zhou, J., et al. (2002) Site-specific loss of acetylation upon phosphorylation of histone H3,J Biol Chem 277,29496-29502.
    [124]Xhemalce, B., and Kouzarides, T. (2010) A chromodomain switch mediated by histone H3 Lys 4 acetylation regulates heterochromatin assembly, Genes Dev 24,647-652.
    [125]Bartke, T., Vermeulen, M., Xhemalce, B., et al. (2010) Nucleosome-interacting proteins regulated by DNA and histone methylation, Cell 143,470-484.
    [126]Taverna, S. D., Li, H., Ruthenburg, A. J., et al. (2007) How chromatin-binding modules interpret histone modifications:lessons from professional pocket pickers, Nat Struct Mol Biol 14,1025-1040.
    [127]Shi, X., Hong, T., Walter, K. L., et al. (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression, Nature 442,96-99.
    [128]Yun, M., Wu, J., Workman, J. L., et al. (2011) Readers of histone modifications, Cell Res 21, 564-578.
    [129]van Ingen, H., van Schaik, F. M., Wienk, H., et al. (2008) Structural insight into the recognition of the H3K4me3 mark by the TFIID subunit TAF3, Structure 16,1245-1256.
    [130]Kaustov, L., Ouyang, H., Amaya, M., et al. (2011) Recognition and specificity determinants of the human cbx chromodomains, J Biol Chem 286,521-529.
    [1]Bhaumik, S. R. (2011) Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID, Biochim Biophys Acta 1809,97-108.
    [2]Garcia-Oliver, E., Garcia-Molinero, V., and Rodriguez-Navarro, S. (2011) mRNA export and gene expression:The SAGA-TREX-2 connection, Biochim Biophys Acta.
    [3]Ghosh, S., and Pugh, B. F. (2011) Sequential recruitment of SAGA and TFIID in a genomic response to DNA damage in Saccharomyces cerevisiae, Mol Cell Biol 31,190-202.
    [4]Rodriguez-Navarro, S. (2009) Insights into SAGA function during gene expression, EMBO Rep 10,843-850.
    [5]Barbaric, S., Reinke, H., and Horz, W. (2003) Multiple mechanistically distinct functions of SAGA at the PHO5 promoter, Mol Cell Biol 23,3468-3476.
    [6]Pollard, K. J., and Peterson, C. L. (1997) Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression, Mol Cell Biol 17,6212-6222.
    [7]Lee, K. K., and Workman, J. L. (2007) Histone acetyltransferase complexes:one size doesn't fit all, Nat Rev Mol Cell Biol 8,284-295.
    [8]Kohler, A., Zimmerman, E., Schneider, M., et al. (2010) Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module, Cell 141, 606-617.
    [9]Wu, P. Y., and Winston, F. (2002) Analysis of Spt7 function in the Saccharomyces cerevisiae SAGA coactivator complex, Mol Cell Biol 22,5367-5379.
    [10]Zeng, L., and Zhou, M. M. (2002) Bromodomain:an acetyl-lysine binding domain, FEBS Lett 513,124-128.
    [11]Qian, C., Zhang, Q., Li, S., et al. (2005) Structure and chromosomal DNA binding of the SWIRM domain, Nat Struct Mol Biol 12,1078-1085.
    [12]Boyer, L. A., Latek, R. R., and Peterson, C. L. (2004) The SANT domain:a unique histone-tail-binding module?, Nat Rev Mol Cell Biol 5,158-163.
    [13]Da, G., Lenkart, J., Zhao, K., et al. (2006) Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes, Proc Natl Acad Sci US A 103,2057-2062.
    [14]Durso, R. J., Fisher, A. K., Albright-Frey, T. J., et al. (2001) Analysis of TAF90 mutants displaying allele-specific and broad defects in transcription, Mol Cell Biol 21,7331-7344.
    [15]Sermwittayawong, D., and Tan, S. (2006) SAGA binds TBP via its Spt8 subunit in competition with DNA:implications for TBP recruitment, EMBOJ25,3791-3800.
