油茶籽油品质及其变化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶油是世界四大木本油脂之一。特别是在中国和日本有长期食用的历史。茶油含单不饱和脂肪酸,与橄榄油较为接近。但是,由于其分布具有明显的地域性,对其品质,特别是感官品质等的研究较少。本研究主要是对焙烤、脱色及煎炸等茶油加工精炼和使用过程中的品质变化进行研究,特别是对挥发性成分及酚类物质的分析方法及变化进行研究。
     固相微萃取目前被广泛地用来测定液态、气态,甚至固态物质的挥发组分,不同待测物的性质决定了萃取头的种类选择。本文采用4种常用的SPME涂层萃取头(100μmPDMS、85μmPA、65μmPDMS/DVB、50/30μmDVB/CAR/PDMS)对茶油挥发物的提取性能进行了比较研究,结果表明:65μmPDMS/DVB萃取头对较高沸点物质,如苯甲醛、正辛醛、正辛醇、正壬醛、正壬醇的吸附比50/30μmDVB/CAR/PDMS萃取头要灵敏,但50/30μmDVB/CAR/PDMS萃取头对较低沸点物质的吸咐要灵敏很多。DVB/CAR/PDMS涂层萃取头所得的总峰面积的平均值最大,其余依次是PDMS/DVB、PA、PDMS; DVB/CAR/PDMS、PDMS/DVB、PA、PDMS对挥发物吸咐总峰面积与挥发物总量之间存在线性关系,其相关系数(R2)分别是0.9939、0.9888、0.9176、0.9917。因此,65μm PDMS/DVB和50/30μm DVB/CAR/PDMS的萃取头较适用于茶油挥发物的提取。
     在建立茶油主要挥发性成分定量分析方法的基础上,采用顶空固相微萃取(HS-SPME)、气相色谱-质谱(GC-MS)联用,测定了液压机榨茶油的挥发性成分。结果显示:13种茶油主要挥发物的浓度与峰面积间呈现出良好的线性关系,相关系数(R2)在0.9840~0.9999之间,检测限为0.04μg/g~0.43μg/g,加标回收率为90.88%~105.03%,并有较好的重现性,7次连续检测的相对标准偏差范围在3.66%~7.42%。液压机榨茶油毛油中的挥发性成分主要为醛类、醇类、烯类、酮类、酯类、酸类等。挥发性物质含量在前10位的是壬醛、α-蒎烯、乙酸乙酯、戊醇、苯甲醛、辛醇、α-木罗烯、壬醇、癸醇、辛醛,其含量总和为21.26μg/g,占总量的68.40%。此法对茶油挥发性成分的分析能达到快速、方便及准确的要求。
     综合茶油感官、GC、GC/MS的分析结果,在大量查阅参考文献的基础上,计算了主要呈味物质的气味活性值(OAV)。选定10种主要呈味物质作为主体成分,按不同浓度和增加部分可能的呈味物质,构建了20余个配方,结合感官鉴定筛选出的机榨毛油作为对照,进行了三点检验和GC分析,从中筛选了2个配方,与机榨毛油无显著差别(p>0.05)。
     油茶籽种仁的焙烤和水代法制油工艺条件的优化结果表明:以茶油出油率及清油率为指标来评价工艺,油茶籽仁的焙烤适宜温度与时间分别为175℃和15min;水代法分离的合适条件为水料比为4.5:1,分离时间为150min。茶油中的水分与挥发物含量、过氧化值随焙烤温度与时间的增加而下降,而碘值和皂化值变化则有相反的规律;酸值则没有明显的规律性变化。用该法提取的茶油挥发性成分分属于醛类、醇类、酯类等物质,含量最高的是乙酸乙酯。大多数挥发性成分在170℃时积累到较高水平,并随温度的进一步升高而下降,但随焙烤时间的增加,多数成分都有增加的趋势。
     为了了解茶油在脱色过程中的质量变化及氧化状态,测定了过氧化值、酸值、紫外吸收和挥发物的组成。结果表明:在白土用量0%-4%,脱色时间0-40min,脱色温度为110℃的条件下,FFA、K270、K232随白土用量和时间的增加而增加,而过氧化值则下降。当脱色温度和时间分别在110℃和30min时,白土用量从0%上升到4%,不同挥发物上升到:醛类(23.7μg/g)、醇类(13.2μg/g)、酯类(8.0gg/g)、烷类(2.0μg/g)和酮类(1.9μg/g)。同时,脱色温度为110℃,白土用量为3%时,脱色时间从0上升到40min,不同挥发物增加到:醛类(27.7gg/g)、醇类(18.2gg/g)、酯类(7.3μg/g)、烷类(0.6μg/g)和酮类(3.2μg/g)。这说明脱色可以分解氢过氧化物,并由白土用量和时间所控制。
     以棕榈油作为对照,采用精炼茶油进行深层煎炸,分析测定了煎炸用油脂及薯条中油脂在煎炸过程中的主要化学指标,即酸值、过氧化值、羰基价、碘价、皂化值、K值及极性化合物含量等的变化;分析了煎炸用茶油的挥发性成分的变化;评价了薯条的感官品质。结果表明:在连续煎炸30h(120批次),茶油及棕榈油的酸值、过氧化值、羰基价、极性化合物含量和K值均逐渐升高,碘价和皂化值则呈逐渐降低的趋势;总挥发物含量逐渐增加,但一些小分子量挥发物呈先升后降的趋势;用新鲜油煎炸的薯条的总体得分较高;除过氧化值以外,薯条中茶油的其他测定指标的变化滞后于煎炸用油的变化。对照GB7102,除茶油的羰基价在24h时已超标外,其他指标至30h时尚处于规定的限值范围。因此,茶油的深层煎炸寿命为24h(96批次),用茶油煎炸的薯条更易被消费者所接受。
     实验室制备的浸出毛油(SECO)和市购的冷榨油(CPO)用于分析总酚含量(TP)和其他质量指标。同时考察了不同溶剂提取对多酚组成的影响。根据GB11765,冷榨油的酸值、过氧化值和透明度、气味滋味等能满足要求,但SECO则略显混浊。两种油在总酚含量上没有明显的差别,但浸出油的多酚组成明显要比冷榨油复杂得多。提取溶剂的效果表明:低级醇比丙酮能提取更多的多酚种类,丙酮仅能提取没食子酸。这说明浸出毛油必须进行精炼,不同溶剂提取效果的针对性可能对今后的多酚研究有一定的借鉴作用。
