基于生物信息学的抗结核药物靶点的筛选与验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结核病是全球死亡率和发病率最高的传染性疾病之一,结核分枝杆菌(简称结核杆菌)是引起结核病的病原菌。世界卫生组织2008年的调查报告表明,2006年全球新增920万结核病人,有170万人死于结核病。结核杆菌持续感染及耐药结核杆菌的出现和蔓延,是目前结核病研究面临的两大难题,开发新型抗结核药物迫在眉睫。
     生物信息学是现代药物开发中必不可少的工具。1998年结核杆菌基因组测序的完成开启了新型抗结核药物研究的新时代。本论文首先利用生物信息学工具分析结核杆菌基因组中功能未知的基因,在此分析过程中,发现了两个新型蛋白质结构域(domain),DIM和MSTF。分析同源蛋白发现包含DIM domain的蛋白可能涉及细菌的致病性、信号转导或小分子物质运输;而MSTF domain可能在一些与细胞壁相关的过程中起作用。同时选取与结核杆菌持续感染及细胞壁合成、代谢相关的332个基因,利用生物信息学分析,最后筛选出与人及小鼠蛋白序列一致性低、在多种致病分枝杆菌中高度保守且可被用来进行计算机辅助药物设计的编码基因66个,为本课题组深入开展新型抗结核药物靶点的研究奠定基础。
     结核杆菌的致病性和耐药性与其厚且结构复杂的细胞壁有重要的联系。基于上一步生物信息学潜在药靶筛选的结果,本文选取与细胞壁合成相关基因galU/Rv0993和glmU/Rv1018c作为研究目标进行相关的功能研究。结核杆菌galU基因编码UDP葡萄糖焦磷酸化酶(简称MtGalU),用于合成UDP葡萄糖(UDP-Glc);glmU基因编码的蛋白同时具有葡糖胺-1-磷酸盐(GlcN-1-P)乙酰转移酶和UDP-N-乙酰葡糖胺(UDP-N-GlcNAc)焦磷酸化酶活性(简称MtGlmU),用于合成UDP-N-GlcNAc。在本研究中,我们首先分别克隆了Rv0993和Rv1018c基因,并表达、纯化获得MtGalU和MtGlmU重组蛋白,质谱分析分子量表明两个重组蛋白为所设计的目的蛋白。对MtGalU和MtGlmU重组蛋白比活力、最适反应条件和酶动力学参数的测定表明所获得的两个重组蛋白分别具有相应的活性。研究发现,具有活性的重组MtGalU蛋白为不均一的单聚体和多聚体混合物,而具有活性的重组MtGlmU蛋白为均一、稳定的六聚体。利用两个重组蛋白的多克隆抗体进行亚细胞定位研究,发现MtGalU主要定位于细胞壁,MtGlmU主要定位于细胞质中。同时利用同源模建方法模拟了MtGalU和MtGlmU的蛋白三维结构,为后期小分子化合物的虚拟筛选奠定基础。
     基于潜在药靶筛选结果,本文还选取与结核杆菌持续感染相关的异柠檬酸裂解酶(ICL)做为潜在靶点,进行了抗结核先导化合物的筛选。首先克隆了异柠檬酸裂解酶的编码基因icl/Rv0467,然后在大肠杆菌中表达并纯化了ICL蛋白,生化验证重组蛋白具有异柠檬酸裂解酶活性。基于ICL蛋白的晶体结构,从Specs数据库中虚拟筛选得到能与ICL活性位点结合的小分子化合物80种,酶活性检测表明其中67种化合物在200μg/ml的浓度下对ICL活性有抑制作用。通过体外抑菌实验,筛选到能有效抑制模拟持续感染状态(限制碳源培养)的结核杆菌H37Ra株和临床耐多药结核杆菌的先导化合物2种;其中1种化合物FD20具有较低的细胞毒性且对细胞内细菌有明显的抑制作用。
     本论文首先利用生物信息学分析从结核杆菌蛋白质组中发现了两个新型蛋白质domain,DIM和MSTF,对两个新型domain的分析为我们了解微生物未知蛋白的功能提供启示。同时利用生物信息学分析筛选到与持续感染及细胞壁合成、代谢相关的可作为潜在药靶的基因66个,为本课题组抗结核药靶研究工作提供参考。论文中对MtGalU和MtGlmU蛋白相关功能的研究工作为下一步以MtGalU和MtGlmU做为抗结核杆菌药物靶点筛选抑制剂奠定了基础。本论文针对ICL所筛选得到的小分子化合物FD20,是非常具有成药潜力的抗结核先导化合物。
Tuberculosis,caused by Mycobacterium tuberculosis.is one of the leading infectious diseases worldwide.Globally,9.2 million new cases and 1.7 million deaths from TB occurred in 2006.The persistent infection of M.tuberculosis and the emergence of drug-resistant strains present two major obstacles in gaining control over tuberculosis worldwide.It is urgent to develop new anti-tuberculosis drugs.
     Modern drug development is largely target-driven.Bioinformatics has certainly come to stay and is now ubiquitous with drug discovery.In present work,we firstly analyzed the unknown function genes in the tuberculosis H37Rv genome and identified two novel protein domains,DIM and MSTF.The functions of these novel domains were discussed based on the homology sequences.To facilitate novel drug target identification, we started with 332genes which are involved in persistent infection and cell wall synthesis and metabolism of M.tuberculosis.Using bioinformatics methods,we finally identified 66 genes which fill the basic discipline of potential drug target.
     The thick and complex cell envelope has been implicated in many aspects of the pathogenicity and drug resistance of M.tuberculosis.Based on the drug target screening result,we cloned galU/Rv0993 and glmU/Rv1018c which involved in the cell wall synthesis.M.tuberculosis galU/Rv0993 which coded UDP-glucose pyrophosphorylase(MtGalU) was used to synthesis important sugar donor UDP-glucose.M.tuberculosis glmU/Rv1018c coded a bifunctional enzyme which inhabits both GleN-1-P acetyltransferase and UDP-N-GlcNAc pyrophosphorylase activities(MtGlmU).MtGlmU was used to synthesis another essential sugar donor UDP-N-GlcNAc.In current work, we purified and characterized the recombinant MtGalU and MtGlmU proteins. MtGalU exists as a mixture of monomer and different oligomers and MtGlmU exists as a stable hexamer.The specific activity,enzyme kinetic properties of MtGalU and MtGlmU were determined.The subcellular localization study shows that MtGalU located on cell wall and MtGlmU located in cell cytoplasm.The 3D structures of MtGalU and MtGlmU were modeled and the models could be further explored for in silico docking studies with suitable inhibitors.
