中生菌素生物合成基因簇克隆及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中生菌素是一种由淡紫灰链霉菌海南变种(Streptomyces lavendulae var. hainanensis)产生的氨基糖苷类农用抗生素,具有广谱、高效、低毒、无污染等特点,对多种细菌及真菌病害具有良好的防治效果,目前已经得到了广泛的应用。为了利用分子生物学的手段构建高产工程菌,进一步提高中生菌素的生产水平,本研究计划克隆中生菌素生物合成基因簇并对其功能进行分析。
     首先以中生菌素产生菌的基因组DNA和粘粒载体pOJ446为材料,构建了基因组粘粒文库。获得的文库覆盖率超过99.99%,可以覆盖淡紫灰链霉菌海南变种B-7基因组10次左右,具有非常高的完整性和代表性。
     其次,在文库构建成功之后,确立了一种基于PCR的文库筛选方法。以之前克隆到的中生菌素生物合成基因zpsA片段为筛选目标,对构建的粘粒文库进行基于PCR的筛选。经过5轮共计100多个PCR反应筛选出含有zpsA基因片段的阳性克隆,所有操作耗时15天左右,效率较高。与传统文库筛选方法相比,该方法具有快速、简便、经济、假阳性低且不需要使用同位素等优点。
     第三,筛选到阳性克隆后,对筛选到的阳性克隆中DNA插入片段进行测序,最终得到了长为29719 bp的DNA序列,其G+C含量达75.5%,与典型的链霉菌基因组特征相符。
     最后,使用DNAMAN、FramePlot 2.3.2、Blast和GeneMark.hmm for Prokaryotes (Version 2.4)等多种生物信息学软件和在线工具对得到的DNA序列进行分析,表明其中含有25个完整的orf。推测其中5个属于ABC类型转运系统;2个编码转录调控因子;15个编码结构基因;2个编码抗性基因;1个为功能未知的基因。其中5个转运基因、2个转录调控因子基因和2个结构基因共9个orf与以往克隆到的链丝菌素生物合成基因没有同源性,属于新的基因。
     对25个orf的功能进行了分析。推测5个ABC转运系统orf编码2个ATP结合亚基、2个跨膜亚基、1个PBP2类型的底物结合亚基,从而构成一个完整的ABC转运系统。可推测这一ABC转运系统具有把中生菌素转运出产生菌胞外的功能;推测orf5编码的是GntR家族转录调控因子,ORF5可能与中生菌素产生菌的发育、中生菌素合成或抗性有关,其机理涉及到ABC转运系统与GntR转录调控因子的协同作用;推测orf21和orf24编码中生菌素抗性蛋白。orf21编码氨基糖苷3’-磷酸转移酶。orf24编码链丝菌素乙酰转移酶,对于这种抗性机制已经有了大量报道,并得到了实验验证,因此可以确定其具有中生菌素的抗性功能。15个结构基因orf中有2个是首次在链丝菌素的研究中被克隆到,即orf7和orf25。推测ORF7是参与古洛糖胺进行甲酰胺化的氨基甲酰胺转移酶,ORF25是对链里定进行羟基化修饰的羟化酶。另外,分析认为orf10编码的产物与中生菌素结构中链里定部分的合成有关,而并非以往研究中对于其同源基因sttN所注释的“与古洛糖胺部分的合成有关”。15个结构基因orf中剩余的12个orf与其相应的已经得到克隆的链丝菌素生物合成基因的同源基因的功能相同。
     中生菌素生物合成基因簇的成功克隆,以及基因功能的初步推测分析,为中生菌素生物合成基因的功能鉴定及遗传改造奠定了基础。通过对转录调控基因、抗性基因以及结构基因的改造,我们可以达到提高中生菌素产生菌发酵产物中高效组分在混合物中的含量、或是得到仅产某种成分的菌株、或是得到可以产生中生菌素衍生物的菌株等目的。
Zhongshengmycin,produced by Streptomyces lavendulae var. Hainanensis, is a N-glycoside agricultural antibiotic. It is a broad-spectrum and low-toxicity antibiotic without pollution to environment. It has good control effect against a variety of bacteria and fungal diseases. Now it has been widely used, and has made huge economic, social and ecological benefits.
     First, a cosmid library of Streptomyces lavendulae var. Hainanensis B-7 was successfully constructed with the genome DNA of B-7 and the cosmid vector pOJ446 as original material. The coverage rate of the library was 99.99%, which could cover the entire B-7 genome more than ten times. Second, after construction of the cosmid library, a PCR-based method for screening the library was developed. The library was screened with zpsA DNA sequence as PCR target. A positive clone was screened after 5 repeat PCR process which spent over 15 days, and completed more than 100 PCR reactions. This screening method was rapid, simple, convenient, economic, low false-positive rates and no-isotope in comparision with traditional methods.
     Third, the insert DNA sequence in the positive clone was sequenced, and its length was over 29719 bp which contained 75.5% G+C. The high G+C content is same as that of a typical streptomyces genome. At last, the DNA sequence was analyzed with several informatics software and online tools, such as DNAMAN 6.0, FramePlot 2.3.2, Blast and GeneMark.hmm for Prokaryotes (Version 2.4). It showed that there were 25 complete ORFs in this DNA segment. In these 25 ORFs, five ORFs were speculated to code ABC transport system, and 2 ORFs were speculated to code transcriptional regulators, and 15 ORFs were speculated to code zhongshengmycin synthetases, and 2 ORFs were speculated to code resistance proteins, and one was speculated to code an unknown protein. 5 ABC transport system genes, 2 transcription regulation genes and 2 structural genes were not similar with any cloned streptothricin biosynthesis genes, so they could be new zhongshengmycin biosynthesis genes.