Camellia is one of the four main oil-bearing trees (palm, coconut, olive and tea) in the world. The oil from camellia seeds has long been important in China and Japan, to a lesser extent. Camellia oil with its low saturated fatty acid and high monunsatuarted oleic acid content is a natural competitor for olive and grape seed oils. Since it has regional property, the attributes and their changes during processing and cooking of camellia oil, particularly, sensory and nutritional properties have not been surely understood. In this study, the quality changes during roasting, bleaching and frying were investigated. Actually, the quantitative analyses and changes of polyphenols and volatiles as minor compounds in camellia oil were the highlights in the study.
     Solid Phase Microextraction (SPME) has been widely used for extraction of volatile in gas, liquid and solid matrices. Four fibers, i.e.100μmPDMS,85μmPA,65μmPDMS/DVB and50/30μmDVB/CAR/PDMS, were selected for extraction in camellia oil volatile analysis. The results showed that:1) benzaldehyde, octanal, octonol, nonanal, and nonanol which have relatively higher boiling points were sensitive in65μm PDMS/DVB fiber, while the relative lower boiling point compounds were sensitive in50/30μm DVB/CAR/PDMS fiber;2) the total peak areas in gas chromatography ranked as following sequence:DVB/CAR/PDMS>PDMS/DVB>PA>PDMS;3) linear regressive relationship between total peak area and volatile amount (0-120μg/g) in DVB/CAR/PDMS, PDMS/DVB, PA, PDMS was existed with R2of0.9939,0.9888,0.9176and0.9917, respectively; These factors indicate that65μm PDMS/DVB and50/30μmDVB/CAR/PDMS are suitable for extraction of volatile of camellia oil.
     A method for volatile analysis of hydraulic pressed camellia oil(Camellia oleifera Abel) by headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) using50/30μm DVB/CAR/PDMS fiber is presented. Calibration curves were constructed for13compounds commonly reported in camellia oil headspace with coefficients of determination (R2) ranging from0.9840to0.9999and limits of detection (LOD) from0.04μg/g to0.43μg/g. The recoveries and coefficient of standard deviation in repetitive determination ranged from90.88%to105.03%and from3.66%to7.42%, respectively.37volatile compounds in hydraulic pressed camellia oil were identified by mass spectrum and standard retention time that included aldehydes, alcohols, ketons, esters and acids etc. The total concentration of the top ten compounds, namely, hexanal, a-pinene, ethyl acetate, pentanol, benzaldehyde, octanol, a-Muurolene, nonanol, decanol, and octanal, reached21.26μg/g and accounted for68.40%of total. These factors indicate that this method is rapid, sensitive and convenient for volatile analysis of camellia oil.