    [16]Lai, C., Wu, M., Li, P., et al. (2010) Solution NMR characterization of Sgf73(1-104) indicates that Zn ion is required to stabilize zinc finger motif, Biochem Biophys Res Commun 397,436-440.
    [17]Sanders, S. L., Jennings, J., Canutescu, A., et al. (2002) Proteomics of the eukaryotic transcription machinery:identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry, Mol Cell Biol 22,4723-4738.
    [18]Kurabe, N., Katagiri, K., Komiya, Y., et al. (2007) Deregulated expression of a novel component of TFTC/STAGA histone acetyltransferase complexes, rat SGF29, in hepatocellular carcinoma:possible implication for the oncogenic potential of c-Myc, Oncogene 26,5626-5634.
    [19]Vermeulen, M., Eberl, H. C., Matarese, F., et al. (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers, Cell 142,967-980.
    [20]Xie, S., Jakoncic, J., and Qian, C. (2012) UHRF1 double tudor domain and the adjacent PHD finger act together to recognize K9me3-containing histone H3 tail, J Mol Biol 415, 318-328.
    [21]Katoh, Y., and Katoh, M. (2007) Comparative integromics on JMJD2A, JMJD2B and JMJD2C:preferential expression of JMJD2C in undifferentiated ES cells, Int J Mol Med 20, 269-273.
    [22]Sikorski, R. S., and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics 122, 19-27.
    [23]Eberharter, A., Lechner, T., Goralik-Schramel, M., et al. (1996) Purification and characterization of the cytoplasmic histone acetyltransferase B of maize embryos, FEBS Lett 386,75-81.
    [24]Huang, Y., Fang, J., Bedford, M. T., et al. (2006) Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A, Science 312,748-751.
    [25]Botuyan, M. V., Lee, J., Ward, I. M., et al. (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair, Cell 127, 1361-1373.
    [26]Adams-Cioaba, M. A., Guo, Y., Bian, C., et al. (2010) Structural studies of the tandem Tudor domains of fragile X mental retardation related proteins FXR1 and FXR2, Plos One 5, e13559.
    [27]Ramos, A., Hollingworth, D., Adinolfi, S., et al. (2006) The structure of the N-terminal domain of the fragile X mental retardation protein:a platform for protein-protein interaction, Structure 14,21-31.
    [28]Liu, H., Wang, J. Y., Huang, Y., et al. (2010) Structural basis for methylarginine-dependent recognition of Aubergine by Tudor, Genes Dev 24,1876-1881.
    [29]Liu, K., Chen, C., Guo, Y., et al. (2010) Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain, Proc Natl Acad Sci U S A 107, 18398-18403.
    [30]Lee, J., Thompson, J. R., Botuyan, M. V., et al. (2008) Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor, Nat Struct Mol Biol 15,109-111.
    [31]Roy, S., Musselman, C. A., Kachirskaia, I., et al. (2010) Structural insight into p53 recognition by the 53BP1 tandem Tudor domain, J Mol Biol 398,489-496.
    [32]Grant, P. A., Eberharter, A., John, S., et al. (1999) Expanded lysine acetylation specificity of Gcn5 in native complexes, J Biol Chem 274,5895-5900.
    [33]Zhang, W., Bone, J. R., Edmondson, D. G., et al. (1998) Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase, EMBO J 17,3155-3167.
    [34]Howe, L., Auston, D., Grant, P., et al. (2001) Histone H3 specific acetyltransferases are essential for cell cycle progression, Genes Dev 15,3144-3154.
    [35]Martin, D. G., Grimes, D. E., Baetz, K., et al. (2006) Methylation of histone H3 mediates the association of the NuA3 histone acetyltransferase with chromatin, Mol Cell Biol 26, 3018-3028.
    [36]Taverna, S. D., Ilin, S., Rogers, R. S., et al. (2006) Yngl PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs, Mol Cell 24,785-796.
    [37]Jiang, L., Smith, J. N., Anderson, S. L., et al. (2007) Global assessment of combinatorial post-translational modification of core histones in yeast using contemporary mass spectrometry. LYS4 trimethylation correlates with degree of acetylation on the same H3 tail, J Biol Chem 282,27923-27934.
