掺炼高温煤焦油提高劣质渣油溶剂脱沥青效果及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高劣质油生产轻质油品和化工原料的收率,是节油增效的主要途径。溶剂脱沥青(SDA)是重油轻质化的重要途径之一,但工艺操作中存在“脱沥青油(DAO)在质量上能满足催化裂化(FCC)进料要求时收率低、收率高时性质变差而不符合FCC原料标准”的矛盾关系。为充分利用现有的SDA装置和技术,使劣质减渣(VR)中轻组分更多进入到DAO中,沥青质、重金属以及部分硫、氮化合物得以有效地脱除,增加DAO收率并确保其质量满足二次加工要求,在高油价和严格的环保要求以及“缺油、少气、富煤”资源特征下,开发油煤结合相关技术是一个值得重视的方向。
     本文对劣质减渣掺炼高温煤焦油(CT)的溶剂脱沥青过程进行了深入的研究。首先对劣质减渣在乙酸乙酯溶剂和C4溶剂中的溶解度进行了测定。实验结果表明:温度对劣质减渣在两种溶剂中溶解度有显著的不同影响。随着温度的升高,劣质减渣在乙酸乙酯中的溶解度呈线性增加,而在混合C4溶剂中则呈线性降低。此外,改变溶剂组成或者改变劣质减渣溶解度参数,将有利于提高对劣质减渣的溶解能力。在本实验条件下,劣质减渣在混合C4溶剂中的溶解平衡模型遵循Flory-Huggins方程。
     其次,对劣质减渣掺炼CT后体系性质作了考察。通过原料的基本性质分析以及模拟蒸馏实验,考察VR和CT的相容性。当CT的添加量等于5%时,体系中溶解和吸附过程达平衡;当CT的浓度增加,体系中吸附过程起主要作用,沥青质易沉降析出。VR掺炼CT后的实沸点蒸馏以及延迟焦化等实验表明,掺炼CT能够对VR的加工过程有一定积极影响,但是也会造成液体油收率低,装置易结焦、运行周期短等问题。
     在上述基础上,以乙酸乙酯为溶剂考察了掺炼高温煤焦油对劣质减渣溶剂脱沥青过程的影响,并与掺炼粉煤的过程进行对比。实验表明:掺炼CT对劣质减渣的SDA过程有一定的改善。在萃取温度30℃、溶剂比6:1的优化条件下,掺炼10%CT时,DAO收率比纯渣油提高2个百分点,残炭脱除率基本不变,金属镍与钒总含量下降5μg/g,含硫量略有下降,含氮量基本不变。相同收率的DAO性质比较,VR掺炼10%CT后获得的DAO的金属、硫、残炭等含量明显下降。同时,DOA性质表明掺炼CT有利于劣质渣油深拔。劣质减渣掺炼30%北宿烟煤粉煤(150~830μm)预处理(250℃)后的SDA实验中,DAO收率提高近3个百分点,金属Ni和V脱除率分别提高了7个百分点和10个百分点。但此工艺存在原料输送困难、设备磨损严重、装置需改造等缺点。
     以C4烃类为溶剂,考察亚临界状态下劣质减渣掺炼CT的SDA过程。实验表明:在相同萃取条件下,与未掺炼时相比,掺炼10%CT,DAO收率提高17个百分点。掺炼20%CT,则提高近19个百分点,DAO的镍钒含量从3.41μg·g-1下降到2.69μg·g-1,沥青质含量从1.6 wt%减少到0.7 wt%。金属脱除率基本未下降。另外对相同收率的DAO性质进行了比较:高温煤焦油掺炼量<20wt%时,DAO的金属脱除率、硫氮脱除率明显提高,残炭脱除率基本不变。利用红外光谱、核磁光谱、紫外光谱、凝胶色谱等手段表征DAO分子结构信息,得出劣质渣油掺炼CT后,其轻组分更易被萃取到DAO中,DAO含更多的直链烷烃、侧链烷烃。
     采用固定流化催化裂化床对DAO的催化裂化性能进行了评价,结果表明:掺炼10%CT后获得的DAO同样具有良好裂化性能,轻质油收率提高近6个百分点,汽、柴油馏分性质和未掺炼CT时接近。同样,中东混合劣质减渣的SDA实验表明,掺炼10%CT比纯渣油能多深拔4个百分点的具有相近裂化性能的符合重油催化裂化原料要求的DAO。同时,脱油沥青(DOA)可制作气化原料。这进一步表明劣质减渣掺炼CT通过SDA-FCC组合工艺进行轻质化更获得更多的轻质油。
     最后原料的流变性能、胶体结构、溶解度参数研究结果揭示了劣质减渣掺炼高温煤焦油改善SDA效果的机理。劣质减渣掺炼CT,能够改变劣质渣油胶体体系的组成和相容性,使其粘度降低,胶体稳定性下降,溶解度参数减小。提高溶剂脱沥青过程的传质效率,使更多的可溶组分被抽提出来,提高DAO收率和改善质量。
It is the main route to increase fuel-efficient and economic benefit by improving light oil and industrial chemicals yields of inferior oil. The solvent deasphalting (SDA) process is an important methods to obtain light oil from heavy oil. However, the industrial operation is in a dilemma:the yield is low when the quality of deasphalting oil (DAO) can satisfy the feedstock catalytic cracking (FCC) standard; to increase the yield, the quality is impaired, thus, can not attain the FCC feedstock standard. In order to gain more DAO from vacuum residue (VR). Asphaltene, heavy metal and part of the sulfur and nitrogen compound in the product should be removed and ensure its quality is satisfied with the requirement of the secondary operation by the current SDA equipment and technical, there is an interesting prospect to develop coprocessing technology of oil-coal. The importance is prominent especially today when the oil price is continuing high and the pressure of environment protection keeping growing. Moreover, China is lack of oil, short of gas, but rich of coal.
     Firstly, VR SDA process blend with high temperature coal tar (CT) was investigated in this paper. The solubility of the VR in ethyl acetate and C4 sovent had been tested separately firstly. It shows the solubility of VR in the two solvents is sharply affected by temperature. The solubility increases linear with growth of temperature in ethyl acetate, while decreases in C4. In addition, the VR solubility can be affected by components of the C4 and the solubility paramater. The solubility equilibrium model of VR in mixed C4 is followed Flory-Huggins equation.