     Combined with the results of sensory evaluation and GC/MS analysis for camellia oil, odour active values (OAV) for interested compounds were calculated through the thresholds in references. About10compounds were selected as main aromatic volatiles according to OAVs to form about20formula by diffenrent concentrations and adding potential compounds for contributing aroma.2formula were confirmed through triangle test compared to hydraulic pressed oil(p>0.05).
     Results of optimization of roasting and aqueous extraction conditions showed that:1) the optimum extracted rate and oil yield could be got when camellia seed kernel was roasted at175℃for15min followed by separation using water (water/meal,4.5/1) for150min.2) the moisture and volatile content, PV decreased but IV and SV increased with the enhancement of time and temperature of roasting.3) the volatiles in camellia oil extracted by the above method were classified into aldehyde, alcohol and ester. Among them, ethyl acetate ranked first. Majority of these compound accumulated up to the highest level at170℃and decreased when temperature further increased. But the concentrations of most of compounds increased with the increase of roasting time.
     In order to understand the quality change and oxidative state of camellia oil(Camellia oleifera Abel) in the bleaching step, measurements of various quality parameters, i.e. peroxide value (POV), free fatty acid (FFA) and UV absorbance, and volatile profile of crude and bleached oils were carried out. The results showed that FFA, K270and K232increased, whereas POV decreased, with increase of the activated earth dosage of0-4%and of bleaching time from0to40min at110℃. As the amount of activated earth was increased from0%to4%with bleaching at110℃for30min, various classes of volatile compounds increased in concentration:aldehydes (23.7μg/g), alcohols (13.2μg/g), esters (8.0μg/g), alkenes (2.0μg/g) and ketones (1.9μg/g). Likewise when bleaching was carried out at110℃with3%activated earth, and the bleaching time varied between0and40min, concentrations of volatile compounds also increased:aldehydes (27.7μg/g), alcohols (18.2μg/g), esters (7.3μg/g), ketones (3.2μg/g) and alkenes (0.6μg/g). These findings indicate that hydroperoxides in oil were decomposed into lower molecular weight products in the process of bleaching and that the extent of this decomposition can be controlled by time and amount of activated earth.
     Refined camellia (GB11765, pressed oil, Grand1) was used for deep frying for French fryer with comparison of palm oil. During30h (120batches) frying procedure, acid, peroxide, carbonyl, iodine, saponification, and K values and polar compounds of frying oil and oil extracted from French fryer were analysed. Volatile of frying oil and sensory attributes of French fryer were also evaluated. The results were showed that acid, peroxide, carbonyl, and K values and polar compounds of camellia and palm oils increased gradually, while iodine and saponification values decreased; Total volatile accumulated with a trend of "up-down" of lower molecular weight volatiles; Total score of French fryers fried with fresh oil and with camellia oil were higher than those from the latter bathches and fried with palm oil; Except of peroxide value, other values assessed in the oil extracted from French fryer were lower than those in the relative batch frying oil. According the regulation of GB7102, except that carbonyl value at24h exceeded the limit, other indices were still within the required limit. The factors as given above indicate that the frying life of camellia oil should be24hours and the French fryer fried with camellia oil could be more acceptable by consumers.
     A claim of a camellia oil healthcare benefit as a result of the high amount of'tea polyphenol'arises a widely discussion in China currently, A laboratory solvent extracted crude oil (SECO) and a commercial cold pressed oil (CPO) were used for evaluation of oil attributes, particularly, total phenol content (TP). Effects of different solvents on phenol extraction for phenol profile were also investigated. According to GB11765(a Chinese standard for camellia oil quality), acid value (AV), peroxide value (POV), sensory attributes, i.e. transparency, odour and flavour of CPO met the requirements, while SECO showed turbid. TP in SECO had no significant difference compared with that in CPO, thus, the phenol profile of SECO seemed to be more complicated in comparison to that of CPO. Different solvents showed different effects on phenol profiles: low molecular alcohol aqueous solution could extract more phenolic compounds, while gallic acid as a solely coumpound was extracted by acetone. These factors indicate that SECO should be refined and solvent effect on phenolic compound extraction would be helpful on further research for the interested phenol fraction in camellia oil.
引文
[1]Savige, T.J. The international registrar of the genus camellia[M]. The International Camellia Society, Wirlinga, Australia,1993.
    [2]Anon. http://www.ipni.net/ppiweb/sechina.nsf/$webindex/CB8B90655EB74266 48256F63002DFC7A?opendocument&navigator=special+crops. Last accessed 16 June 2007.
    [3]Xia L., Zhang, A., and Xiao, T. An introduction to the utilization of camellia oil in China[M]. American Camellia Yearbook 48,1993,12-15.