     Five putative ABC transporter proteins include two ATP binding subunits, two transmembrane subunits, an substrate binding subunit which constitute a complete ABC type transporter system. It could be inferred that this system could have a function to transfer zhongshengmycin out of cells. orf5 was speculated to code GntR family transcription factors. It was speculated to be involved with the development of zhongshengmeycin-producing strain and the Zhongshengmycin resistance, and its mechanism may be related to interaction of ABC transporter proteins and GntR transcription factor. orf21 and orf24 may code resistance proteins of Zhongshengmycin. orf21 may code aminoglycoside 3'-phosphotransferase. It has been widely studied for streptothricin acetyltransferase, and orf24 is highly similar with these known genes, so it was definitively regarded as a zhongshengmycin resistance gene. In 15 hypothetic structural genes, two structural genes, orf 7 and orf25, were first cloned in the study of streptothricin. It was speculated that ORF7 is a carbamoyltransferase responsible for the carbamoylation of gulosamin, and ORF25 is a hydroxylase responsible for the hydroxylation modification of streptolidin. It was proposed that the function of other 12 structural genes resembled with known streptothricin biosynthesis genes except orf10. In GenBank, SttN was noted as amino-transferase responsible for the synthesis of gulosamin, however we thought that ORF10 and SttN should be responsible for the synthesis of streptolidin.
     The cloning of Zhongshengmycin biosynthetic gene cluster and the analysis of their function established a foundation for thd function identification of zhongshengmycin genes and genetic modification. Through molecular biology methods, we could advance the content of high-effective member in the zhonghshenymycin mixture, or obtain the strain to produce only a specific member, or obtain the strain to generate some zhongshengmycin derivatives, and so on.
引文
1.程旭东,董玲丽和凌宏清.基于PCR技术筛选cDNA和genome文库方法的改进[J].高技术通讯,2004(11 ): 32-7.
    2.戴茹娟,李宁,陈永福和吴常信.利用PCR法从文库中快速克隆人促红细胞生成素基因[J].农业生物技术学报,1996,3(2): 76-79.
    3.迪芬巴赫, C.W.,德弗克斯勒G.S. PCR技术实验指南[M].种康,瞿礼嘉,译.北京:化学工业出版社, 2006: 421.
    4.丁振华.中生菌素缓释颗粒剂研制及控释机理研究[D].郑州:河南农业大学, 2003.
    5.蒋细良.中生菌素对水稻主要防御酶的系统诱导[D].北京:中国农业大学, 2005.
    6.蒋细良,王劲波,王慧敏,朱昌雄和田云龙.中生菌素对水稻悬浮细胞过氧化物酶基因转录表达的影响[J].中国生物防治,2006,22(3): 207-210.
    7.蒋细良,谢德龄,倪楚芳,朱昌雄和宋培国.中生菌素的抗生作用[J].植物病理学报,1997a,27(2): 133-138.
    8.蒋细良,谢德龄,倪楚芳,朱昌雄和宋培国.中生菌素对真菌作用机理的研究[J].中国生物防治,1997b,13(2): 69-71.
    9.蒋细良,朱昌雄,王慧敏,田云龙和王劲波.中生菌素对水稻悬浮细胞苯丙氨酸解氨酶基因转录表达的影响[J].中国农业科学,2005,38(7): 1353-1357.
    10.李丽华.中生菌素生物合成基因zpsA的克隆及功能鉴定[D].哈尔滨:东北农业大学, 2005:
    49.
    11.李丽华,田云龙,蒋细良,王立群,吴永英和朱昌雄.中生菌素生物合成基因zpsA的克隆及序列分析[J].生物信息学,2006,4(1): 1-4.
    12.李少杰,蒋细良,孙东园,陈龙,朱昌雄和姬军红.中生菌素可溶性粉剂助剂的研究[J].中国生物防治,2000a,16(1): 19-21.
    13.李少杰,孙东园,符灵智,朱昌雄,蒋细良和周梅先.阳离子聚丙烯酰胺与硅藻土对中生菌素发酵液的配合絮凝效果[J].中国生物防治,2000b,16(4): 156-159.
    14.林祖纶,林刚和粟燕.应用柱前衍生化方法测定中生菌素(751)在蔬菜、土壤中残留量[J].生物防治通报,1991,7(2): 67-70.
    15.刘红宇和赵仪英.中生菌素高产菌的选育及发酵条件的研究[J].中国抗生素杂志,2002,27(4): 246-248.
    16.萨姆布鲁克, J.,拉塞尔D.W.分子克隆实验指南[M].黄培堂,王嘉玺,朱厚础,张兆山,陈惠鹏,范明,俞炜源,贺福初,译.北京:科学出版社, 2002: 1949.
    17.宋培国,朱昌雄,蒋细良,谢德龄和倪楚芳.中生菌素发酵过程中溶解氧参数的分析[J].中国生物防治,1997,13(4): 159-162.
    18.田云龙.碳源和氮源对中生菌素发酵影响的研究[D].北京:中国农业科学院研究生院, 2001.
    19.王志成,蒋建雄,钟军,易自力和刘清波. PCR快速筛选棉纤维cDNA文库分离全长cDNA序列[J].湖南农业大学学报(自然科学版),2005,31(3): 272-275.