     Secondly, the property change of VR-CT blend had been investigated. By analyzing the property of the raw material and simulated distillation experiment, the compatibility of VR and CT was studied. There is equilibrium between solution and adsorption when the CT blend ratio is 5%. When the ratio increases, the main effort in the system is adsorption and the asphaltene is easy to subside and separate out. It has been revealed by the TBP distillation and delay coking experiments that, though there is positive effect on the VR product process by blending with CT, the liquid oil yield has been decreased, the equipment are easy to coking and short the operation cycle.
     Based on the results above, the effect on VR SDA process by blending with CT had been researched and compared with the process that blending with powdered coal, with ethyl acetate as solvent. The result shows that there is some improvement on the VR SDA process by blending with CT. In the optimized condition of extraction temperature 30℃and solvent ratio 6:1, the DAO yield has been increased by 2% when blended with 10% CT. Meanwhile, the removal rate of carbon residue kept unchanged, the total content of nickel and vanadium has a decrease of 5μg/g, with the sulfur content has a slight decrease and the nitrogen content stays invariable. With the same DAO yield, the contents of metal, sulfur and carbon residue in DAO obtained from VR that blended with 10% CT decreased obviously. And the property of DOA revealed that blending with CT is benefit for the deep cut of the VR. In the SDA process that VR is blended with 30% Beisu bituminous coal powdered coal (150~830μm) and pretreated in 250℃, the DAO yield has been enhanced by 3%. the removal rate of metal nickel and vanadium has increased by 7%. This technical process, however, has many disadvantages, such as, with difference to transpot the feedstock, the damage to the equipment, and need to reform the device.
     The SDA process of VR blending with CT was investigated in subcritical state with C4 hydrocarbon as solvent. Compared with VR without any blend, the DAO yield has been improved by 17% with a CT blend ratio of 10% under the same extract condition. The improvement is around 19% when the blend ratio is 20%. The nickel and vanadium content is declined from 3.41μg·g-1 to 2.69μg·g-1, and the asphaltene content is declined from 1.6 wt% to 0.7 wt%. But the metal removal rate is nearly the same. The property of the DAO with the same yield has been compared. When the CT blend ratio is low (<20 wt%), its removal rate of metal, sulfur and nitrogen has increased distinct, while the carbon residue removal rate remain unchangeable. The DAO molecular structure has been studied by various methods: infrared spectrum, nuclear magnetic resonance, ultraviolet spectrum, gel chromatograph, and mass spectra. The results exhibit a more straight-chain and side-chain paraffin content in the DAO, for the light component is easier to be extracted into it by blend with CT.
