飞蝗GFAT和GNA的分子特性及生物学功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
几丁质是昆虫表皮及围食膜的重要成分,许多酶参与几丁质的合成。研究昆虫几丁质合成途径关键酶的生物学功能,对于解析昆虫几丁质合成机制具有重要意义。本文选择了飞蝗几丁质合成途径的谷氨酰胺:果糖-6-磷酸转胺酶(glutamine: fructose-6-phosphate amidotransferase, GFAT)和葡萄糖胺-6-磷酸-N-乙酰转移酶(Glucosamine-6-phosphate-N-acetyltransferase, GNA),对这两个酶的序列特征,表达特性和生物学功能等进行了研究。
     我们从飞蝗EST数据库获得GFAT基因的部分cDNA片段,采用5'-RACE技术获得飞蝗GFAT的5’端序列,通过拼接得到了飞蝗GFAT的cDNA全长。该序列长3202bp,开放阅读框ORF为2292bp,编码764个氨基酸,相对分子量为85.6kD。序列分析表明飞蝗GFAT与其他已知昆虫的GFAT蛋白具有较高的序列一致性,但是飞蝗GFAT蛋白N-端多出74个氨基酸。GFAT的催化位点在真核生物与原核生物中都很保守。磷酸化位点预测表明飞蝗GFAT含有5个PKA磷酸化位点S271、S326、S380、S567和S581,可能与PKA及AMPK的磷酸化调节有关。基于己知物种GFAT全长氨基酸序列构建系统进化树,结果表明昆虫GFAT按物种亲缘关系依次聚类,哺乳动物GFAT1和GFAT2形成两个独立的分支。飞蝗GFAT的mRNA表达分析表明,GFAT在飞蝗表皮中表达量最高,其次是脂肪体和翅芽;飞蝗GFAT在5龄表皮的发育表达图谱表明,GFAT在5龄初期表达量最高,随后逐渐降低。5龄飞蝗GFAT的mRNA被干扰后,93%的若虫在蜕皮过程中出现蜕皮困难而死亡的表型。上述研究表明:飞蝗GFAT参与了飞蝗表皮儿丁质的合成,并可能受磷酸化和UDP-N-乙酰葡萄糖胺的反馈抑制调节。
     采用生物信息学方法,在飞蝗EST数据库中得到飞蝗GNA的cDNA序列,全长1230bp,开放阅读框ORF为612bp,编码204个氨基酸。飞蝗GNA与其他物种GNA的氨基酸序列一致性很高,结合底物GlcN6P的氨基酸残基完全一致。基于pET-28a(+)质粒构建飞蝗GNA重组蛋白原核表达载体,在大肠杆菌E. coli BL21(DE3)菌株中成功表达飞蝗GNA重组蛋白,经过Ni-NTA亲和柱纯化得到单一目的条带,飞蝗GNA重组蛋白的酶学特性研究表明飞蝗GNA重组蛋白的最适反应温度为37-50℃,最适pH为8.0-9.5;测定了飞蝗重组GNA的Km值,当D-GlcN6P的浓度为200gM时,Acetyl-CoA的Km=133.60μM;当Acetyl-CoA的浓度为200μM时,D-GlcN6P的Km=42.43μM。飞蝗GNA组织特异性分析显示其在表皮、脂肪体及肌肉中表达量较高;飞蝗5龄表皮的发育变化表明,GNA在刚蜕皮后的表达量最高,之后逐步降低;飞蝗GNA的RNA干扰结果显示:GNA的表达能够被有效沉默,但蜕皮及发育未受影响。飞蝗GNA被干扰后未观察到对飞蝗蜕皮及发育产生影响,因此,推测可能存在N-乙酰葡萄糖胺激酶(GlcNAc kinase)能代替GNA生成N-乙酰葡萄糖胺-6-磷酸(GlcNAc6P)用于几丁质的合成,从而形成对GNA缺失补救途径。
     本文针对飞蝗几丁质合成途径两个关键酶谷氨酰胺:果糖-6-磷酸转胺酶和葡萄糖胺-6-磷酸-N-乙酰转移酶,开展基因的cDNA序列分析、表达特性及功能研究,探讨了两个基因在飞蝗发育过程中的作用,研究结果为飞蝗表皮几丁质合成机制的阐明及害虫有效控制提供了重要的基础数据。
Chitin was widely distributed in epidermis and peritrophic matrix of insects, many enzymes were involved in chitin biosynthesis pathway. The importance of chitin in insect development and the absence of chitin in vertebrates had led to a hypothesis of attacking insect chitin biosynthesis pathway as a novel target for developing safe and effective insecticides. However, the roles of these enzymes in insect development have not been well elucidated. In this thesis, glutamine:fructose-6-phosphate amidotransferase (GFAT) and Glucosamine-6-phosphate-N-acetyltransferase (GNA) of Locusta migratoria, two key enzymes in chitin biosynthesis pathway, were selected to study their sequences, mRNA expression pattern and biological function.