     Ic1/Rv0467 which is related with persistence infection of M. tuberculosis was subjected to further characterization.We cloned the icl/Rv0467 gene and purified the recombinant functional isocitrate lyase (ICL) protein.The crystal structure of M.tuberculosis ICL was determined formerly and eighty compounds that "hits" the target ICL were screened in silico from the compound library Specs.The enzymatic inhibition effects of these compounds were confirmed by enzymatic activity assay. By testing the inhibition effect of the compounds on the growth of bacteria in vitro,we finally got two compounds which inhibit the proliferation of analogue persistent M.tuberculosis H37Ra(cultured in the defined minimal medium with acetate as only carbon source) and M.tuberculosis multi-drug resistant stains.One compound,FD20,has low cytotoxicity and can inhibit the proliferation of M.tuberculosisH37Ra in human macrophage THP-1.
     In summary,two novel protein domains,DIM and MSTF,were identified in M.tuberculosis proteome by bioinformatics analysis in this work. Combined with bioinformatics analysis,we identified 66 potential anti-tuberculosis drug target genes,three of which were subjected to further biochemical analysis.Finally,the compound FD20 targeted against ICL represents an attractive anti-tuberculosis lead compound.
引文
[1]谢惠安,阳国太,林善梓等.现代结核病学[M].北京:人民卫生出版社,2000,1-200.
    [2]WHO.Global Tuberculosis Control 2008:Surveillance,Planning,Financing[EB].http://www.who.int/tb,2008.
    [3]C.Dye,S.Scheele,P.Dolin,et al.Consensus statement.Global burden of tuberculosis:estimated incidence,prevalence,and mortality by country.WHO Global Surveillance and Monitoring Project[J].Jama,1999,282(7):677-686.
    [4]全国结核病流行病学调查技术指导组.第四次全国结核病流行抽样调查报告[J].中华结核和呼吸杂志,2002,25 3-7.
    [5]王陇德.中国结核病控制现状及展望[J].中华结核和呼吸杂志,2006,29(8):505-506.
    [6]D.A.Mitchison.The diagnosis and therapy of tuberculosis during the past 100 years[J].Am J Respir Crit Care Med,2005,171(7):699-706.
    [7]G.A.Colditz,C.S.Berkey,F.Mosteller,et al.The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis:meta-analyses of the published literature[J].Pediatrics,1995,96(1 Pt 1):29-35.
    [8]T.R.Frieden,P.I.Fujiwara,R.M.Washko,et al.Tuberculosis in New York City--turning the tide[J].N Engl J Med,1995,333(4):229-233.
    [9]C.Dye,Z.Fengzeng,S.Scheele,et al.Evaluating the impact of tuberculosis control:number of deaths prevented by short-course chemotherapy in China[J].Int J Epidemiol,2000,29(3):558-564.
    [10]K.Andries,P.Verhasselt,J.Guillemont,et al.A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis[J].Science,2005,307(5707):223-227.
    [11]S.T.Cole,R.Brosch,J.Parkhill,et al.Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence[J].Nature,1998,393(6685):537-544.
    [12]Y.Zhang.The magic bullets and tuberculosis drug targets[J].Annu Rev Pharmacol Toxicol,2005,45 529-564.
    [13]全国利福喷丁科研协作组.国产利福喷丁治疗结核病的系列研究[J].结 核病与胸部肿瘤, 1997, 2 84-88.
    