    [4]Tang L., Bayer, E., and Zhuang, R. Obtain, properties and utilization of Chinese teaseed oil[J]. Fett Wissenschaft Technologie-Fat Science Technology,1993,95:23-27.
    [5]Shanan H., and Ying, G. The comprehensive utilization of camellia fruits[M]. American Camellia Yearbook,1982, (37):104-107.
    [6]Sabetay S. Camellia seed oil:the seed oil of camellia japonica L. and its uses in cosmetology and dermo-pharmacy[J]. Soap Perfumery Cosmetics,1972,45:244-252.
    [7]漆龙霖,吕芳德,李克瑞.湖南省山茶属植物种质资源的收集、保存和利用研究[J].武汉植物学研究,1989,7(3):275-284.
    [8]廖学焜,陈文祥,郭慧然,等.几种山茶属植物种子油的甘油三酯组成研究[J].植物学报,1987,29(6):629-635.
    [9]王振澜,尹华文,刘文玉.茶油之稳定性探讨及生育酚与固醇类成分之分析[J].林业试验所(台湾)研究报告之季刊,1994,9(1):73-86.
    [10]Sokol'skii I.N., Ban'kovskii, A.I., and Zinkevich, E.P. Triterpene glycosides from camellia oleifera and camellia sasanqua[J]. Chemistry and Natural Compounds,1976,11: 116-117.
    [11]Akihisa T., Arai, K., Kimura, Y., et al. Camelliols a-C, three novel incompletely cyclized triterpene alcohols from sasanqua oil (camellia sasanqua) [J]. Nat. Prod,1999, (62):265-268.
    [12]Zhong H.Y., Bedgood D, Bishop A., et al. Endogenous biophenols fatty acid and volatile profiles of selected oils[J]. Food Chem.,2007a,100:1544-1551.
    [13]Bauernfeind J. Vitamin E:a comprehensive treatise. Marcel Dekker, New York, p. 1980,99.
    [14]Anon. In:dietary reference intakes for vitamin C, vitamin E, Selenium and Carote-noids,2000b,246.
    [15]Yamaguchi K., Kurata S. Forensic discrimination of unsaponifiables of fats and oils using gas chromatography/mass spectrometry[J]. Bunseki Kagaku,2005,54:1091-1100.
    [16]Phillips K.M., Ruggio, D.M., Toivo, J.I., et al. Free and esterified sterol composition of edible oils and fats[J]. Food Comp. Anal,2002,15:123-142.
    [17]Wang A.P., Seki, T., Yuan, D., et al. Effect of camellia oil on the permeation of flurbiprofen and diclofenac sodium through rat and pig skin[J]. Biol. Pharm. Bull.,2004, 27:1476-1479.
    [18]李冬梅,王婧,毕良武,等.提取方法对茶油中活性成分角鲨烯含量的影响[J].生物质化学工程,2006,40(1):9-12.
    [19]Akihisa T., Tokuda, H., Ukiya, M., et al.3-Epicabraleabydroxylactone and other triterpenoids from camellia oil and their inhibitory effects on epstein-barr virus activation[J]. Chem. Pharm. Bull.,2004, (54):153-156.
    [20]J.G., Ho, C.T., Li, H, et al. Separation of sterols and triterpene alcohols from unsaponifiable fractions of three plant seed oils[J]. Food Lipids,2000,7:11-20.
    [21]方玉栋,刘璐琪,李和.油茶种子油不皂化物中的五环三萜醇与四环三萜醇的研究[J].中国粮油学报,1999,14(3):18-22,26.
    [22]Lee, C.P., Yen, F. Antioxidant activity and bioactive compounds of tea seed (camellia oleifera abel.) oil[J]. J. Agric. Food Chem.,2006,54:779-784.
    [23]Zhong, H.Y, Bedgood, et al. Effect of added caffeic acid and tyrosol on the fatty acid and volatile profiles of camellia oil following heating[J]. J. Agric. Food Chem.,2006,54: 9551-9558.
    [24]毛方华,王鸿飞,刘飞,等.油茶籽油的提取及其对自由基清除作用的研究[J].西北林学院学报,2009,24(5):125-128,194.
    [25]董新荣,刘宇光,李本祥.芝麻酚对茶油抗氧化活性研究[J].食品研究与开发,2008,14(7):19-21.
    [26]欧阳玉祝,石爱华,李佑稷,等.茶多酚对茶籽油过氧化值的影响[J].食品工业科技,2008,12(3):86-87,90.
    [27]袁英姿,曹清明,钟海雁,等.油茶籽多酚对茶油的抗氧化性的研究[J].食品工业科技,2009,30(6):103-105.