     A partial cDNA sequnence of GFAT was obtained from Locust Database, blast analysis showed this sequence had intact3'terminal sequence and miss5'end sequence.5'-RACE PCR was performed to get full length cDNA sequence of LmGFAT. The obtained complete cDNA sequence of LmGFAT was3202bp, contained ORF2292bp encoded764amino acid residues, predicted molecular weight was85.6kD. LmGFAT showed high indentity with other GFATs by animo acid sequence alignment. Howerve, LmGFAT presented additional74amino acid residues at N-terminal compared with other known insect GFATs. The catalytic cites were very conserved in GFATs from both prokaryotes and eukaryotes. Five potential PKA phosphorylation site S271, S326, S380, S567and S581were predicted, which could be involvoed in PKA or AMPK phosphorylation regulation. Phylogenetic tree indicated that GFATs were clustered based on the evolution relationship, in addition, GFAT1and GFAT2of mammal were separated to two different clusters.
     Tissue specific expression pattern showed that LmGFAT had the highest expression in integument and higher in fat body and wing pad in second day of the5th-instar nymph. The developmental expression pattern in each day of the5th instar nymphs showed that LmGFAT was highly expressed in first day of the5th instar nymphs, and then declined at the following days of the same stage. After LmGFAT was down regulated by RNA interference,93%insects were dead when molting to adult. In conclusion, LmGFAT should be involved in chitin biosynthesis, and regulated by feedback of UDP-GLcNAc and phosphorylation of PKA and AMPK.
     The cDNA sequence of LmGNA was searched out from Locust database by using bioinformatics methods. The complete cDNA sequence consists of1230bp nucleotides that contain a612bp ORF coding203amino acid residues. The amino acid sequences of GNAs from different species appeared high identity, the residues responsible for binding substrate GlcN6P are exactly same, which suggested GNAs are highly conserved among different species. Recombinant LmGNA protein was expressed in E. coli BL21(DE3) with pET-28a(+) vector containing LmGNA ORF, and then purified by Ni-NTA affinity resin, the enzyme activity was analyzed by spectrophotometer. The optimal enzyme activity was detected at37-50℃and optimum pH was between8.0-9.5. The Km value for D-GlcN6P was42.43μM when the concentration of Acetyl-CoA was200μM, in contrast, the Km value for Acetyl-CoA was133.60μM when the concentration of D-GlcN6P was200μM. Tissue specific expression pattern indicated that LmGNA was mainly expressed in epicuticle, fat body and muscle at the2nd day of the5th-instar nymph. The developmental expression pattern from the1st day to7th day of the5th-instar nymph stage showed that LmGNA was highly expressed after new molting, and then declined at the following days of the same stage. RNAi results indicated the mRNA of LmGNA was effectively silenced, however, ecdysis and development of Locusts didn't be affected. These data suggested that N-acetylglucosamine kinase, a rescue pathway could be involved in producing N-acetylglucosamine-6-phosphate (GlcNAc6P) instead of GNA for chitin biosynthesis.
     In this thesis, cDNA cloning, mRNA expression and biological function of LmGFAT and LmGNA were studied. The results would be helpful to improve the understanding of the complexity of insect biosynthesis and explore the chitin metabolic mechanism, which should provide important data for developing new strategies for pest control.
引文
[1]李春选,马恩波.飞蝗研究进展[J].昆虫知识,2003,40,24-30.
    [2]朱恩林.中国东亚飞蝗发生与治理[M].北京,中国农业出版社,1999,3-10.