     The catalytic cracking property of the DAO was evaluated by fixed fluid catalytic cracking bed. DAO obtained from VR that blended with 10% CT showes a fine cracking property. The light oil yield has been promoted by 6%. And the properties of the gasoline and diesel fraction are close to that without any blend. Results of SDA process on Middle East mixed inferior VR reveales that when blend with 10% CT, the DAO yield is improved by 4% and property of the DAO is similar and coincide with the heavy oil catalytic cracking raw material standard for DAO. Meanwhile, the deoiled asphalt (DOA) can be used as feedstock for gasifying. These results reveales further that, by blending with CT, more light oil can be gained from inferior VR in the SDA-FCC combination process.
     The effect mechanism of SDA process when VR was blended with CT had been investigated, and it was exposited by the research results of rheological behavior, colloid structure and solubility parameter of raw material. Component and compatibility of the VR colloid system was altered when blend VR with CT. Its viscosity declined, the stability of the colloid got worse, and the solubility parameter decreased. The mass transfer efficiency of the solvent deasphalting process was improved. More components have been extracted into DAO. The yield and quality of DAO have both been promoted.
引文
[1]高峰.这样的世界第一不安全——有感于我国成为世界最大石油进口国[J].民族论坛,2011,(8):67.
    [2]李金明.中国石油:煮“油”论英雄舍我其谁[J].投资与理财,2011,(9):30-31.
    [3]钱伯章.2010年中国石化进口高硫原油加工量增长17%[J].炼油技术与工程,2011,1(3):64.
    [4]刘向东,张日勇.2010年中国炼油行业运行回顾及未来两年展望[J].国际石油经济,2011,5:57-61.
    [5]Chen W Y, Xu R N. Clean coal technology development in China [J]. Energy Policy, 2010,38:2123-2130.
    [6]朱心奇,张运成.煤制油的化学原理及其应用前景[J].化学教育,2010,6:6-7.
    [7]王基铭.中国煤化工发展现状及对石油化工的影响[J].当代石油石化,2010,(6):1-6.
    [8]瞿国华.延迟焦化工艺在重质/劣质原油加工过程中的地位和发展[J].炼油技术与工程,2010,40(6):1-6.
    [9]Shui H F, Shen B X, Gao J S. Investigation of vacuum residue solubility in a C4 solvent [J]. Fuel,1998,77:885-889.
    [10]张鼎.对劣质油及劣质渣油提炼工艺的研究[J].中小企业管理与科技,2008,(7):78-79.
    [11]Baker E W, Palmer S E. Geochemistry of Porphyins[D].In:Dolpin D,eds.The Plrphyrins Vol.I.New York:Academic Press.1978:485-551.
    [12]徐海,于道永,王宗贤,等.镍卟啉临氮反应行为的研究[J].燃料化学学报,2001,29(3):264-268.
    []3]林世雄.石油炼制工程(第三版)[M].北京:石油工业出版社,2000.
    [14]邢颖春.国内外炼油装置技术现状与进展[M].北京:石油化工出版社,2006:375-390.
    [15]Penning R T, Vickers A G, Shah B R. Extration upgrades residue [J]. Hydrocarbon Processing,1982,61(5):145-150.
    [16]Necomer R W, Soltau R C. Heavy oil extraction UPS FCC feed at first three stage grass roots ROSE unit in Kansas [J]. Oil & Gas J.,1982,80(28):108-110.
    [17]Ditman J G, Nilssen A P. Division of Refining [C]. San Francisco:27th Midyear Meeting, 1952:16-17.
    [18]Billon A, Heinrich G, Peries J P, et al. Deasphalting the way for a better valorization of the bottom of the barrel[C]. London:11th World Petroleum Congress,1983:35-36.
    [19]Zuiderweg F J. A hydrocyclone process for deasphaltenizing and deashing residue oil [C]. Moscow:8th World Petroleum Congress,1971,4:205-212.