    [28]袁英姿,曹清明,钟海雁.大孔吸附树脂纯化油茶籽多酚的研究[J].食品与机 械,2009,25(1):61-63.
    [29]曾献,袁英姿,曹清明,等.油茶籽多酚的提取研究[J].食品与机械,2008,24(4):69-72.
    [30]刘雳,赵正惠.茶籽毛油中极性抗氧化物质的研究[J].中国粮油学报,2002,17(3):4-9.
    [31]王徐卿,沈建福,王敏,等.油茶籽饼多酚的乙醇提取工艺优化研究[J].浙江林业科技,2007,27(3):41-44.
    [32]林生深,张晋,张红,等.从油茶果壳中提取天然抗氧化剂的研究[J].广东工业大学学报,1997,14(2):43-48.
    [33]Robards K., Prenzler P., Tucker G., et al. Phenolic compounds and their role in oxidative processes in fruits [J]. J. Food Chemistry,1999,66(4):401-436.
    [34]Amiot M. J., Fleuriet A., Macheix J. J. Importance and evolution of phenolic compounds in olive during growth and maturation [J]. J. Agric. Food Chem.,1986,34(5): 823-826.
    [35]Ryan D., Robards K.. Phenolic compounds in olives[J]. Analyst,1998,123(5): 31R-44R.
    [36]Uccella N. Olive biophenols:biomolecular characterization, distribution and phytoalexin histochemical localization in the drupes[J]. Trends in Food Sience and Technology,2000,11(9-10):315-327.
    [37]Brenes M. Garcia, A., Carcia P., et al. Phenolic compounds in Spanish olive oils[J]. Agric. Food Chem.,1999,47(9):3535-3540.
    [38]Duran R. M. Relationship between the composition and ripening of the olive and quality of the oil[J]. Acta Horticulturae,1990,286:441-451.
    [39]Esti M., Cinquanta L. and LaNotte E. Phenolic compounds in different olive varieties[J]. Agric. Food Chem.,1998,46(1):32-35.
    [40]Garcia A. Brenes M., Martinez F., et al. High-performance liquid chromatography evaluation of phenols in virgin olive oil during extraction at laboratory and industrial scale [J]. American Oil Chemists Society,2001,78(6):625-629.
    [41]Rodis P., S., Karathanos V. T., et al. Partitioning of olive oil antioxidants between oil and water phases[J]. Agric. Food Chem.,2002,50:596-601.
    [42]Mailer R., J., Ayton J.. Comparison and evaluation of quality of thirty-eight commercial Australian and New Zealand olive oils[J]. Adv. Hort. Sci.,2002,16(4): 259-266.
    [43]Psomiadou, E., Tsimidou. Stability of virgin olive oil.1.Autoxidation studies[J]. Agric. Food Chem.,2002a,50(4):716-712.
    [44]Psomiadou, E., Tsimidou M. Stability of virgin olive oil.2. Photo-oxidation studies[J]. Agric. Food Chem.,2002b,50(4):722-727.
    [45]Pagliarini, E., Zanoni, B. Predictive study on Tuscan extra virgin olive oil stability under several commercial conditions[J]. Agric. Food Chem.,2000,48(4):1345-1351.
    [46]Cinquanta L., Esti M., Lanotte E. Evaolution of phenolic compounds of virgin olive oil during storage[J]. Journal of the American Oil Cheists Society,1997,74(10): 1259-1264.
    [47]Andrewes P., Busch J. L. H. C., DeJoode T., et al. Sensory properties of virgin olive oil polyphenols:identification of deacetoxy-ligstroside aglycon as a key contributor to pungency[J]. Agric. Food Chem.,2003,51(5):1415-1420.
    [48]Jung D. M., DeRopp J. S., Ebeler S. E. Study of interactions between food phenolics and aromaticflavors using one-and two-dimensional 1H NMR spectroscopy[J]. Agric. Food Chem.,2000,48(2):407-412
    [49]Martin-Moreno J. M. The role of olive oil in lowering cancer risk:is this real gold or simply pinchbeck[J]. Journal of Epidemiology and Community Health,2000,54:726.
    [50]Visioli F., Galli C. Biological properties of olive oil phytochemicals[J]. Critical Review in Food Science and Nutrition,2002,42:209.
    [51]Fotakis G., Timbrell J. A. In vitro cytotoxicity assays:comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride [J]. Toxicology Letters,2006,160:171-177.
    [52]Owen R. W., Mier W., Giacosa A., et al. Identification of lignans as major components in the phenolic fraction of olive oil[J]. Clinical Chemistry,2000,46:976-988.
    [53]Owen R.W., Mier W., Giacosa A., et al. Phenolic compounds and squalene in olive oils:the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignans and squalene[J]. Food and Chemical Toxicology,2000,38:647-659.