    [38]Venters, B. J., Wachi, S., Mavrich, T. N., et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces, Mol Cell 41,480-492.
    [39]Govind, C. K., Zhang, F., Qiu, H., et al. (2007) Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions, Mol Cell 25,31-42.
    [40]Bryk, M., Briggs, S. D., Strahl, B. D., et al. (2002) Evidence that SET1, a factor required for methylation of histone H3, regulates rDNA silencing in S-cerevisiae by a sir2-independent mechanism, Current Biology 12,165-170.
    [41]Ingvarsdottir, K., Edwards, C., Lee, M. G., et al. (2007) Histone H3 K4 demethylation during activation and attenuation of GAL1 transcription in Saccharomyces cerevisiae, Mol Cell Biol 27,7856-7864.
    [42]Whittaker, P. A. (1979) The petite mutation in yeast, Subcell Biochem 6,175-232.
    [1]Nielsen, A. L., Oulad-Abdelghani, M., Ortiz, J. A., et al. (2001) Heterochromatin formation in mammalian cells:interaction between histones and HP1 proteins, Mol Cell 7,729-739.
    [2]Canzio, D., Chang, E. Y., Shankar, S., et al. (2011) Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly, Mol Cell 41,67-81.
    [3]Kim, H., Heo, K., Choi, J., et al. (2011) Histone variant H3.3 stimulates HSP70 transcription through cooperation with HP 1{gamma}, Nucleic Acids Res.
    [4]Piacentini, L., and Pimpinelli, S. (2010) Positive regulation of euchromatic gene expression by HP1, Fly (Austin) 4,299-301.
    [5]Ainsztein, A. M., Kandels-Lewis, S. E., Mackay, A. M., et al. (1998) INCENP centromere and spindle targeting:identification of essential conserved motifs and involvement of heterochromatin protein HP1,J Cell Biol 143,1763-1774.
    [6]Kiyomitsu, T., Iwasaki, O., Obuse, C., et al. (2010) Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes, J Cell Biol 188,791-807.
    [7]Inoue, A., Hyle, J., Lechner, M. S., et al. (2008) Perturbation of HP1 localization and chromatin binding ability causes defects in sister-chromatid cohesion, Mutat Res 657,48-55.
    [8]Haldar, S., Saini, A., Nanda, J. S., et al. (2011) Role of Swi6/HP1 self-association-mediated recruitment of Clr4/Suv39 in establishment and maintenance of heterochromatin in fission yeast, J Biol Chem 286,9308-9320.
    [9]Maison, C., and Almouzni, G. (2004) HP1 and the dynamics of heterochromatin maintenance, Nat Rev Mol Cell Biol 5,296-304.
    [10]Kourmouli, N., Theodoropoulos, P. A., Dialynas, G., et al. (2000) Dynamic associations of heterochromatin protein 1 with the nuclear envelope, EMBO J 19,6558-6568.
    [11]Eissenberg, J. C., and Elgin, S. C. (2000) The HP1 protein family:getting a grip on chromatin, Curr Opin Genet Dev 10,204-210.
    [12]Kwon, S. H., and Workman, J. L. (2011) The changing faces of HP1:From heterochromatin formation and gene silencing to euchromatic gene expression:HP1 acts as a positive regulator of transcription, Bioessays 33,280-289.
    [13]Huang, Y., Myers, M. P., and Xu, R. M. (2006) Crystal structure of the HP 1-EMSY complex reveals an unusual mode of HP1 binding, Structure 14,703-712.
    [14]Jones, D. O., Cowell, I. G., and Singh, P. B. (2000) Mammalian chromodomain proteins: their role in genome organisation and expression, Bioessays 22,124-137.
    [15]Nielsen, P. R., Nietlispach, D., Mott, H. R., et al. (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9, Nature 416,103-107.
    [16]Bannister, A. J., Zegerman, P., Partridge, J. F., et al. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain, Nature 410,120-124.