    [20]沈本贤.我国溶剂脱沥青工艺的主要技术进展[J].炼油设计,2000,30(3):7-8.
    [21]任满年,柴志杰.沥青生产与应用技术问答[M].北京:中国石化出版社,2005:123-160.
    [22]赵渊杰,王会东,关毅.减压劣质渣油掺炼催化裂化油浆丁烷脱沥青-糠醛精制组合工艺研究[J].石油炼制与化工,2007,38(8):23-27.
    [23]汪学峰.溶脱-化肥-催化裂化组合工艺的应用[J].石油石化节能,2010,21(4):47-49.
    [24]Fainberg V, Podorozhansky M. Hetsroni G, et al. Changes in the composition and properties of the vacuum residues as a results of visbreaking [J]. Fuel Sci. Technol. Int.l., 1996,14,6:839-866.
    [25]贾生盛,陈胜利.劣质渣油低温热处理-溶剂脱沥青的研究[J].炼油设计,1988,20,6:23-26.
    [26]水恒福,沈本贤,高晋生.掺配FCC油浆的溶剂脱沥青组合工艺研究[J].石油学报,2000,16(2):13-19.
    [27]贾生盛,程健,罗运华.掺兑催化裂化油浆对劣质渣油脱沥青过程的影响[J].炼油设计,1995,25(4):8-12.
    [28]王延飞,程健.催化油浆掺兑减压劣质渣油丙烷脱沥青研究[J].中南工学院学报,2000,14(2):41-46.
    [29]水恒福,沈本贤,高晋生.混合C4溶剂脱沥青工艺研究—DOA的改质[J].华东冶金学院学报,2000,17(1):20-23.
    [30]李艳琦.掺炼糠醛抽出油生产高质量沥青[J].石油沥青,2002,16(4):46~48.
    [31]张彪,王子军.掺炼糠醛抽出油对阿曼和伊朗劣质渣油溶剂脱沥青过程的影响[J].石油炼制与化工,2004,35(3):12-14.
    [32]徐永宁.劣质渣油的非加氢改质[J].黑龙江石油化工,2000,11(4):1-3.
    [33]Varma R L, Bakhshi N N. Nonhydrogenative Co-Processing of Saskatchewan Heavy Oil and Coal [J]. The Canadian Journal of Chemical Engineering,1989,67(2):150-156.
    [34]Bisarie M K, Bakhshi N N, Ranganathan R, et al. Nonhydrogenative Processing of a Saskatchewan Heavy Oil Under Mild Conditions Using Disposable Additives [J]. The Canadian Journal of Chemical Engineering,1993,71(10):746-754.
    [35]郭宇.煤对重油非加氢改质过程的影响[J].化学工程师,2000,79(4):56-58.
    [36]舒歌平,史士东,李克键.煤炭液化技术[M].北京:煤炭工业出版社,2003.
    [37]金嘉璐,史士东,吴春来.煤油共炼技术的研究和开发[J].洁净煤技术,1993,2(1):25-27.
    [38]马治邦.HRI煤油共炼工艺技术[J].世界煤炭技术,1991,(12):34-35.
    [39]Fritz W W. International Symposium on Heavy Oil and Residue Up grading and Utilization [M.] Fushun:International Academic Publishers,1992.
    [40]凌开成.加拿大的煤油共处理技术的研究与开发[J].煤炭综合利用,1992,37-39.
    [41]冷铁军.煤/油共炼技术改质重油的前景[J].黑龙江石油化工,1997,8(4):1-6.
    [42]Rincon J M, Ramirez J. Cruz S. Co-processing of some Colombian coals using petroleum heavy oil as hydrogen donor and anthracene oil as co-solvent [J]. Fuel,1990,69 (8): 1052-1054.
    [43]Wallace S, Bartle K D. Kemp W. et al. Coal conversion in co-processing with heavy petroleum residues [J]. Fuel Processing Technology,1990,24:225-230.
    [44]Speight J G, Speros E M. The co-processing of coal with heavy feedstocks [J]. Fuel Processing Technology,1986,13(3):215-232.
    [45]高晋生.中国低阶烟煤和石油劣质渣油的混合加工研究[J].华东化工学院学报,1993,19(5):561-566.