    [3]尤其儆,郭孵,陈永林,张福海,尤端苏. 东亚飞蝗的生活习性[J].昆虫学报,1958,8,119-135.
    [4]郑哲民.蝗虫分类学[M].西安,陕西师范大学出版社,1993,195
    [5]郭郛,陈永林,卢宝廉.中国飞蝗生物学[M].济南,山东科学技术出版社,1991,272-295.
    [6]潘承湘.我国东亚飞蝗的研究与防治简史[J].自然科学史研究,1985,4,80-89.
    [7]陈永林.中国的飞蝗研究及其治理的主要成就[J].昆虫知识,2000,37,57-59.
    [8]邹树文.中国昆虫学史[M].北京,科学出版社,1982,162-164.
    [9]高冬梅.建国以来我国蝗灾防治工作的历史考察[J].河北师范大学学报,2005,28,155-160.
    [10]韩秀珍,马建文,罗敬宁,张跃进,汤金仪.遥感与GIS在东亚飞蝗灾害研究中的应用[J].地理研究,2003,22,253-260.
    [11]杨宝东,王进忠,孙淑龄.我国蝗虫生物防治的研究进展[J].北京农学院学报,2002,17,60-63.
    [12]夏敬源,黄辉.东亚飞蝗暴发原因与治理对策【J].植保技术与推广,2002,22,7-10.
    [13]杨红军,王东升,张立顺,谢建军.东亚飞蝗对马拉硫磷抗性研究初报[J].植保技术与推广,2002,22,11-12,16.
    [14]Yang ML, Zhang JZ, Zhu KY, Xuan T, Liu XJ, Guo YP, Ma EB. Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen) [J]. Archives of Insect Biochemistry and Physiology, 2009,71,3-15.
    [15]许再福.普通昆虫学[M].北京,科学出版社,2009,65-71.
    [16]王荫长.昆虫生理学[M].北京,中国农业出版社,2004,7-38.
    [17]Ephraim C. Chitin synthesis and inhibition:a revisit [J]. Pest Management Science, 2001,57,946-950.
    [18]Kramer KJ, Hopkins TL, Schaefer J. Applications of solids NMR to the analysis of insect sclerotized structures [J]. Insect Biochemistry and Molecular Biology,1995,25, 1067-1080.
    [19]Merzendorfer H, Zimoch L. Chitin metabolism in insects:structure, function and regulation of chitin synthases and chitinases [J]. The Journal of Experimental Biology, 2003,206,4393-4412.
    [20]Candy DJ, Kilby BA. Studies on chitin synthesis in the desert locust [J]. Journal of Experimental Biology,1962,39,129-140.
    [21]Jaworski E, Wang L and Margo G. Synthesis of chitin in cellfree extracts of Prodenia eridania [J]. Nature,1963,198,790.
    [22]Milewski S, Gabriel I, Olchowy J. Enzymes of UDP-GlcNAc biosynthesis in yeast [J]. Yeast,2006,23,1-14.
    [23]Durand P, Golinelli-Pimpaneau B, Mouilleron S, Badet B, Badet-Denisot MA. Highlights of glucosamine-6P synthase catalysis [J]. Archives of Biochemistry and Biophysics,2008,474,302-317.
    [24]Olsen LR, Roderick SL. Structure of the Escherichia coli GlmU Pyrophosphorylase and Acetyltransferase Active Sites [J]. Biochemistry,2001,40,1913-1921.
    [25]Gehring AM, Lees WJ, Mindiola DJ, Walsh CT, Brown ED. Acetyltransfer Precedes Uridylyltransfer in the Formation of UDP-N-acetylglucosamine in Separable Active Sites of the Bifunctional GlmU Protein of Escherichia coli [J]. Biochemistry, 1996,35,579-585.
    [26]Mio T, Yamada-Okabe T, Arisawa M, Yamada-Okabe H. Saccharomyces cerevisiae GNA1, an Essential Gene Encoding a Novel Acetyltransferase Involved in UDP-N-acetylglucosamine Synthesis [J]. The Journal of Biological Chemistry,1999, 274,424-429.
    [27]Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW. The Tribolium chitin synthase genes TcCHS 1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix [J]. Insect Molecular Biology,2005,14,453-463.
    [28]Arakane Y, Specht CA, Kramer KJ, Muthukrishnan S, Beeman RW. Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum [J]. Insect Biochemistry and molecular biology,2008,38, 959-962.