    20.徐军望,朱祯和李旭刚.快速cDNA文库筛选和淀粉合成酶基因的分离与鉴定[J].高技术通讯, 2001 (8): 6.
    21.张桂芬,鲁传涛,申效诚,孔建,王克荣和王宏庆.秧田期施用中生菌素对本田期白叶枯病发生的影响[J].植物保护,1996,22(5): 6-8.
    22.赵仪英,王桂兰.农用抗生素B-7的研究I:产生菌的分类鉴定[J].中国抗生素杂志, 1990,15(1): 49-53.
    23.周梅先.中生菌素高产菌株选育[D].植物保护学院,郑州:河南农业大学, 2000.
    24.周梅先,田云龙和朱昌雄.中生菌素产生菌的紫外诱变育种[J].河南农业科学,2006(8): 80-82.
    25.朱昌雄,蒋细良,孙东园,姬军红,田云龙,谢德龄,等.新农用抗生素--中生菌素[J].精细与专用化学品,2002(16): 16-19.
    26.朱昌雄,蒋细良,孙东园,姬军红,赵立平,田云龙,等.一种抗生素农药可湿性粉剂及其制备方法[P].中国, ZL200310103513.7, 2004a.
    27.朱昌雄,蒋细良,谢德龄,倪楚芳,许鸿章,孙东园,等.淡紫灰链霉菌海南变种及由该菌种制备农用抗生素的方法[P].中国, ZL200310103250.X, 2004b.
    28.朱昌雄,蒋细良,谢德龄和宋培国.中生菌素高产菌株的效果评价[J].中国生物防治,1996,12(3): 103-107.
    29.朱昌雄,宋培国,蒋细良,谢德龄和倪楚芳.中生菌素高产菌株发酵条件的研究[J].中国生物防治,1997,13(3): 114-117.
    30. Aberhart, D., Gould S., Lin H., Thiruvengadam T.&Weiller B. Stereochemistry of lysine 2, 3-aminomutase isolated from Clostridium subterminale strain SB4[J]. Journal of the American Chemical Society, 1983,105(16): 5461-5470.
    31. Allison, S.L., Stiasny K., Stadler K., Mandl C.W.&Heinz F.X. Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E[J]. J Virol, 1999,73(7): 5605-12.
    32. Aravind, L.&Anantharaman V. HutC/FarR-like bacterial transcription factors of the GntR family contain a small molecule-binding domain of the chorismate lyase fold[J]. FEMS Microbiol Lett, 2003,222(1): 17-23.
    33. Badet, B., Vermoote P., Haumont P.Y., Lederer F.&Le Goffic F. Glucosamine synthetase from Escherichia coli: purification, properties, and glutamine-utilizing site location[J]. Biochemistry, 1987,26(7): 1940-1948.
    34. Baraniak, J., Moss M.L.&Frey P.A. Lysine 2,3-aminomutase. Support for a mechanism of hydrogen transfer involving S-adenosylmethionine[J]. J Biol Chem, 1989,264(3): 1357-60.
    35. Barona-Gomez, F., Lautru S., Francou F.X., Leblond P., Pernodet J.L.&Challis G.L. Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877[J]. Microbiology, 2006,152(Pt 11): 3355-66.
    36. Benton, W.D.&Davis R.W. Screening lambdagt recombinant clones by hybridization to single plaques in situ[J]. Science, 1977,196(4286): 180-2.
    37. Berger, H., Keller G., Jeroch H., Brauer S., Muller H.&Gebhardt G. Results with the Antibiotic Kormogrisin in Feed for Fattening Turkeys[C]. In. 1984. pp. 010-00951.
    38. Bischoff, K.&Jacob J. The sat4 streptothricinacetyltransferase gene from campylobacter coli: the distribution in the environment and its use as epidemiological marker[J]. Zentralblatt für Hygiene und Umweltmedizin, 1996,198(3): 241-257.
    39. Bouige, P., Laurent D., Piloyan L.&Dassa E. Phylogenetic and functional classification of ATP-binding cassette (ABC) systems[J]. Curr Protein Pept Sci, 2002,3(5): 541-59.
    40. Bycroft, B. The crystal structure of viomycin, a tuberculostatic antibiotic[J]. Journal of the Chemical Society, Chemical Communications, 1972,1972(11): 660-661.
    41. Bycroft, B.&King T. Crystal structure of streptolidine, a guanidine-containing amino-acid[J]. Journal of the Chemical Society, Chemical Communications, 1972,1972(11): 652-653.
    42. Bycroft, B.W., Cameron D., Croft L.R., Hassanali-Walji A., Johnson A.W.&Webb T. Total Structure of Capreomycin IB, a Tuberculostatic Peptide Antibiotic[J]. Nature, 1971,231(5301): 301-302.
    43. Carter, J.H., 2nd, Du Bus R.H., Dyer J.R., Floyd J.C., Rice K.C.&Shaw P.D. Biosynthesis of viomycin. II. Origin of beta-lysine and viomycidine[J]. Biochemistry, 1974,13(6): 1227-33.
    44. Casali, N., White A.M.&Riley L.W. Regulation of the Mycobacterium tuberculosis mce1 operon[J]. J Bacteriol, 2006,188(2): 441-9.
    45. Chen, C.M., Ye Q.Z., Zhu Z.M., Wanner B.L.&Walsh C.T. Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B[J]. J Biol Chem, 1990,265(8): 4461-71.