    [17]Jacobs, S. A., and Khorasanizadeh, S. (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail, Science 295,2080-2083.
    [18]Ye, Q., Callebaut, I., Pezhman, A., et al. (1997) Domain-specific interactions of human HP 1-type chromodomain proteins and inner nuclear membrane protein LBR, J Biol Chem 272,14983-14989.
    [19]Honda, S., and Selker, E. U. (2008) Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa, Mol Cell Biol 28, 6044-6055.
    [20]Fujita, N., Watanabe, S., Ichimura, T., et al. (2003) Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression, J Biol Chem 278,24132-24138.
    [21]Shareef, M. M., King, C., Damaj, M., et al. (2001) Drosophila heterochromatin protein 1 (HP1)/origin recognition complex (ORC) protein is associated with HP1 and ORC and functions in heterochromatin-induced silencing, Molecular Biology of the Cell 12, 1671-1685.
    [22]Daujat, S., Zeissler, U., Waldmann, T., et al. (2005) HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding, J Biol Chem 280,38090-38095.
    [23]Chin, H. G., Esteve, P. O., Pradhan, M., et al. (2007) Automethylation of G9a and its implication in wider substrate specificity and HP1 binding, Nucleic Acids Res 35, 7313-7323.
    [24]Au, K., Berrow, N. S., Blagova, E., et al. (2006) Application of high-throughput technologies to a structural proteomics-type analysis of Bacillus anthracis, Acta Crystallogr D Biol Crystallogr 62,1267-1275.
    [25]Berrow, N. S., Alderton, D., Sainsbury, S., et al. (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications, Nucleic Acids Res 35, e45.
    [26]Yap, K. L., and Zhou, M. M. (2011) Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription, Biochemistry 50,1966-1980.
    [27]Li, J., Li, Z., Ruan, J., et al. (2011) Structural basis for specific binding of human MPP8 chromodomain to histone H3 methylated at lysine 9, Plos One 6, e25104.
    [28]Kaustov, L., Ouyang, H., Amaya, M., et al. (2011) Recognition and specificity determinants of the human cbx chromodomains, J Biol Chem 286,521-529.
    [29]Fanti, L., and Pimpinelli, S. (2008) HP1:a functionally multifaceted protein, Curr Opin Genet Dev 18,169-174.
    [30]Cowell, I. G., Aucott, R., Mahadevaiah, S. K., et al. (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals, Chromosoma 111,22-36.
    [31]Nakayama, J., Rice, J. C., Strahl, B. D., et al. (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly, Science 292,110-113.
    [32]Happel, N., and Doenecke, D. (2009) Histone H1 and its isoforms:contribution to chromatin structure and function, Gene 431,1-12.
    [33]Izzo, A., Kamieniarz, K., and Schneider, R. (2008) The histone H1 family:specific members, specific functions?, Biol Chem 389,333-343.
    [34]Lu, A., Zougman, A., Pudelko, M., et al. (2009) Mapping of lysine monomethylation of linker histones in human breast and its cancer, J Proteome Res 8,4207-4215.
    [35]Yamamoto, K., and Sonoda, M. (2003) Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1, Biochem Biophys Res Commun 301,287-292.
    [1]Jenuwein, T., and Allis, C. D. (2001) Translating the histone code, Science 293,1074-1080.
    [2]Xu, C., Bian, C., Yang, W., et al. (2010) Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2), Proc Natl Acad Sci USA 107,19266-19271.
    [3]Kouzarides, T. (2007) Chromatin modifications and their function, Cell 128,693-705.
    [4]Flanagan, J. F., Mi, L. Z., Chruszcz, M., et al. (2005) Double chromodomains cooperate to recognize the methylated histone H3 tail, Nature 438,1181-1185.
    [5]Taverna, S. D., Li, H., Ruthenburg, A. J., et al. (2007) How chromatin-binding modules interpret histone modifications:lessons from professional pocket pickers, Nat Struct Mol Biol 14,1025-1040.