    [14] T. Bruzzese, C. Rimaroli, A. Bonabello, et al. Pharmacokinetics and tissue distribution of rifametane, a new 3-azinomethyl-rifamycin derivative, in several animal species [J]. Arzneimittelforschung, 2000, 50(1): 60-71.
    
    [15] S. Yamamoto, I. Toida, N. Watanabe, et al. In vitro antimycobacterial activities of pyrazinamide analogs: results of screening tests [J]. Kekkaku, 1996, 71(3): 253-258.
    
    [16] D. R. Ashtekar, R. Costa-Perira, K. Nagrajan, et al. In vitro and in vivo activities of the nitroimidazole CGI 17341 against Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother, 1993, 37(2): 183-186.
    [17] C. K. Stover, P. Warrener, D. R. VanDevanter, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis [J]. Nature, 2000, 405(6789): 962-966.
    
    [18] M. H. Cynamon, S. P. Klemens, C. A. Sharpe, et al. Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model[J]. Antimicrob Agents Chemother, 1999, 43(5): 1189-1191.
    [19] L.A. Mitscher, W. Baker. Tuberculosis: a search for novel therapy starting with natural products [J]. Med Res Rev, 1998, 18(6): 363-374.
    [20] J. L. Flynn, J. Chan. Tuberculosis: latency and reactivation [J]. Infect Immun, 2001, 69(7): 4195-4201.
    
    [21] M.I. Voskuil, D. Schnappinger, K. C. Visconti, et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program [J]. J Exp Med, 2003, 198(5): 705-713.
    