    [29]Zhang JZ, Liu XJ, Zhang JQ, Li DQ, Sun Y, Guo YP, Ma EB, Zhu KY. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen) [J]. Insect Biochemistry and Molecular Biology,2010,40,824-833.
    [30]Arakane Y, Baguinon MC, Jasrapuria S, Chaudhari S, Doyungan A, Kramer KJ, Muthukrishnan S, Beeman RW. Both UDP N-acetylglucosamine pyrophosphorylases of Tribolium castaneum are critical for molting, survival and fecundity [J]. Insect Biochemistry and Molecular Biology,2011,41,42-50.
    [31]Araujo S J, Aslam H, Tear G, Casanova J. mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development-Analysis of its role in Drosophila tracheal morphogenesis [J]. Developmental Biology,2005,288,179-193.
    [32]Eguchi S, Oshiro N, Miyamoto T, Yoshino K, Okamoto S, Ono T, Kikkawa U, Yonezawa K. AMP-activated protein kinase phosphorylates glutamine: fructose-6-phosphate amidotransferase 1 at Ser243 to modulate its enzymatic activity [J]. Genes to Cells,2009,14,179-189.
    [33]Teplyakov A, Obmolova G, Badet B, Badet-Denisot MA. Channeling of Ammonia in Glucosamine-6-phosphate Synthase [J]. Journal of Molecular Biology,2001,313, 1093-1102.
    [34]Mouilleron S, Badet-Denisot MA, Badet B, Golinelli-Pimpaneau B. Dynamics of glucosamine-6-phosphate synthase catalysis [J]. Archives of Biochemistry and Biophysics,2011,505,1-12.
    [35]Raczynska J, Olchowy J, Konariev PV, Svergun DI, Milewski S, Rypniewski W. The Crystal and Solution Studies of Glucosamine-6-phosphate Synthase from Candida albicans [J]. Journal of Molecular Biology,2007,372,672-688.
    [36]Nakaishi Y, Bando M, Shimizu H, Watanabe K, Goto F, Tsuge H, Kondo K, Komatsu M. Structural analysis of human glutamine:fructose-6-phosphate amidotransferase, a key regulator in type 2 diabetes [J]. FEBS Letters,2009,583, 163-167.
    [37]Watzele G, Tanner W. Cloning of the glutamine:fructose-6-phosphate amidotransferase gene from yeast. Pheromonal regulation of its transcription [J]. The Journal of Biological Chemistry,1989,264,8753-8758.
    [38]Lagorce A, Le Berre-Anton V, Aguilar-Uscanga B, Martin-Yken H, Dagkessamanskaia A, Francois J. Involvement of GFA1, which encodes glutamine-fructose-6-phosphate amidotransferase, in the activation of the chitin synthesis pathway in response to cell-wall defects in Saccharomyces cerevisiae [J]. European Journal of Biochemistry,2002,269,1697-1707.
    [39]Bulik DA, Olczak M, Lucero HA, Osmond BC, Robbins PW, Specht CA. Chitin Synthesis in Saccharomyces cerevisiae in Response to Supplementation of Growth Medium with Glucosamine and Cell Wall Stress [J]. Eukaryot Cell,2003,2,886-900.
    [40]Smith RJ, Milewski S, Brown AJ, Gooday GW. Isolation and characterization of the GFA1 gene encoding the glutamine:fructose-6-phosphate amidotransferase of Candida albicans [J]. Journal of Bacteriology,1996,178,2320-2327.
    [41]Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: current status. American journal of Physiology [J]. Endocrinology and Metablolism, 2006,290, E1-E8.
    [42]Tourian A, Callahan M, Hung W. L-glutamine D-fructose-6-P aminotransferase regulation by glucose-6-P and UDP-N-acetylglucosamine [J]. Neurochemical Research,1983,8,1589-1595.
    [43]Chan J, Lee KH. Effect of uridine diphospho-N-acetylglucosamine and sodium salicylate on L-glutamine-D-fructose-6-phosphate aminotransferase activity from rat gastric mucosa [J]. Journal of Pharmaceutical Sciences,1975,64,1182-1185.