    [6]Min, J., Allali-Hassani, A., Nady, N., et al. (2007) L3MBTL1 recognition of mono-and dimethylated histones, Nat Struct Mol Biol 14,1229-1230.
    [7]Guo, Y., Nady, N., Qi, C., et al. (2009) Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2, Nucleic Acids Res 37,2204-2210.
    [8]Li, H., Ilin, S., Wang, W., et al. (2006) Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF, Nature 442,91-95.
    [9]Vezzoli, A., Bonadies, N., Allen, M. D., et al. (2010) Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpfl, Nat Struct Mol Biol 17,617-619.
    [10]Pena, P. V., Davrazou, F., Shi, X., et al. (2006) Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2, Nature 442,100-103.
    [11]Huang, Y, Fang, J., Bedford, M. T., et al. (2006) Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A, Science 312,748-751.
    [12]Margueron, R., Justin, N., Ohno, K., et al. (2009) Role of the polycomb protein EED in the propagation of repressive histone marks, Nature 461,762-767.
    [13]Li, H., Fischle, W., Wang, W., et al. (2007) Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger, Mol Cell 28,617-691.
    [14]Botuyan, M. V., Lee, J., Ward, I. M., et al. (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair, Cell 127, 1361-1373.
    [15]Xu, C., Cui, G., Botuyan, M. V, et al. (2008) Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S, Structure 16,1740-1750.
    [16]Eryilmaz, J., Pan, P., Amaya, M. F., et al. (2009) Structural studies of a four-MBT repeat protein MBTD1, Plos One 4, e7274.
    [17]Xu, C., and Min, J. (2011) Structure and function of WD40 domain proteins, Protein Cell 2, 202-214.
    [18]Jacobs, S. A., and Khorasanizadeh, S. (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail, Science 295,2080-2083.
    [19]Nielsen, P. R., Nietlispach, D., Mott, H. R., et al. (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9, Nature 416,103-107.
    [20]Yun, M., Wu, J., Workman, J. L., et al. (2011) Readers of histone modifications, Cell Res 21, 564-578.
    [21]Paro, R., and Hogness, D. S. (1991) The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila, Proc Natl Acad Sci U S A 88, 263-267.
    [22]Bannister, A. J., Zegerman, P., Partridge, J. F., et al. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain, Nature 410,120-124.
    [23]Sims, R. J.,3rd, Chen, C. F., Santos-Rosa, H., et al. (2005) Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains, J Biol Chem 280,41789-41792.
    [24]Carrozza, M. J., Li, B., Florens, L., et al. (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription, Cell 123,581-592.
    [25]Larschan, E., Alekseyenko, A. A., Gortchakov, A. A., et al. (2007) MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism, Mol Cell 28,121-133.
    [26]Kokura, K., Sun, L., Bedford, M. T., et al. (2010) Methyl-H3K9-binding protein MPP8 mediates E-cadherin gene silencing and promotes tumour cell motility and invasion, EMBO J29,3673-3687.
    [27]Umeda, M., Nishitani, H., and Nishimoto, T. (2003) A novel nuclear protein, Twal, and Muskelin comprise a complex with RanBPM, Gene 303,47-54.
    [28]Bua, D. J., Kuo, A. J., Cheung, P., et al. (2009) Epigenome microarray platform for proteome-wide dissection of chromatin-signaling networks, Plos One 4, e6789.
    [29]van Roy, F., and Berx, G. (2008) The cell-cell adhesion molecule E-cadherin, Cell Mol Life Sci 65,3756-3788.
    [30]Christofori, G., and Semb, H. (1999) The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene, Trends Biochem Sci 24,13-16.
    [31]Feng, L. J., Lin, T. X., Uranishi, H., et al. (2005) Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity, Mol Cel Biol 25,5389-5395.
    [32]Couture, J. F., Collazo, E., Hauk, G., et al. (2006) Structural basis for the methylation site specificity of SET7/9, Nat Struct Mol Biol 13,140-146.
    [33]Chuikov, S., Kurash, J. K., Wilson, J. R., et al. (2004) Regulation of p53 activity through lysine methylation, Nature 432,353-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700