    [22] J. D. McKinney, K. Honer zu Bentrup, E. J. Munoz-Elias, et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase [J]. Nature, 2000, 406(6797): 735-738.
    
    [23] M.S. Glickman, J. S. Cox, W. R. Jacobs, Jr. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, . and virulence of Mycobacterium tuberculosis [J]. Mol Cell, 2000, 5(4): 717-727.
    
    [24] R. A. Slayden, R. E. Lee, J. W. Armour, et al. Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis [J].Antimicrob Agents Chemother,1996,40(12):2813-2819.
    [25]Y.Ma,R.J.Stern,M.S.Scherman,et al.Drug targeting Mycobacterium tuberculosis cell wall synthesis:genetics of dTOP-rhamnose synthetic enzymes anddevelopment of a microtiter plate-based screen for inhibitors of conversion of dTOP-glucose to dTOP-rhamnose[J].Antimicrob Agents Chemother,2001,45(5):1407-1416.
    [26]M.Jackson,D.C.Crick,P.J.Brennan.Phosphatidylinositol is an essential phospholipid of mycobacteria[J].J Biol Chem,2000,275(39):30092-30099.
    [27]D.M.Collins,R.P.Kawakami,G.W.de Lisle,et al.Mutation of the principal sigma factor causes loss of virulence in a strain of the Mycobacterium tuberculosis complex[J].Proc Natl Acad Sci U S A,1995,92(17):8036-8040.
    [28]G.Lamichhane,M.Zignol,N.J.Blades,et al.A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis:application to Mycobacterium tuberculosis[J].Proc Natl Acad Sci U S A,2003,100(12):7213-7218.
    [29]V.Sharma,S.Sharma,K.Hoener zu Bentrup,et al.Structure of isocitrate lyase,a persistence factor of Mycobacterium tuberculosis[J].Nat Struct Biol,2000,7(8):663-668.
    [30]K.Honer zu Bentrup,D.G.Russell.Mycobacterial persistence:adaptation to a changing environment[J].Trends Microbiol,2001,9(12):597-605.
    [31]K.Honer Zu Bentrup,A.Miczak,D.L.Swenson,et al.Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis[J].J Bacteriol,1999,181(23):7161-7167.
    [32]柏冰,谢建平,王洪海等.一类新广谱抗生素药物靶标-异柠檬酸裂合酶的生物学研究[J].生命的化学,2005,25(5):365-367.
    [33]D.M.Wall,P.S.Duffy,C.Dupont,et al.Isocitrate lyase activity is required for virulence of the intracellular pathogen Rhodococcus equi [J].Infect Immun,2005,73(10):6736-6741.
    [34]M.C.Lorenz,G.R.Fink.The glyoxylate cycle is required for fungal virulence[J].Nature,2001,412(6842):83-86.
    [35]D.Vereecke,K.Cornelis,W.Temmerman,et al.Versatile persistence pathways for pathogens of animals and plants[J].Trends Microbiol,2002,10(11):485-488.
    [36]P.S.Murthy,M.Sirsi,T.Ramakrishnan.Effect of age on the enzymes of tricarboxylic acid and related cycles in Mycobacterium tuberculosis H37Rv[J].Am Rev Respir Dis,1973,108(3):689-690.
    [37]王炀,肖春玲.以异柠檬酸裂解酶为靶点筛选抗持留结核分枝杆菌药物[J].中国抗生素杂志,2007,32(7):391-395.
    [38]L.G.Wayne,K.Y.Lin.Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions[J].Infect Immun,1982,37(3):1042-1049.
    [39]F.Ranaldi,P.Vanni,E.Giachetti.Enzyme catalysis inmicrogravity:steady-state kinetic analysis of the isocitrate lyase reaction[J].Biophys Chem,2003,103(2):169-177.
    [40]郝方,裴秀英,张雪莲 等.结核分枝杆菌异柠檬酸裂解酶基因的克隆表达及酶学性质研究[J].中华结核和呼吸杂志,2005,28(12):845-848.
    [1] W. Tian, J. Skolnick. How well is enzyme function conserved as a function of pairwise sequence identity? [J]. J Mol Biol, 2003, 333(4): 863-882.
    