    [46]张德祥,高晋生.石油重油和煤混合加氢对重油性质的影响[J].石油化工,1996,25(7):466-470.
    [47]Tokarska A. Investigations on the processing of oil vacuum residue and its mixtures with coal and coal tars-Part 1. Primary conversion of crude matrerials [J]. Fuel,1996,75(9): 1094-1100.
    [48]Tokarska A. Investigations on the processing of oil vacuum residue and its mixtures with coal and coal tars-Part 2. Hydrogenative upgrading of the liquid products [J]. Fuel,1996, 75(10):1206-1212.
    [49]李庶峰,邓文安,文萍,等.煤焦油与轮古稠油悬浮床加氢共炼工艺的研究[J].辽宁石油化工大学学报,2007,27(4):9-12.
    [50]王海燕,李峰,陈晓欢,等.煤焦油分离技术发展与研究[J].天津化工,2005,19(3):1-3.
    [51]贾超雄,赵肖玲.直立炉煤焦油加工技术的探讨[J].山西化工,1997,4:22-23.
    [52]杨国祥,李毓良.高温煤焦油加氢制取轻质燃料油工艺的运行实践[J].广东化工,2010,37(6):57-58.
    [53]陈蔚.胆固醇和24-去氢胆固醇的溶解度[D].杭州:浙江大学,2010.
    [54]李晓文.溶剂脱沥青的技术进展与工艺优化[J].中外能源,2007,12(2):68-75.
    [55]沈本贤,赵立民,章建华,等.用乙酸乙酯—硫醚脱除劣质渣油中沥青和镍[J].华东化工学院学报,1991,17(5):540-544.
    [56]Speight J G, Long R B, Trowbridge T D. Factors influencing the separation of asphaltenes from heavy petroleum feedstocks [J]. Fuel,1984,63(5):616-620.
    [57]Andersen S I, Birdi K S. Influence of Temperature and Solvent on the Precipitation of Asphaltenes [J]. Fuel Science and Technology International.1990,6(8):593-615.
    [58]Han L, Zong Z M, Jin X. et al. Solubility of Dagang vacuum residue and molecular composition of the soluble fractions in different solvents [J]. Fuel,2008,87(2):260-263.
    [59]梁晓霏,赵锁奇.劣质渣油超临界萃取馏分溶解度参数的测定新方法[J].石油学报(石油加工),2002,18(5):87-91.
    [60]龙军,王仁安,范耀华.大庆劣质渣油在超临界正戊烷中的平衡溶解度[J].石油大学学报(自然科学版),1990,14(3):103-107.
    [61]Onukwuli O D. Onyia I M, Ekumankama E O, et al. SOLVENT DEMETALLIZATION OF ATMOSPHERIC AND VACUUM RESIDUES [J]. Petroleum Science and Technology,1999.17(1-2),37-49.
    [62]Pinho S P. Marcedo E A. Solubility of NaCl, NaBr, and KC1 in Water, Methanol. Ethanol. and Their Mixed Solvents [J]. Journal of Chemical and Engineering Data,2005,50(1): 29-32.
    [63]Hildebrand J H, Prausnitz J M, Scott T L. Regular and related solutions [M]. New York: Van Nostrand Reinhold.1970.
    [64]Small P A. Some factors affecting the solubility of polymers [J]. Journal of Applied Chemistry,1953,3(2):71-80.
    [65]Hansen C M. The Three Dimensional Solubility Parmameter and Solvent Diffusion Coefficient [M]. Copenhagen:Danish Technical Press,1967.
    [66]Bagley E B, Nelson T P, Scigliano J M. Three-dimensitonal solubility parameters for the relationship to internal pressure measurements in polar and hydrogen bonding solvent [J]. Journal of Paint Technologies,1971,43(12):35-42.
    [67]刘国杰,黑恩成,史济斌.一个新的溶解度参数[J].化工学报,1994,4(6):665-672.
    [68]Wiehe I A. Two-dimensional solubility parameter mapping of heavy oils [J]. Fuel Science Technology International,1996,14(1-2):289-312.
    [69]Prausnitz J M, Lichenthaler R N, Azevedo E G, et al. Molecular Thermodynamics of Fluid-Phase Equilibria(2nded) [M]. Englewood Cliffs:Prentice Hall Inc., New Jersey, 1986.