    [54]Teissedre P L, Frankel E N, Waterhouse A L, et al. Inhibition of in vitro human LDL oxidation by phenolic antioxidants from grapes and wines[J]. Sci. Food Agric.,1996,70: 55-61.
    [55]Frankel E. N., Huang S. W., Kanner J., et al. Interfacial phenomena in the evaluation of antioxidants:bulk oils ver sus emulsions[J]. Agr. Food Chem.,1994,42:1054-1059
    [56]Frankel E.N., Huang S. W., Prior E., et al. Evaluation of antioxidant activity of rosemary extracts, carnosol and carnosic acid in bulk vegetable oils and fish oil and their emulsion[J]. Sci. Food Agric.,1996,72:201-208.
    [57]王景梓,王岗,徐贵发.茶多酚的药理研究[J].食品与药品,2006,8:23—26.
    [58]Sesso H. D., Gaziano J. M., Buring J.F., et al. Coffee and tea intake and the risk of myocardial infarction [J]. Am J Pidemiol,1999,149:162-167.
    [59]Chen, F. Wang, X. Composition and Sensory Evaluation of Tea Seed Oil, http://greenteaseedoil.com/media/AOCS-2003-tea.seedl.ppt. Last accessed 30 August, 2007.
    [60]Hai, Z., Wang L. Detection of adulteration in camellia seed oil and sesame oil using an electronic nose[J]. Eur. J. Lipid Sci. Technol.,2006,108:116-124.
    [61]何东平,方立中,汤波,等.浓香茶子油的研制[J].武汉食品工业学院学报,1997(1):1-5.
    [62]Kalua, C.M., Allen H. Discrimination of olive oils and fruits into cultivars and maturity stages based on phenolic and volatile compounds[J]. Agric. Food Chem.,2005,53: 8054-8062.
    [63]Kalua, C.M., Bedgood D. Changes in volatile and phenolic compounds with malaxation time and temperature during virgin olive oil production[J]. Agric. Food Chem., 2006a,54:7641-7651.
    [64]Kalua C.M., Mailer R. Discrimination of olive oils and fruits into cultivars and maturity stages based on phenolic and volatile compounds[J]. Agric. Food Chem.,2006b, 54:8390.
    [65]Beardsell, D., Francis, J. Health promoting constituents in plant derived edible oils[J]. Food Lipids,2002,9:31-34.
    [66]Anon.(2007c)http://www.prnewswire.com/cgi-bin/stories.pl?ACCT=109&STORY= /www/story/02-23-2006/0004288384&EDATE=.Last accessed 30 July 2007.
    [67]Anon.(2006b)http://www.theage.com.au/articles/2006/11/30/1164777723114.html. Last accessed 23 August 2007.
    [68]Dupont J., White, L. Food safety and health-effects of canola oil[J]. Am. Coll. Nutr., 1989,8:360-375.
    [69]Precht D., Molkentin P. Recent trends in the fatty acid composition of german sunflower margarines, shortenings and cooking fats with emphasis on individual C16:1, C18:1, C18:2, C18:3 and C20:1 Trans Isomers[J]. Nahrung-Food,2000,44:222-228.
    [70]Ledoux, M., Laloux. Trans fatty acid isomers:origin and occurrence in food[J]. Sci. Aliments.2000,20:393-411.
    [71]Tasan M., Demirci M. Trans fatty acids in sunflower oil at different steps of refining[J]. Am. Oil Chem. Soc.,2003,80:825-828.
    [72]Herzallah S.M., Humeid F. Effect of heating and processing methods of milk and dairy products on conjugated linoleic acid and trans fatty acid isomer content[J]. Dairy Sci., 2005,88:1301-1310.
    [73]Christy A. A., Egeberg F. Quantitative determination of saturated and unsaturated fatty acids in edible oils by infrared spectroscopy and chemometrics[J]. Chemometrics and Intelligent Laboratory Systems[J].2006,82:130-136.
    [74]Griguol V., Leon-Camacho H. Review of the levels of trans fatty acids reported in different food products. Grasas Y Aceites,2007,58:87-98.
    [75]Wolff R.L. Trans-polyunsaturated fatty-acids in french edible rapeseed and soybean oils[J]. Am. Oil Chem. Soc.,1992,69:106-110.
    [76]Kubow S. The influence of positional distribution of fatty acids in native, interesterifi-ed and structure-specific lipids on lipoprotein metabolism and atherogenesis[J]. Nutr. Biochem.,1996,7:530-541.