    [2] B. Rost. Twilight zone of protein sequence alignments [J]. Protein Eng, 1999, 12(2):. 85-94.
    
    [3] R. Sanchez, U. Pieper, F. Melo, et al. Protein structure modeling for structural genomics [J]. Nat Struct Biol, 2000, 7 Suppl 986-990.
    
    [4] S. T. Cole, R. Brosch, J. Parkhill, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J]. Nature, 1998, 393(6685): 537-544.
    
    [5] L. Danelishvili, M. J. Poort, L. E. Bermudez. Identification of Mycobacterium avium genes up-regulated in cultured macrophages and in mice [J]. FEMS Microbiol Lett, 2004, 239(1): 41-49.
    
    [6] D. Durocher, J. Henckel, A. R. Fersht, et al. The FHA domain is a modular phosphopeptide recognition motif [J]. Mol Cell, 1999, 4(3): 387-394.
    
    [7] S. Miyoshi, S. Shinoda. Microbial metalloproteases and pathogenesis [J]. Microbes Infect, 2000, 2(1): 91-98.
    
    [8] T. L. Blundell. Metalloproteinase superfamilies and drug design [J]. Nat Struct Biol, 1994, 1 (2): 73-75.
    
    [9] 0. Dideberg, P. Charlier, G. Dive, et al. Structure of a Zn2+-containing D-alanyl-D-alanine-cleaving carboxypeptidase at 2. 5 A resolution [J]. Nature, 1982, 299(5882): 469-470.
    
    [10] A. Bateman, M.. Bycroft. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (M1tD) [J]. J Mol Biol, 2000, 299(4): 1113-1119.
    
    [11] M. L. Pedulla, M. E. Ford, J. M. Houtz, et al. Origins of highly mosaic mycobacteriophage genomes [J]. Cell, 2003, 113(2): 171-182.
    
    [12] J. L. Flynn, J. Chan. Tuberculosis: latency and reactivation [J]. Infect Immun, 2001, 69(7): 4195-4201.
    
    [13] A. K. Pandey, C.M. Sassetti. Mycobacterial persistence requires the utilization of host cholesterol [J]. Proc Natl Acad Sci U S A, 2008, 105(11): 4376-4380.
    [14] K. Honer zu Bentrup, D. G. Russell. Mycobacterial persistence: adaptation to a changing environment [J]. Trends Microbiol, 2001, 9(12): 597-605.
    
    [15] S. Berg, D. Kaur, M. Jackson, et al. The glycosyltransferases of Mycobacterium tuberculosis - roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates [J]. Glycobiology, 2007, 17(6): 35-56R.
    
    [16] R. W. Stokes, R. Norris-Jones, D. E. Brooks, et al. The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages [J]. Infect Immun, 2004, 72(10): 5676-5686.
    
    [17] G. Etienne, F. Laval, C. Villeneuve, et al. The cell envelope structure and properties of Mycobacterium smegmatis mc(2)155: is there a clue for the unique transformability of the strain? [J]. Microbiology, 2005, 151(Pt 6): 2075-2086.
    
    [18] I.C. Sutcliffe, D. J. Harrington. Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components [J]. FEMS Microbiol Rev, 2004, 28(5): 645-659.
    
    [19] K. Takayama, C. Wang, G. S. Besra. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis [J]. Clin Microbiol Rev, 2005, 18(1): 81-101.
    
    [20] Y. Ma, F. Pan, M. McNeil. Formation of dTDP-rhamnose is essential for growth of mycobacteria [J]. J Bacteriol, 2002, 184(12): 3392-3395.
    