    [70]Barton F M. Handbook of solubility Parameters and other Coheison Parameters [M].2nd Ed. London:CRC press,1991,207.
    [71]童心.替代组分和假组分相结合的方法表征煤焦油物系[D].上海:同济大学,2009.
    [72]马彩霞,张荣,毕继诚.煤焦油在超临界水中的改质研究[J].燃料化学学报,2003,31(2):103-110.
    [73]徐印堂,聂长明,杨倩,等.煤焦油深加工现状、新技术和发展方向[J].应用化学,2008,37(12):1496-1499.
    [74]Hana L N, Zhang R, Bi J C. Experimental investigation of high-temperature coal tar upgrading in supercritical water [J]. Fuel Processing Technology,2009,90(2):292-300.
    [75]单玉华,邬国英,李为民,等.杂多酸催化下过氧化氢氧化法精制焦化汽油[J].石油化工,2003,32(3):361-364.
    [76]舒歌平,史士东,金嘉.气化焦油加氢制取汽油柴油研究[J].煤化工,1998,83(2):34-39.
    [77]Butler R D. Simulated Distillation by Gas chromatography, Chromatography in Petroleum Analysis; Algelt. K. H., Gouw. T. H., Eds.; Marcel Dekker:New York,1979.
    [78]李少萍,刘骏,沈本贤,等.添加剂对原油蒸馏拔出率的影响[J].华东理工大学学报(自然科学版).2005,31(4):433-437.
    [79]程健,于桂珍,刘以红,等.常压劣质渣油掺炼催化裂化油浆提高蒸馏拔出率的研究[J].石油炼制与化工,1999,30(8):34-38.
    [80]舒运贵.强化蒸馏实验研究现状[J].武汉化工,1998,(4):4-9.
    [81]刘红研,沙峰,朱建华.不同类型添加剂强化原油蒸馏过程及机理[J].化工学报,2002,53(8):865-870.
    [82]瞿国华,黄大智,梁文杰.延迟焦化在我国石油加工中地位和前景[J].石油学报(石油加工),2005,21(3):47-53.
    [83]张学萍.煤焦油延迟焦化可行性探索试验[J].抚顺烃加工技术,2004,(2):25-32.
    [84]刘建明,杨培志,曹祖宾,等.中、低温煤焦油延迟焦化的工艺研究[J].燃料与化工,2006,37(2):46-49.
    [85]贾永斌,张守玉.热解和气化过程中焦油裂解的研究[J].煤炭转化,2000,23(4):1-6.
    [86]Luo P, Gu Y A. Characterization of a heavy oil-propane system in the presence or absence of asphaltene precipitation [J]. Fluid Phase Equilibria,2009,277:1-8.
    [87]Subodhsen Peramanu. Patrick F C, Barry B P. Flow loop apparatus to study the effect of solvent, temperature and additives on asphaltene precipitation [J]. Journal of Petroleum Science and Engineering,1999,23(2):133-143.
    [88]Didier Lesueur. The colloidal structure of bitumen:Consequences on the rheology and on the mechanisms of bitumen modification [J]. Advances in Colloid and Interface Science, 2009,145:42-82.
    [89]Onukwuli O D, Onyia I M, Ekumankama E O, et al. SOLVENT DEMETALLIZATION OF ATMOSPHERIC AND VACUUM RESIDUES [J]. Petroleum Science and Technology,1999,17(1-2):37-49.
    [90]Newcomer R M, Sohau R C. Heavy Oil extraction ups FCC feed at fist-stage grass roots ROSE unit in Kansas [J]. The Oil and Gas Journal,1982,80:108.
    [91]高艳秋.劣质渣油中四组分的测定[J].化学工程师,2004,18(5):10-12.
    [92]程之光.重油加工技术[M].北京:中国石化出版社,1994.
    [93]沈本贤,刘纪昌.基于分子管理的石脑油资源优化利用研究——提高乙烯与芳烃产率双目标优化的策略[A].中国工程院化工、冶金与材料工程学部第五届学术会议论文集[C].北京:中国石化出版社,2005:130-135.
    [94]伍林,曹淑超,陈堡军等.10kg/次煤焦油溶剂萃取分离系统与工艺[J].中国有色金属学报,2004,14:118-121.