    46. Chen, D.&Frey P.A. Identification of lysine 346 as a functionally important residue for pyridoxal 5'-phosphate binding and catalysis in lysine 2, 3-aminomutase from Bacillus subtilis[J]. Biochemistry, 2001,40(2): 596-602.
    47. Chirpich, T.P., Zappia V., Costilow R.N.&Barker H.A. Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme[J]. Journal of Biological Chemistry, 1970,245(7): 1778-89.
    48. Colson, S., van Wezel G.P., Craig M., Noens E.E., Nothaft H., Mommaas A.M., et al. The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor[J]. Microbiology, 2008,154(Pt 2): 373-82.
    49. Conseil, G., Deeley R.G.&Cole S.P. Functional importance of three basic residues clustered at the cytosolic interface of transmembrane helix 15 in the multidrug and organic anion transporter MRP1 (ABCC1)[J]. J Biol Chem, 2006,281(1): 43-50.
    50. Coque, J.J., Perez-Llarena F.J., Enguita F.J., Fuente J.L., Martin J.F.&Liras P. Characterization of the cmcH genes of Nocardia lactamdurans and Streptomyces clavuligerus encoding a functional 3'-hydroxymethylcephem O-carbamoyltransferase for cephamycin biosynthesis[J]. Gene, 1995,162(1): 21-7.
    51. Costilow, R., Rochovansky O.&Barker H. Isolation and Identification of beta-Lysine as an Intermediate in lysine fermentation[J]. Journal of Biological Chemistry, 1966,241(7): 1573.
    52. Davidson, A.L., Dassa E., Orelle C.&Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems[J]. Microbiol Mol Biol Rev, 2008,72(2): 317-64, table of contents.
    53. Decker, H., Gaisser S., Pelzer S., Schneider P., Westrich L., Wohlleben W., et al. A general approach for cloning and characterizing dNDP-glucose dehydratase genes from actinomycetes[J]. FEMS Microbiol Lett, 1996,141(2-3): 195-201.
    54. Felnagle, E.A., Rondon M.R., Berti A.D., Crosby H.A.&Thomas M.G. Identification of the biosynthetic gene cluster and an additional gene for resistance to the antituberculosis drug capreomycin[J]. Appl Environ Microbiol, 2007,73(13): 4162-70.
    55. Fernández-Moreno, M.A., Vallín C.&Malpartida F. Streptothricin biosynthesis is catalyzed by enzymes related to nonribosomal peptide bond formation[J]. Journal of Bacteriology, 1997,179(22): 6929-6936.
    56. Finking, R., Neumuller A., Solsbacher J., Konz D., Kretzschmar G., Schweitzer M., et al. Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases[J]. Chembiochem, 2003,4(9): 903-6.
    57. Fox, J.J.&Watanabe K.A. Nucleosides XXXII. On the Structure of blasticidin S, a nucleoside antibiotic[J]. Tetrahedron Lett, 1966,9: 897-904.
    58. Ghosh, S., Blumenthal H., Davidson E.&Roseman S. Glucosamine metabolism[J]. Journal of Biological Chemistry, 1960,235(5): 1265.
    59. Gokhale, R.S., Hunziker D., Cane D.E.&Khosla C. Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase[J]. Chem. Biol., 1998,6: 117-125.
    60. Goldstein, A.L.&McCusker J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae[J]. Yeast, 1999,15(14): 1541-1553.
    61. Gould, S.J., Martinkus K.J.&Tann C.H. Biosynthesis of streptothricin F. 1. Observing the interaction of primary and secondary metabolism with [1,2-13C2]acetate[J]. Journal of the American Chemical Society, 1981a,103(10): 2871-2872.
    62. Gould, S.J., Martinkus K.J.&Tann C.H. Studies of nitrogen metabolism using 13C NMR spectroscopy. 2. Incorporation of L-[guanido-13C,15N2]arginine and DL-[guanido-13C,2-15N]arginine into streptothricin F[J]. Journal of the American Chemical Society, 1981b,103(15): 4639-4640.
    63. Graf, E.&Boeddeker H. Zur Kenntnis der beta-Dimethylamino-hydrozimts?ure (Taxus-Alkaloide, 1. Mitteilung)[J]. Archiv der Pharmazie, 1956,289(7): 364-370.
    64. Grafe, U., Bocker H., Reinhardt G.&Thrum H. Regulatory modification of nourseothricin biosynthesis by o-aminobenzoic acid in Streptomyces noursei JA 3890b cultures[J]. Z Allg Mikrobiol, 1974,14(8): 659-73.
    65. Grafe, U., Reinhardt G., Bocker H.&Thrum H. Biosynthesis of streptolidine moiety of streptothricins by Streptomyces noursei JA 3890b[J]. J Antibiot (Tokyo), 1977,30(1): 106-10.
    66. Grammel, N., Pankevych K., Demydchuk J., Lambrecht K., Saluz H.P., Keller U., et al. A Beta-lysine adenylating enzyme and a Beta-lysine binding protein involved in poly Beta-lysine chain assembly in nourseothricin synthesis in Streptomyces noursei[J]. European Journal of Biochemistry, 2002,269(1): 347-357.
    67. Green, E.D.&Olson M.V. Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction[J]. Proc Natl Acad Sci U S A, 1990,87(3): 1213-7.
    68. Haine, V., Sinon A., Van Steen F., Rousseau S., Dozot M., Lestrate P., et al. Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence[J]. Infect Immun, 2005,73(9): 5578-86.