    [77]Miura, D., Kida F. Camellia oil and its distillate fractions effectively inhibit the spontaneous metastasis of mouse melanoma B16 Cells[J]. FEBS Lett.,2007,581, 2541-2548.
    [78]Brufau, G. Phytosterols:physiologic and metabolic aspects related to cholesterol-lowering properties[J]. Nutr. Res.,2008,28:217-225.
    [79]Hong Y.S. A study on metabolic effects of lipid supplemented diets[J]. Korea University Med. J.,1988,25:829-842.
    [80]Budiyanto A., Ahmed G Protective effect of topically applied olive oil against photocarcinogenesis following UV b exposure of mice[J]. Carcinogenesis,2000, 21:2085-2090.
    [81]Akihisa, T., Yasukawa, K.. Sasanquol, a 3,4-seco-triterpene alcohol from sasanqua oil, and its anti-inflammatory effect [J]. Phytochemistry,1998, (48):301-305.
    [82]Zhan, Y. Animal Feed Compositions and Uses of Triterpenoid Saponin Obtained From Camellia L. Plants[P]. US Patent 6,007,822.
    [83]方学智,姚小华,王开良,等.不同制油方法对油茶籽油品质的影响[J].中国油脂,2009,34(1):23-25.
    [84]丛玲美,姚小华,费学谦,等.长期贮藏对茶油酸值和过氧化值的影响[J].林 业科学研究,2007,20(2):246-250.
    [85]Xu J.S., Meguro F. Oil comparison of camellia species of Japan and China[J]. Mokuzai Gakkaishi,1995,41:92-97.
    [86]Xu J.S., Meguro F. Variations of Fatty-Acid Compositions in Growing and Stored Camellia Seeds[J]. Mokuzai Gakkaishi,1995b,41:98-102.
    [87]Xu X. B., Hu C. CBE from teaseed oil by lipase catalysed modification, proceedings of international symposium and exhibition on new approaches in the production of food stuffs and intermediate products from cereal grains and oilseeds. Beijing, China,1994
    [88]Zhai F.Y., Du K. Fatty acids in Chinese edible oils:value of direct analysis as a basis for labeling[J]. Food and Nutrition Bulletin,2004,25:330-336.
    [89]Yasukawa, K., Takido A. Sterol and Triterpene Derivatives From Plants Inhibit the Effects of a Tumor Promoter, and Sitosterol and Betulinic Acid Inhibit Tumor-Formation in Mouse Skin 2-Stage Carcinogenesis[J]. Oncology,1991,48:72-76.
    [90]Yoshida, H., Abe F. Roasting effects on fatty acid distributions of triacylglycerols and phospholipids in sesame (sesamum indicum) seeds[J]. Sci. Food. Agric.,2001a,81: 620-626.
    [91]Yoshida H., Hirakawa E. Influence of microwave roasting on positional distribution of fatty acids of triacylglycerols and phospholipids in sunflower seeds (Helianthus Annuus L.) [J]. Eur. J. Lipid Sci. Technol.,2001b,103:201-207.
    [92]Yu Y.S., Ren J. Study on the climatic regionalization and layer and belt distribution of oiltea camellia quality in China[J]. Natural Res.,1999,14:123-127.
    [93]Yu B., Kim S. Evaluation of fluorescent probe surface intensities as an indicator of transdermal permeant distributions using wide-area two-photon fluorescence microscopy[J]. Pharm. Sci.,2003,92,2354-2365.
    [94]Marti M. P., Mestres M., Sala C., et al. Solid-phase microextraction and gas chromato graphy olfactometry analysis of successively diluted samples. a new approach of the aroma extract dilution analysis applied to the characterization of wine aroma[J]. Agric. Food Chem.,2003,51 (27):7861-7865.
    [95]Zhang Z., Pawliszyn J. Headspace solid-phase microextraction [J].Analytical Chemistry,1993,65 (14):1843-1852.
    [96]Tura D., Prenzler, P. D., Bedgood D. J., et al. Vairetal and processing effects on the volatile profile of Auatralian olive oils[J]. Food Chemistry,2004,84 (3):341-349.
    [97]黄永辉,钟海雁,李忠海.固相微萃取及其在食用植物油香气研究中的应用[J].食 品研究与开发,2006,27(8):192-196.
    [98]Servili M., Selvaggini R., Taticchi A., et al. Volatile compounds and phenolic composition of temperature and time of exposure of olive pastes to air contact during the mechanical extraction process[J]. Journal of Agricultural and Food Chemistry,2003, 51(27):7980-7988.
    [99]Kalua C.M., Bedgood J D.R., Prenzler P.D. Development of a headspace solid phase microextraction-gas chromatography method for monitoring volatile compounds in extended time-course experiments of olive oil[J]. Analytica Chimica Acta,2006,556(2): 407-414.