    [44]Graack HR, Cinque U, Kress H. Functional regulation of glutamine: fructose-6-phosphate aminotransferase 1 (GFAT1) of Drosophila melanogaster in a UDP-N-acetylglucosamine and cAMP-dependent manner [J]. Biochemical Journal, 2001,360,401-412.
    [45]Etchebehere LC, Maia JC. Phosphorylation-dependent regulation of amidotransferase during the development of Blastocladiella emersonii [J]. Archives of Biochemistry and Biophysics,1989,272,301-310.
    [46]Maia JC. Hexosamine and cell wall biogenesis in the aquatic fungus Blastocladiella emersonii [J]. FASEB Journal,1994,8,848-853.
    [47]Broschat KO, Gorka C, Page JD, Martin-Berger CL, Davies MS, Huang HC, Gulve EA, Salsgiver WJ, Kasten TP. Kinetic characterization of human glutamine-fructose-6-phosphate amidotransferase I:potent feedback inhibition by glucosamine 6-phosphate [J]. The Journal of Biological Chemistry,2002,277, 14764-14770.
    [48]Zhou J, Huynh QK, Hoffman RT, Crook ED, Daniels MC, Gulve EA, McClain DA. Regulation of glutamine:fructose-6-phosphate amidotransferase by cAMP-dependent protein kinase [J]. Diabetes,1998,47,1836-1840.
    [49]Chang Q, Su K, Baker JR, Yang X, Paterson AJ, Kudlow JE. Phosphorylation of human glutamine:fructose-6-phosphate amidotransferase by cAMP-dependent protein kinase at serine 205 blocks the enzyme activity [J]. The Journal of Biological Chemistry,2000,275,21981-21987.
    [50]Hu Y, Riesland L, Paterson AJ. Kudlow JE. Phosphorylation of mouse glutamine-fructose-6-phosphate amidotransferase 2 (GFAT2) by cAMP-dependent protein kinase increases the enzyme activity [J]. The Journal of Biological Chemistry, 2004,279,29988-29993.
    [51]Li Y, Roux C, Lazereg S, LeCaer JP, Laprevote O, Badet B, Badet-Denisot MA. Identification of a novel serine phosphorylation site in human glutamine: fructose-6-phosphate amidotransferase isoform 1 [J]. Biochemistry,2007,46, 13163-13169.
    [52]Peneff C, Mengin-Lecreulx D, Bourne Y. The Crystal Structures of Apo and Complexed Saccharomyces cerevisiae GNA1 Shed Light on the Catalytic Mechanism of an Amino-sugar N-Acetyltransferase [J]. The Journal of Biological Chemistry, 2001,276,16328-16334.
    [53]Vetting MW, S de Carvalho LP, Yu M, Hegde SS, Magnet S, Roderick SL, Blanchard JS. Structure and functions of the GNAT superfamily of acetyltransferases [J]. Archives of Biochemistry and Biophysics,2005,433,212-226.
    [54]Wang J, Liu X, Liang YH, Li LF, Su XD. Acceptor substrate binding revealed by crystal structure of human glucosamine-6-phosphate N-acetyltransferase 1 [J]. FEBS Letters,2008,582,2973-2978.
    [55]Hurtado-Guerrero R, Raimi O, Shepherd S, van Aalten DM. Glucose-6-phosphate as a probe for the glucosamine-6-phosphate N-acetyltransferase Michaelis complex [J]. FEBS Letters,2007,581,5597-5600.
    [56]Marino K, Guther ML, Wernimont AK, Qiu W, Hui R, Ferguson MA. Characterization, Localization, Essentiality, and High-Resolution Crystal Structure of Glucosamine 6-Phosphate N-Acetyltransferase from Trypanosoma brucei [J]. Eukaryotic Cell,2011,10,985-997.
    [57]MioT, Kokado M, Arisawa M, Yamada-Okabe H. Reduced virulence of Candida albicans mutants lacking the GNA1 gene encoding glucosamine-6-phosphate acetyltransferase [J]. Microbiology,2000,146,1753-1758.
    [58]Boehmelt G, Wakeham A, Elia A, Sasaki T, Plyte S, Potter J, Yang Y, Tsang E, Ruland J, Iscove NN, Dennis JW, Mak TW. Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells [J]. The EMBO Jounral,2000,19, 5092-5104.