    69. Haydon, D.J.&Guest J.R. A new family of bacterial regulatory proteins[J]. FEMS Microbiol Lett, 1991,63(2-3): 291-5.
    70. Helmetag, V., Samel S.A., Thomas M.G., Marahiel M.A.&Essen L.O. Structural basis for the erythro-stereospecificity of the L-arginine oxygenase VioC in viomycin biosynthesis[J]. FEBS J, 2009,276(13): 3669-82.
    71. Henikoff, S., Haughn G.W., Calvo J.M.&Wallace J.C. A large family of bacterial activator proteins[J]. Proc Natl Acad Sci U S A, 1988,85(18): 6602-6.
    72. Hillerich, B.&Westpheling J. A new GntR family transcriptional regulator in streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source[J]. J Bacteriol, 2006,188(21): 7477-87.
    73. Hoskisson, P.A.&Rigali S. Chapter 1: Variation in form and function the helix-turn-helix regulators of the GntR superfamily[J]. Adv Appl Microbiol, 2009,69: 1-22.
    74. Hoskisson, P.A., Rigali S., Fowler K., Findlay K.C.&Buttner M.J. DevA, a GntR-like transcriptional regulator required for development in Streptomyces coelicolor[J]. J Bacteriol, 2006,188(14): 5014-23.
    75. Ilieva, I., Lalov N., Surdzhi ska S., Popov I.&Ionova I. Trial of kormogrisein-40 as a growth stimulant in pigs[J]. Veterinarno-meditsinski nauki, 1985,22(7): 105.
    76. Israel, D.I. A PCR-based method for high stringency screening of DNA libraries[J]. Nucleic Acids Res, 1993,21(11): 2627-31.
    77. Jabbouri, S., Fellay R., Talmont F., Kamalaprija P., Burger U., Relic B., et al. Involvement of nodS in N-methylation and nodU in 6-O-carbamoylation of Rhizobium sp. NGR234 nod factors[J]. J Biol Chem, 1995,270(39): 22968-73.
    78. Jackson, M.D. Advanced Studies on the Biosynthesis of the Streptolidine Moiety of Streptothricin F[D]. Oregon State University, Oregon: c2000, 2001: 114.
    79. Jackson, M.D., Gould S.J.&Zabriskie T.M. Studies on the formation and incorporation of streptolidine in the biosynthesis of the peptidyl nucleoside antibiotic streptothricin F[J]. Journal of Organic Chemistry, 2002,67(9): 2934-2941.
    80. Jansen, R., Kalousek F., Fenton W.A., Rosenberg L.E.&Ledley F.D. Cloning of full-length methylmalonyl-CoA mutase from a cDNA library using the polymerase chain reaction[J].Genomics, 1989,4(2): 198-205.
    81. Jaques, S.&McCarter L.L. Three new regulators of swarming in Vibrio parahaemolyticus[J]. J Bacteriol, 2006,188(7): 2625-35.
    82. Jones, P.M.&George A.M. The ABC transporter structure and mechanism: perspectives on recent research[J]. Cell Mol Life Sci, 2004,61(6): 682-99.
    83. Ju, J., Ozanick S.G., Shen B.&Thomas M.G. Conversion of (2S)-arginine to (2S,3R)-capreomycidine by VioC and VioD from the viomycin biosynthetic pathway of Streptomyces sp. strain ATCC11861[J]. ChemBioChem, 2004,5(9): 1281-5.
    84. Kadi, N.&Challis G.L. Chapter 17. Siderophore biosynthesis a substrate specificity assay for nonribosomal peptide synthetase-independent siderophore synthetases involving trapping of acyl-adenylate intermediates with hydroxylamine[J]. Methods Enzymol, 2009,458: 431-57.
    85. Khokhlov, A.&Reshetov P. Chromatography of streptothricins on carboxymethylcellulose[J]. Journal of Chromatography A, 1964,14: 492-494.
    86. Kieser, T., Bibb M.J., Buttner M.J., Chater K.F.&Hopwood D.A. Practical Streptomyces Gentics[M]. Norwich, England: John Innes Centre, Norwich Research Park, 2000.
    87. Kim, C.&Mobashery S. Phosphoryl transfer by aminoglycoside 3'-phosphotransferases and manifestation of antibiotic resistance[J]. Bioorganic Chemistry, 2005,33(3): 149-158.
    88. Kingston, R.L., Scopes R.K.&Baker E.N. The structure of glucose-fructose oxidoreductase from Zymomonas mobilis: an osmoprotective periplasmic enzyme containing non-dissociable NADP[J]. Structure, 1996,4(12): 1413-28.
    89. Kitaoka, S., Wada K., Hasegawa Y., Minami Y., Fukuyama K.&Takahashi Y. Crystal structure of Escherichia coli SufC, an ABC-type ATPase component of the SUF iron-sulfur cluster assembly machinery[J]. FEBS Lett, 2006,580(1): 137-43.
    90. Konz, D.&Marahiel M.A. How do peptide synthetases generate structural diversity?[J]. Chem Biol, 1999,6(2): R39-48.
    91. Kopp, F.&Marahiel M.A. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis[J]. Nat Prod Rep, 2007,24(4): 735-49.
    92. Kornfeld, R. Studies on L-glutamine D-fructose 6-phosphate amidotransferase. I. Feedback inhibition by uridine diphosphate-N-acetylglucosamine[J]. Journal of Biological Chemistry, 1967,242(13): 3135.