    [95]Baker E W. Palmer S E. Geochemistry of Porphyins [D]. In:Dolpin D,eds.The Plrphyrins Vol. I. New York:Academic Press.1978:485-551.
    [96]沈本贤.石油炼制工艺学[M].北京:中国石化出版社,2009:198.
    [97]Trasobares S. Callejas M A. Benito A M, et al. Kinetics of Conradson carbon residue conversion in the catalytic hydroprocessing of a Maya residue [J]. Ind. Eng. Chem. Res. 1998.37:11-17.
    [98]Shui H F. Shen B X, Gao J S. STUDY ON THE STRUCTURE OF HEAVY OILS [J]. Petroleum Science and Technology,1997,15:7,595-610.
    [99]Yen T F, Wu W H, Chilingar G V. Study of the structure of petroleum asphaltenes and related substances by proton nuclear magnetic resonance [J]. Energy Sources,1984,7: 275-304.
    [100]Haley G A. Unit sheet weights of asphalt fractions determined by structural analysis [J]. Anal. Chem.,1972,44:580-585.
    [101]Qian S A, Zhang B Z, Li C F. Study of structural parameters in some petroleum aromatic fractions by lHn.m.r.,i.r and 13C1, 1Hn.m.r. spectroscopy [J]. Fuel,1984.63:268.
    [102]Haley G A. Molecular and unit sheet weights of asphalt fractions separated by Gel Permeation Chromatography [J]. Anal. Chem.,1971,43:371.
    [103]Brown J K, Ladner W R. A Comparison With Infra Red Measurements And The Conversion to Carbon Structure [J]. Fuel,1960,39:87-96.
    [104]Williams R B. Symposium on composition of Petroleum Oils [J]. ASTM, STP,1958,224: 167-174.
    [105]袁红兰.有机化学[M].北京:化学工业出版社,2007.
    [106]瞿国华.21世纪中国炼油工业的重要发展方向——重质(超重质)原油加工[J].中外能源,2007,12(3):54-62.
    [107]Ali M F, Abbas S. A review of methods for the demetallization of residual fuel oils [J]. Fuel Processing Technology,2006,87 (7):573-584.
    [108]夏畅斌,何湘柱.磺化褐煤对重金属离子的吸附作用研究[J].材料保护,2000,33(3):19-20.
    [109]孙钜方,李青.石油沥青煤水浆研制和气化[J].大氮肥,2000,23(2):113-115.
    [110]Audeh C A, Yan T Y. Coprocessing of Petroleum Residue and Coal [J]. Ind. Eng. Chem. Res.1987,26:2419-2423.
    [111]Yan T Y. Nonhydrogenative Upgrading of Petroleum Residua [J]. Ind. Eng. Chem. Process Des. Dev.1984,23:415-419.
    [112]Yan T Y, Espenscheid W F. Liquefaction of Coal in a. Petroleum Fraction Under Mild Conditions [J]. Fuel Processing Technology,1983,7:121-133.
    [113]Yan Y T. Non-hydrogenative Upgrading of Petroleum Residue [J]. Ind. Eng. Chem.. Process Des. Dev.1984,23:415-419.
    [114]Chen S L. Jia S S. Luo Y H. et al. Mild cracking solvent deasphalting:a new method for upgrading petroleum residue [J]. Fuel,1994,73(3):439-442.
    [115]Jay M C, Meng L. Richard R D, et al. Supercritical Fractions as Asphalt Recycling Agents and Preliminary Aging Studies on Recycled Asphalts [J]. Ind. Eng. Chem. Res., 1997.36:658-666.
    [116]Zou X Y. Leisl D L, Zhang X H et al. Selective Rejection of Inorganic Fine Solids. Heavy Metals, and Sulfur from Heavy Oils/Bitumen Using Alkane Solvents [J]. Ind. Eng. Chem. Res.,2004,43:7103-7112.
    [117]Wang J, Xu Z M. Li F J, et al. Multi-demension separation and composition characterization of Dagang vacuum residue [J]. Journal of Fuel Chemistry and Technology,2007.35(4):412-418.
    [118]Speight J G. The Chemistry and Technology of Petroleum [M]. New York:Marcel Dekker 1999.