    [59]Lin R, Allis CD, Elledge SJ. PAT1, an evolutionarily conserved acetyltransferase homologue, is required for multiple steps in the cell cycle [J]. Genes to Cells,1996,1, 923-942.
    [60]Boehmelt G, Fialka I, Brothers G, McGinley MD, Patterson SD, Mo R, Hui CC, Chung S, Huber LA, Mak TW, Iscove NN. Cloning and Characterization of the Murine Glucosamine-6-phosphate Acetyltransferase EMeg32 [J]. The Journal of Biological Chemistry,2000,275,12821-12832.
    [61]Lopez AB, Sener K, Jarroll EL, van Keulen H. Transcription regulation is demonstrated for five key enzymes in Giardia intestinalis cyst wall polysaccharide biosynthesis [J]. Molecular & Biochemical Parasitology,2003,128,51-57.
    [62]Hurtado-Guerrero R, Raimi OG, Min J, Zeng H, Vallius L, Shepherd S, Ibrahim AF, Wu H, Plotnikov AN, van Aalten DM. Structural and kinetic differences between human and Aspergillus fumigatus D-glucosamine-6-phosphate N-acetyltransferase [J]. Biochemical Journal,2008,415,217-223.
    [63]Kato N, Mueller CR, Wessely V, Lan Q, Christensen BM. Mosquito glucosamine-6-phosphate N-acetyltransferase:cDNA, gene structure and enzyme kinetics [J]. Insect Biochemistry and Molecular Biology,2005,35,637-646.
    [64]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, De Weese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH. CDD:a Conserved Domain Database for the functional annotation of proteins [J]. Nucleic Acids Research,2011,39,225-229.
    [65]Kato N, Dasgupta R, Smartt CT, Christensen BM. Glucosamine: fructose-6-phosphate aminotransferase:gene characterization, chitin biosynthesis and peritrophic matrix formation in Aedes aegypti [J]. Insect Molecular Biology,2002,11, 207-216.
    [66]Kato N, Mueller CR, Fuchs JF, Wessely V, Lan Q, Christensen BM. Regulatory mechanisms of chitin biosynthesis and roles of chitin in peritrophic matrix formation in the midgut of adult Aedes aegypti [J]. Insect Biochemistry and Molecular Biology, 2006,36,1-9.
    [67]Huang X, Tsuji N, Miyoshi T, Motobu M, Islam MK, Alim MA, Fujisaki K. Characterization of glutamine:fructose-6-phosphate aminotransferase from the ixodid tick, Haemaphysalis longicornis, and its critical role in host blood feeding [J]. International Journal for Parasitology,2007,37,383-392.
    [68]Milewski S, Kuszczak D, Jedrzejczak R, Smith RJ, Brown AJ, Gooday GW. Oligomeric structure and regulation of Candida albicans glucosamine-6-phosphate synthase [J]. The Journal of Biological Chemistry,1999,274,4000-4008.
    [69]Kornfeld R. Studies on L-glutamine D-fructose 6-phosphate amidotransferase. I. Feedback inhibition by uridine diphosphate-N-acetylglucosamine [J]. The Journal of Biological Chemistry,1967,242,3135-3141.
    [70]Hannon GJ. RNA interference [J]. Nature,2002,418,244-251.
    [71]Hinderlich S, Berger M, Schwarzkopf M, Effertz K, Reutter W. Molecular cloning and characterization of murine and human N-acetylglucosamine kinase [J]. European Journal of Biochemistry,2000,267,3301-3308.
    [72]Weihofen WA, Berger M, Chen H, Saenger W, Hinderlich S. Structures of human N-Acetylglucosamine kinase in two complexes with N-Acetylglucosamine and with ADP/glucose:insights into substrate specificity and regulation [J]. Journal of Molecular Biology,2006,364,388-399.
    [73]Wang J, Zhou YF, Li LF, Liang YH, Su XD. Purification, crystallization and preliminary X-ray analysis of the glucosamine-6-phosphate N-acetyltransferase from human liver [J]. Crystallization Communications,2006,62,1097-1099.
    [74]Vessal M, Jaberi-Pour M. Partial purification and kinetic properties of three different D-glucosamine 6-P:N-acetyltransferase forms from human placenta [J]. Comparative Biochemistry and Physiology Part B,1998,121,379-384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700