    93. Kurahashi, K. Biosynthesis of small peptides[J]. Annu Rev Biochem, 1974,43(0): 445-59.
    94. Kurylo-Borowska, Z.&Abramsky T. Biosynthesis of [beta]-tyrosine[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 1972,264(1): 1-10.
    95. Kusumoto, S., Imaoka S., Kambayashi Y.&Shiba T. Total synthesis of antibiotic streptothricin F[J]. Tetrahedron Letters, 1982a,23(29): 2961-2964.
    96. Kusumoto, S., Kambayashi Y., Imaoka S., Shima K.&Shiba T. Total chemical structure of streptothricin[J]. J Antibiot (Tokyo), 1982b,35(7): 925-7.
    97. Laland, S.G., Froyshov O., Gilhuus-Moe C.&Zimmer T.L. Gramicidin S synthetase, an enzymewith an unusually large number of catalytic functions[J]. Nat New Biol, 1972,239(89): 43-4.
    98. Laland, S.G.&Zimmer T.L. The protein thiotemplate mechanism of synthesis for the peptide antibiotics produced by Bacillus brevis[J]. Essays Biochem, 1973,9: 31-57.
    99. Leloir, L.F.&Cardini C.E. The biosynthesis of glucosamine[J]. Biochimica et Biophysica Acta, 1953,12(1-2): 15-22.
    100. Lepore, B.W., Ruzicka F.J., Frey P.A.&Ringe D. The x-ray crystal structure of lysine-2,3-aminomutase from Clostridium subterminale[J]. Proc Natl Acad Sci U S A, 2005,102(39): 13819-24.
    101. Levasseur, A., Gouret P., Lesage-Meessen L., Asther M., Record E.&Pontarotti P. Tracking the connection between evolutionary and functional shifts using the fungal lipase/feruloyl esterase A family[J]. BMC Evol Biol, 2006,6: 92.
    102. Lindberg, F., Westman L.&Normark S. Regulatory components in Citrobacter freundii ampC beta-lactamase induction[J]. Proc Natl Acad Sci U S A, 1985,82(14): 4620-4.
    103. Lipmann, F. Nonribosomal polypeptide synthesis on polyenzyme templates[J]. Acc. Chem. Res., 1973,6: 361-367.
    104. Llano-Sotelo, B., Azucena E.F., Jr., Kotra L.P., Mobashery S.&Chow C.S. Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site[J]. Chem Biol, 2002,9(4): 455-63.
    105. Marahiel, M.A.&Essen L.O. Chapter 13. Nonribosomal peptide synthetases mechanistic and structural aspects of essential domains[J]. Methods Enzymol, 2009,458: 337-51.
    106. Marahiel, M.A., Stachelhaus T.&Mootz H.D. Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis[J]. Chem Rev, 1997,97(7): 2651-2674.
    107. Marconi, G.&Bodanszky M. The configuration of stendomycidine[J]. The Journal of Antibiotics, 1970,23(3): 120-124.
    108. Martin, J.F.&Liras P. Organization and expression of gene involved in the biosythesis of antibiotics and other secondary metabolites[J]. Annu Rev Miccrobiol, 1989,43: 173-206.
    109. Martinkus, K.J., Tann C.-H.&Gould S.J. The biosynthesis of the streptolidine moiety in streptothricin F[J]. Tetrahedron, 1983,39(21): 3493-3505.
    110. Matthijs, S., Koedam N., Cornelis P.&De Greve H. The trehalose operon of Pseudomonas fluorescens ATCC 17400[J]. Res Microbiol, 2000,151(10): 845-51.
    111. Maxam, A.M.&Gilbert W. A new method for sequencing DNA[J]. Proc Natl Acad Sci USA, 1977,74(2): 560-4.
    112. Milewski, S. Glucosamine-6-phosphate synthase--the multi-facets enzyme[J]. Biochim Biophys Acta, 2002,1597(2): 173-92.
    113. Mootz, H.D., Schwarzer D.&Marahiel M.A. Construction of hybrid peptide synthetases by module and domain fusions[J]. Proc. Natl Acad. Sci. USA, 2000,97: 5848-5853.
    114. Moss, M.&Frey P.A. The role of S-adenosylmethionine in the lysine 2,3-aminomutase reaction[J]. J Biol Chem, 1987,262(31): 14859-62.
    115. Neer, E.J., Schmidt C.J., Nambudripad R.&Smith T.F. The ancient regulatory-protein family of WD-repeat proteins[J]. Nature, 1994,371(6495): 297-300.
    116. Palaniswamy, V.A.&Gould S.J. Biosynthesis of streptothricin F. Part 6. Formation and intermediacy of D-glucosamine in Streptomyces L-1689-23[J]. Journal of the Chemical Society, Perkin Transactions 1, 1988 (8): 2283-2286.
    117. Partridge, S.R.&Hall R.M. Correctly identifying the streptothricin resistance gene cassette[J]. Journal of Clinical Microbiology, 2005,43(8): 4298-4300.
    118. Plamann, M.D.&Stauffer G.V. Regulation of the Escherichia coli glyA gene by the metR gene product and homocysteine[J]. J Bacteriol, 1989,171(9): 4958-62.
    119. Pospiech, A.&Neumann B. A versatile quick-prep of genomic DNA from gram-positive bacteria[J]. Trends Genet, 1995,11(6): 217-8.
    120. Poston, M. Coenzyme B12-dependent enzymes in potatoes: leucine 2, 3-aminomutase and methylmalonyl-coa mutase[J]. Phytochemistry, 1978,17(3): 401-402.