    [21] L. R. Olsen-, M. W. Vetting, S. L. Roderick. Structure of the E. coli bifunctional GlmU acetyltransferase active site with substrates and products [J]. Protein Sci, 2007, 16(6): 1230-1235.
    
    [22] D. C. Crick, S. Mahapatra, P. J. Brennan. Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis [J]. Glycobiology, 2001, 11(9): 107R-118R.
    
    [23] J. A. Mills, K. Motichka, M. Jucker, et al. Inactivation of the mycobacterial rhamnosyltransferase, which is needed for the formation of the arabinogalactan-peptidoglycan linker, leads to irreversible loss of viability [J]. J Biol Chem, 2004, 279(42): 43540-43546.
    
    [24] A.M. Showalter. Arabinogalactan-proteins: structure, expression and function [J]. Cell Mol Life Sci, 2001, 58(10): 1399-1417.
    
    [25] D. Kaur, P. J. Brennan, D. C. Crick. Decaprenyl diphosphate synthesis in Mycobacterium tuberculosis [J]. JBacteriol, 2004, 186(22): 7564-7570.
    
    [26] L. R. Camacho, P. Constant, C. Raynaud, et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier [J]. J Biol Chem, 2001, 276(23): 19845-19854.
    
    [27] J. Kordulakova, M. Gilleron, K. Mikusova, et al. Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of mycobacteria [J]. J Biol Chem, 2002, 277(35): 31335-31344.
    
    [28] M. Jackson, D. C. Crick, P. J. Brennan. Phosphatidylinositol is an essential phospholipid of mycobacteria [J]. J Biol Chem, 2000, 275(39): 30092-30099.
    
    [29] X. Liu, B. L. Stocker, P. H. Seeberger. Total synthesis of phosphatidylinositol mannosides of Mycobacterium tuberculosis [J]. J Am Chem Soc, 2006, 128(11): 3638-3648.
    
    [30] B. Ning, A. D. Elbein. Purification and properties of mycobacterialGDP-mannose pyrophosphorylase [J]. Arch Biochem Biophys, 1999, 362(2): 339-345.
    [1] P. J. Brennan, G. S. Besra. Structure, function and biogenesis of the mycobacterial cell wall [J]. Biochem Soc Trans, 1997, 25(1): 188-194.
    
    [2] D. Chatterjee. The mycobacterial cell wall: structure, biosynthesis and sites of drug action [J]. Curr Opin Chem Biol, 1997, 1(4): 579-588.
    
    [3] A. Weston, R. J. Stern, R. E. Lee, et al. Biosynthetic origin of mycobacterial cell wall galactofuranosyl residues [J]. Tuber Lung Dis, 1997, 78(2): 123-131.
    
    [4] P. J. Woodruff, B. L. Carlson, B. Siridechadilok, et al. Trehalose is required for growth of Mycobacterium smegmatis [J]. J Biol Chem, 2004, 279(28): 28835-28843.
    
    [5] L. Bonofiglio, E. Garcia, M. Mollerach. Biochemical characterization of the pneumococcal glucose 1-phosphate uridylyltransferase (GalU) essential for capsule biosynthesis [J]. Curr Microbiol, 2005, 51(4): 217-221.
    
    [6] H. Y. Chang, J. H. Lee, W. L. Deng, et al. Virulence and outer membrane properties of a galU mutant of Klebsiella pneumoniae CG43 [J]. Microb Pathog, 1996, 20(5): 255-261.
    
    [7] Y. Komeda, T. Icho, T. lino. Effects of galU mutation on flagellar formation in Escherichia coli [J]. J Bacteriol, 1977, 129(2): 908-915.
    
    [8] S. Vilches, R. Canals, M. Wilhelms, et al. Mesophilic Aeromonas UDP-glucose pyrophosphorylase (GalU) mutants show two types of lipopolysaccharide struc-tures and reduced virulence [J]. Microbiology, 2007, 153(Pt 8): 2393-2404.
    