    [119]Speight J G. Asphaltenes in crude oil and bitumens:structure and dispersion; Schramm, L. L. Suspersion:Fundamentals and Applications in the petroleum industry; Washington D C:American Chemical Society,1996, pp 377-401.
    [120]Zhang L, Luo L, Zhao S, et al. Effect of different acidic fractions in crude oil on dynamic interfacial tension in surfactant/alkali/model oil systems [J]. Journal of petroleum science and engineering,2004,41:189-198.
    [121]Hiemenz P C. Principles of Colloidal and Surface Chemistry (3rd ed)[M]. New York: Marcel Dekker.1997,301,327.
    [122]John T M, Wojciechowski B W. Effect of reaction temperature on product distribution in the catalytic cracking of a neutral distillate [J]. Journal of Catalysis,1975,37:348-357.
    [123]Fisher I P. Effect of Feedstock Variability on Catalytic Cracking Yields [J]. Appl. Catal., 1990,65:189-210.
    [124]Scherzer J. Octane-enhancing zeolitic FCC catalysts [M], Marcel Dekker, Inc.:New York, 1990,97.
    [125]曹湘洪.高油价时代劣质渣油加工工艺路线的选择[J].石油炼制与化工,2009,40(1):1-8.
    [126]龙军,王子军,黄伟祁,等.重溶剂脱沥青在含硫劣质渣油加工中的应用[J].石油炼制与化工,2004,35(3):1-5.
    [127]石铁磐,胡云翔,许志明,等.减压劣质渣油特征化参数的研究[J].石油学报(石油加工),1997,13(2):1-7.
    [128]徐燕平.高软化点条件下的脱油沥青气化工业试验[J].中外能源,2010,15(3):92-96.
    [129]蔡智.溶剂脱沥青-脱油沥青气化-脱沥青油催化裂化组合工艺研究及应用[J].当代石油石化,2007.15(4):16-20.
    [130]汪学峰.劣质渣油型合成氨气化原料路线改造工艺探讨[J].大氮肥,2008.31(6):247-249.
    [131]Wiehe I A. Kenedy R J. The Oil Compatibility Model and Crude Oil Incompatibility [J]. Energy Fuels,2000,14:56-59.
    [132]Wang Y F, Cheng J, Jia S S, et al. Investigation the compatibility and incompatibility of vacuum residua with catalytic cracking bottom oil [J]. Energy Fuels,2003,17:344-347.
    [133]江体乾.化工流变学[M].上海:华东理工大学出版社.2004.
    [1 34]张铮.使用流动改进剂柴油的低温流变性研究[J].燃料化学学报,2001,29(5):446-449.
    [135]李生华,刘晨光,阙国和,等.劣质渣油热反应体系中第二液相形成与热处理温度的关系[J].石油学报(石油加工),1998,14(1):11-16.
    [136]Li S H, Liu C G, Que G H. Colloidal structures of vacuum residua and their thermal stability in terms of saturate, aromatic, resin and asphaltene composition [J]. Journal of Petroleum Science and Engineering,1999,22(1-3):37-45.
    [137]于志敏.劣质渣油掺炼裂解重油混合相分离行为的研究[D].东营:中国石油大学,2009.
    [138]Loeber L, Muller G, Morel J. Bitumen in colloid science:a chemical, structural and rheological approach [J]. Fuel,1998,77(13):1443-1450.
    [139]Olabisi O, Robenson L M, Shaw M T. Polymer-polymer miscibility [M]. Michigan: Academic Press Inc,1979.
    [140]Allan F, Barton M. CRC handbook of solubility parameters and other cohesion parameters [J]. Second edition, CRC Press:Boca Raton,1991.
    [141]Avaullee L, Trrasy L, Neau E, et al. Thermodynamic modeling for petroleum fluids:I. Equation of state and group contribution for the estimation of thermodynamic parameters of heavy hydrocarbons [J]. Fluid Phase Equilibria,1997,139(1-2):155-170.
    [142]Stou M, Nakamura T, Chiba T, et al. Contributions of aromatic conjunction and aromatic inner carbons to molar volume of polyaromatic hydrocarbons [J]. Fuel,2000,79: 1057-1066.
    [143]Elliot MA煤的利用化学[M].北京:化学工业出版社,1991:201-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700