    121. Quail, M.A., Dempsey C.E.&Guest J.R. Identification of a fatty acyl responsive regulator (FarR) in Escherichia coli[J]. FEBS Lett, 1994,356(2-3): 183-7.
    122. Quiocho, F. Atomic structures and function of periplasmic receptors for active transport and chemotaxis[J]. Current Opinion in Structural Biology, 1991,1(6): 922-933.
    123. Redenbach, M., Kieser H.M., Denapaite D., Eichner A., Cullum J., Kinashi H., et al. A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome[J]. Mol Microbiol, 1996,21(1): 77-96.
    124. Reuther, J., Wohlleben W.&Muth G. Modular architecture of the conjugative plasmid pSVH1 from Streptomyces venezuelae[J]. Plasmid, 2006,55(3): 201-9.
    125. Rigali, S., Derouaux A., Giannotta F.&Dusart J. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies[J]. J Biol Chem, 2002,277(15): 12507-15.
    126. Rigali, S., Nothaft H., Noens E.E., Schlicht M., Colson S., Muller M., et al. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development[J]. Mol Microbiol, 2006,61(5): 1237-51.
    127. Rigali, S., Titgemeyer F., Barends S., Mulder S., Thomae A.W., Hopwood D.A., et al. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces[J]. EMBO Rep, 2008,9(7): 670-5.
    128. Ryding, E.L., Persson A., Onell C.&Kvist L. An evaluation of midwives' counseling of pregnant women in fear of childbirth[J]. Acta Obstet Gynecol Scand, 2003,82(1): 10-7.
    129. Saiki, R.K., Scharf S., Faloona F., Mullis K.B., Horn G.T., Erlich H.A., et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia[J]. Science, 1985,230(4732): 1350-4.
    130. Saint-Girons, I., Parsot C., Zakin M.M., Barzu O.&Cohen G.N. Methionine biosynthesis inEnterobacteriaceae: biochemical, regulatory, and evolutionary aspects[J]. CRC Crit Rev Biochem, 1988,23 Suppl 1: S1-42.
    131. Salowe, S.P., Marsh E.N.&Townsend C.A. Purification and characterization of clavaminate synthase from Streptomyces clavuligerus: an unusual oxidative enzyme in natural product biosynthesis[J]. Biochemistry, 1990,29(27): 6499-508.
    132. Sanger, F., Nicklen S.&Coulson A.R. DNA sequencing with chain-terminating inhibitors[J]. Proc Natl Acad Sci U S A, 1977,74(12): 5463-7.
    133. Sato, M., Dhut S.&Toda T. New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe[J]. Yeast, 2005,22(7): 583-591.
    134. Sawada, Y., Kawakami S.&Taniyama H. Incorporation of carboxyl and methyl carbon-13 labeled acetates into racemomycin A by Streptomyces lavendulae ISP 5069[J]. Journal of Antibiotics, 1977a,30(7): 630-632.
    135. Sawada, Y., Kubo T.&Taniyama H. Biosynthesis of streptothricin antibiotics. I. Incorporation of
    14C-labeled compound into racemomycin-A and distribution of radioactivity[J]. Chem Pharm Bull (Tokyo), 1976,24(9): 2163-7.
    136. Sawada, Y., Nakashima S.&Taniyama H. Biosynthesis of streptothricin antibiotics. VI. Mechanisms of Beta-lysine and its peptide formation[J]. Chemical and Pharmaceutical Bulletin, 1977b,25(12): 3210-3217.
    137. Sawada, Y., Nakashima S., Taniyama H.&Inamori Y. Biosynthesis of streptothricin antibiotics. III. Incorporation of D-glucosamine into D-gulosamine moiety of racemomycin-A[J]. Chem Pharm Bull (Tokyo), 1977c,25(6): 1478-81.
    138. Sawada, Y., Nakashima S., Taniyama H., Inamori Y., Sunagawa S.&Tsuruga M. Biosynthesis of streptothricin antibiotics. IV. On the incorporation of L-arginine into streptolidine moiety by Streptomyces lavendulae OP-2[J]. Chem Pharm Bull (Tokyo), 1977d,25(5): 1161-3.
    139. Schell, M.A. Molecular biology of the LysR family of transcriptional regulators[J]. Annu Rev Microbiol, 1993,47: 597-626.
    140. Schock, F.&Dahl M.K. Expression of the tre operon of Bacillus subtilis 168 is regulated by the repressor TreR[J]. J Bacteriol, 1996,178(15): 4576-81.
    141. Seltmann, G. Biochemical aspects of the resistance to nourseothricin (streptothricin) of Escherichia coli strains[J]. J Basic Microbiol, 1989,29(8): 547-59.
    142. Seo, J.W., Ohnishi Y., Hirata A.&Horinouchi S. ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus[J]. J Bacteriol, 2002,184(1): 91-103.
    143. Seto, H., Otake N.&Yonehara H. Studies on the Biosynthesis of Blasticidin S[J]. Agricultural and Biological Chemistry, 1968,32(10): 1299-1305.
    144. Settembre, E.C., Dorrestein P.C., Park J.H., Augustine A.M., Begley T.P.&Ealick S.E. Structural and mechanistic studies on ThiO, a glycine oxidase essential for thiamin biosynthesis in Bacillus subtilis[J]. Biochemistry, 2003,42(10): 2971-81.