    [9] L. A. Kleczkowski, M. Geisler, I. Ciereszko, et al. UDP-glucose pyrophosphorylase. An old protein with new tricks [J]. Plant Physiol, 2004, 134(3): 912-918.
    
    [10] F. Pompeo, Y. Bourne, J. van Heijenoort, et al. Dissection of the bifunctional Escherichia coli N-acetylglucosamine-1-phosphate uridyltransferase enzyme into autonomously functional domains and evidence that trimerization is absolutely required for glucosamine-1-phosphate acetyltransferase activity and cell growth [J]. J Biol Chem, 2001, 276(6): 3833-3839.
    [11] J. Ullrich, J. P. van Putten. Identification of the gonococcal glmU gene encoding the enzyme N-acetylglucosamine 1-phosphate uridyltransferase involved in the synthesis of UDP-GlcNAc [J]. J Bacteriol, 1995, 177(23): 6902-6909.
    
    [12] M. Barreto, E. Jedlicki, D. S. Holmes. Identification of a gene cluster for the formation of extracellular polysaccharide precursors in the chemolithoautotroph Acidithiobacillus ferrooxidans [J]. Appl Environ Microbiol, 2005, 71(6): 2902-2909.
    
    [13] A. C. Lamerz, T. Haselhorst, A. K. Bergfeld, et al. Molecular cloning of the Leishmania major UDP-glucose pyrophosphorylase, functional characterization, and ligand binding analyses using NMR spectroscopy [J]. J Biol Chem, 2006, 281 (24): 16314-16322.
    
    [14] A.M. Gehring, W. J. Lees, D. J. Mindiola, et al. Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli [J]. Biochemistry, 1996, 35(2): 579-585.
    
    [15] M. T. Mok, M. R. Edwards. Critical sources of error in colorimetric assay for UDP-N-acetylglucosamine pyrophosphorylase [J]. Anal Biochem, 2005, 343(2): 341-343.
    
    [16] M. Zhang, Y. Yang, Y. Xu, et al. Trehalose-6-phosphate Phosphatase from Mycobacterium tuberculosis induces humoral and cellular immune responses [J]. FEMS Immunol Med Microbiol, 2007, 49(1): 68-74.
    
    [17] P. H. Hirel, M. J. Schmitter, P. Dessen, et al. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid [J]. Proc Natl Acad Sci U S A, 1989, 86(21): 8247-8251.
    
    [18] F. Martz, M. Wilczynska, L. A. Kleczkowski. Oligomerization status, with the monomer as active species, defines catalytic efficiency of UDP-glucose pyrophosphorylase [J]. Biochem J, 2002, 367(Pt 1): 295-300.
    
    [19] Y. Yamashita, Y. Tsukioka, Y. Nakano, et al. Biological functions of UDP-glucose synthesis in Streptococcus mutans [J]. Microbiology, 1998, 144 ( Pt 5) 1235-1245.
    
    [20] K. Brown, F. Pompeo, S. Dixon, et al. Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily [J]. Embo J, 1999, 18(15): 4096-4107.
    
    [21] G. Sulzenbacher, L. Gal, C. Peneff, et al. Crystal structure of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase bound to acetyl-coenzyme A reveals a novel active site architecture [J]. J Biol Chem, 2001, 276(15): 11844-11851.
    
    [22] L. Lee, A. Kimura, T. Tochikura. Purification and properties of UDP-glucose (UDP-galactose) pyrophosphorylase from Bifidobacterium bifidum [J]. J Biochem, 1979, 86(4): 923-928.
    
    [23] A. C. Weissborn, Q. Liu, M. K. Rumley, et al. UTP: alpha-D-glucose-1-phosphate uridylyltransferase of Escherichia coli: isolation and DNA sequence of the galU gene and purification of the enzyme [J]. J Bacteriol, 1994, 176(9): 2611-2618.
    