    145. Simmer, J.P., Kelly R.E., Rinker A.G., Jr., Scully J.L.&Evans D.R. Mammalian carbamyl phosphate synthetase (CPS). DNA sequence and evolution of the CPS domain of the Syrian hamster multifunctional protein CAD[J]. J Biol Chem, 1990,265(18): 10395-402.
    146. Smanski, M.J., Peterson R.M., Rajski S.R.&Shen B. Engineered Streptomyces platensis strains that overproduce antibiotics platensimycin and platencin[J]. Antimicrob Agents Chemother, 2009,53(4): 1299-304.
    147. Smith, E.L. Principles of biochemistry, general aspects[M]. New York: McGraw-Hill, 1983: xviii, 886 p.
    148. Sprusansky, O., Zhou L., Jordan S., White J.&Westpheling J. Identification of three new genes involved in morphogenesis and antibiotic production in Streptomyces coelicolor[J]. J Bacteriol, 2003,185(20): 6147-57.
    149. Stein, T., Vater J., Kruft V., Otto A., Wittmann-Liebold B., Franke P., et al. The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates[J]. J Biol Chem, 1996,271(26): 15428-35.
    150. Strasser, R., Mucha J., Schwihla H., Altmann F., Glossl J.&Steinkellner H. Molecular cloning and characterization of cDNA coding for beta1, 2N-acetylglucosaminyltransferase I (GlcNAc-TI) from Nicotiana tabacum[J]. Glycobiology, 1999,9(8): 779-85.
    151. Strieker, M., Tanovic A.&Marahiel M.A. Nonribosomal peptide synthetases: structures and dynamics[J]. Curr Opin Struct Biol, 2010,20(2): 234-40.
    152. Summons, R.E. Occurrence, structure and synthesis of 3-(N-Methylamino)glutaric acid, an amino acid from Prochloron didemnii[J]. Phytochemistry, 1981,20(5): 1125-1127.
    153. Taniyama, H., Sawada Y.&Kitagawa T. Characterization of racemomycins[J]. Chem Pharm Bull, 1971,19: 1627-1634.
    154. Thiruvengadam, T.K., Gould S.J., Aberhart D.J.&Lin H.J. Biosynthesis of streptothricin F. 5. Formation of Beta-lysine by Streptomyces L-1689-23[J]. Journal of the American Chemical Society, 1983,105(16): 5470-5476.
    155. Thoden, J.B., Hegeman A.D., Wesenberg G., Chapeau M.C., Frey P.A.&Holden H.M. Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry, 1997,36(21): 6294-304.
    156. Thoden, J.B., Wohlers T.M., Fridovich-Keil J.L.&Holden H.M. Crystallographic evidence for Tyr
    157 functioning as the active site base in human UDP-galactose 4-epimerase[J]. Biochemistry, 2000,39(19): 5691-701.
    157. Thomas, M.G., Chan Y.A.&Ozanick S.G. Deciphering tuberactinomycin biosynthesis: isolation, sequencing, and annotation of the viomycin biosynthetic gene cluster[J]. Antimicrob Agents Chemother, 2003,47(9): 2823-30.
    158. Tiburzi, F., Visca P.&Imperi F. Do nonribosomal peptide synthetases occur in higher eukaryotes?[J]. IUBMB Life, 2007,59(11): 730-3.
    159. Townsend, C.A. New reactions in clavulanic acid biosynthesis[J]. Curr Opin Chem Biol, 2002,6(5):583-9.
    160. Trauger, J.W., Kohli R.M., Mootz H.D., Marahiel M.A.&Walsh C.T. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase[J]. Nature, 2000,407(6801): 215-8.
    161. van den Bergh, E.R., Dijkhuizen L.&Meijer W.G. CbbR, a LysR-type transcriptional activator, is required for expression of the autotrophic CO2 fixation enzymes of Xanthobacter flavus[J]. J Bacteriol, 1993,175(19): 6097-104.
    162. von Dohren, H., Keller U., Vater J.&Zocher R. Multifunctional Peptide Synthetases[J]. Chem Rev, 1997,97(7): 2675-2706.
    163. Voronina, O., Tovarova I.&Khokhlov A. Transformation of alpha-lysine into beta-lysine during the process of polymycine biosynthesis[J]. Isv. Akad. Nauk SSSR, Ser. biol., 1973,2: 228-232.
    164. Waksman, S.A.&Woodruff H.B. Streptothricin, a new selective bacteriostatic and bactericidal agent, particularly active against Gram-negative bacteria[J]. Proc Soc Exp Biol Med, 1942,49: 207-210.
    165. Wang, S.Y. [Advances in the study of the mechanism and application of nonribosomal peptide synthetases][J]. Wei Sheng Wu Xue Bao, 2007,47(4): 734-7.
    166. Watanabe, R., Ohishi K., Maeda Y., Nakamura N.&Kinoshita T. Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis[J]. Biochem J, 1999,339 ( Pt 1): 185-92.
    167. Witte, W. Selective pressure by antibiotic use in livestock[J]. Int J Antimicrob Agents, 2000,16 Suppl 1: S19-24.
    168. Yin, X., McPhail K.L., Kim K.J.&Zabriskie T.M. Formation of the nonproteinogenic amino acid 2S,3R-capreomycidine by VioD from the viomycin biosynthesis pathway[J]. ChemBioChem, 2004,5(9): 1278-81.
    169. Zettler, J.&Mootz H.D. Biochemical evidence for conformational changes in the cross-talk between adenylation and peptidyl-carrier protein domains of nonribosomal peptide synthetases[J]. FEBS J, 2010,277(5): 1159-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700