    [24] S. Xu, Y. Yang, R. Jin, et al. Purification and characterization of a functionally active Mycobacterium tuberculosis prephenate dehydrogenase [J]. Protein Expr Purif, 2006, 49(2): 151-158.
    
    [25] D. Mengin-Lecreulx, J. van Heijenoort. Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis [J]. J Bacteriol, 1994, 176(18): 5788-5795.
    
    [26] A. R. Marques, P. B. Ferreira, I. Sa-Correia, et al. Characterization of the ugpG gene encoding a UDP-glucose pyrophosphorylase from the gellan gum producer Sphingomonas paucimobilis ATCC 31461 [J]. Mol Genet Genomics, 2003, 268(6): 816-824.
    
    [27] J.B. Thoden, H. M. Holden. Active site geometry of glucose-1-phosphate uridylyltransferase [J]. Protein Sci, 2007, 16(7): 1379-1388.
    [1]J.L.Flynn,J.Chan.Tuberculosis:latency and reactivation[J].Infect Immun,2001,69(7):4195-4201.
    [2]Y.Zhang.Persistent and dormant tubercle bacilli and latent tuberculosis[J].Front Biosci,2004,9 1136-1156.
    [3]J.D.McKinney,K.Honer zu Bentrup,E.J.Munoz-Elias,et al.Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase[J].Nature,2000,406(6797):735-738.
    [4]T.P.Primm,S.J.Andersen,V.Mizrahi,et al.The stringent response of Mycobacterium tuberculosis is required for long-term survival[J].J Bacteriol,2000,182(17):4889-4898.
    [5]P.Chen,R.E.Ruiz,Q.Li,et al.Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene,sigF[J].Infect Immun,2000,68(10):5575-5580.
    [6]R.Manganelti,E.Dubnau,S.Tyagi,et al.Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis[J].Mol Microbiol,1999,31(2):715-724.
    [7]C.A.Scanga,V.P.Mohan,H.Joseph,et al.Reactivation of latent tuberculosis:variations on the Cornell murine model[J].Infect Immun,1999,67(9):4531-4538.
    [8]L.Woolhiser,M.H.Tamayo,B.Wang,et al.In vivo adaptation of the Wayne model of latent tuberculosis[J].Infect Immun,2007,75(5):2621-2625.
    [9]J.C.Betts,P.T.Lukey,L.C.Robb,et al.Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling[J].Mol Microbiol,2002,43(3):717-731.
    [10]V.Sharma,S.Sharma,K.Hoener zu Bentrup,et al.Structure of isocitrate lyase,a persistence factor of Mycobacterium tuberculosis[J].Nat Struct Biol,2000,7(8):663-668.
    [11]郝方,裴秀英,张雪莲等.结核分枝杆菌异柠檬酸裂解酶基因的克隆表达及酶学性质研究[J].中华结核和呼吸杂志,2005,28(12):845-848.
    [12]F.Ranaldi,P.Vanni,E.Giachetti.Enzyme catalysis in microgravity: steady-state kinetic analysis of the isocitrate lyase reaction [J]. Biophys Chem, 2003, 103(2): 169-177.
    
    [13] J. A. Serrano, M. Camacho, M. J. Bonete. Operation of glyoxylate cycle in halophilic archaea: presence of malate synthase and isocitrate lyase in Haloferax volcanii [J]. FEBS Lett, 1998, 434(1-2): 13-16.
    
    [14] K. Honer Zu Bentrup, A. Miczak, D. L. Swenson, et al. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis [J]. J Bacteriol, 1999, 181(23): 7161-7167.
    
    [15] G. Harth, M.A. Horwitz. Inhibition of Mycobacterium tuberculosis glutamine synthetase as a novel antibiotic strategy against tuberculosis: demonstration of efficacy in vivo [J]. Infect Immun, 2003, 71 (1): 456-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700