    [100]李芹,张秋.顶空固相微萃取-气相色谱法测挥发性有机物[J].仪器仪表学报,2005,26(8):900-910.
    [101]朱辉.环境监测中的检测限问题[J].青海环境,1997,7(3):142-143.
    [102]龙元平,寻思颖.关于《气相色谱仪》检定规程中FID检测器的检测限检定[J].计量与测试技术,1997,24(1):29-30.
    [103]牛丽影,吴继红,廖小军,等.不同类型橙汁挥发性风味成分的测定与比较[J].中国食品学报,2008,8(1):119-124.
    [104]Morales, M. T., Luna F. Comparative study of virgin olive oil sensory defects[J]. Food Chemistry,2005,91(2):293-301.
    [105]Garcia-Gonzalez D. L., Tena N., Aparicio R. Characterization of olive paste volatiles to predict the sensory quality of virgin olive oil[J]. Eur. J. Lipid Sci. Technol.,2007,109: 663-672.
    [106]Apricio R., Luna G. Characterisation of monovarietal virgin olive oils[J]. Eur. J. Lipid Sci.Technol.,2002,104:614-627.
    [107]Aparicio, R., Morales, M. T. Characterization of olive ripeness by green aroma compounds of virgin olive oil[J]. Agric. Food Chem.,1998,46(3),1116-1122.
    [108]Doleschall F., Recseg K., Kemeny Z., et al. Comparison of differently coated SPME fibres applied for monitoring volatile substances in vegetable oils[J]. Eur. J. Lipid Sci. Technol.,2003,105 (7):333-338.
    [109]Temime S.B., Campeol E., Cioni P.L., et al. Volatile compounds from Chetoui olive oil and variations induced by growing area induced by growing area[J]. Food Chemistry, 2006,99 (2):315-325.
    [110]Krist S., Stuebiger G., Bail S., et al. Analysis of volatile compounds and triacylgly-cerol composition of fatty seed oil gained from flax and false flax [J]. Eur. J. Lipid Sci. Technol.,2006, (108):48-60.
    [111]Sawamura M., Onishi Y., Ikemoto J., et al. Characteristic odour components of bergamot (Citrus bergamia Risso) essential oil[J]. Flavour Fragr.,2006, (21):609-615.
    [112]Reiners J., Grosch W. Odorants of virgin olive oils with different flavor profiles[J]. Agric. Food Chem.,1998, (46):2754-2763.
    [113]Keszler A., Kriska T., Nemeth A. Mechanism of volatile compound production during storage of sunflower oil[J]. Agric. Food Chem,2000,48(12):5981-5985.
    [114]Kanavouras A., Kiritsakis A., Hernandez R.J. Comparative study on volatile analysis of extra virgin olive oil by dynamic headspace and solid phase micro-extraction[J]. Food Chemistry,2005, (90):69-79.
    [115]Vichi S., Pizzale L., Conte L. S. et al. Solid-phase microextraction in the analysis of virgin olive oil volatile fraction:characterization of virgin olive oils from two distinct geographical areas of northern Italy[J]. Agric. Food Chem.,2003,51(22):6572-6577.
    [116]Aparicio R., Luna G. Characterisation of mono varietal virgin olive oils [J]. European Journal of Lipid Science and Technology.2002,104(9-10):614-627
    [117]查望珍,油脂的风味及其评价[J].中国油脂,1998,23(1):52-54.
    [118]Angerosa F. Influence of volatile compounds on virgin olive oil quality evaluated by analytical approaches and sensor panels[J]. European Journal of Lipid Science and Technology,2002,104 (10):639-660.
    [119]J. M. Ruter. Nursery production of tea oil camellia under different light levels. In Trends in New Crops and New Uses. Eds. J. Janick and A. Whipkey, ASHS Press, Alexandria, VA.,2002, pp 222-224.
    [120]钟海雁,王承南,谢碧霞.我国油茶加工利用研究的现状及方向[J].林业科技开发,2001,(4):6-8.
    [121]国家技术监督局.GB11765-2003油茶籽油[S].北京:中国标准出版社,2003.
    [122]钟海雁,王承南,谢碧霞,等.油茶籽油色泽测定及脱色技术研究[J].中南林学院学报,2000,20(4):25-29.
    [123]陆顺忠,曾辉,蔡肖群,等.茶油清制工艺[J].广西林业科学,2003,32:182-184.
    [124]Doleschall F., Kemeny Z. S., Recseg K., et al.Anew analytical method to monitor lipid peroxidation during bleaching[J]. Eur. J. Lipid Sci.Technol.,2002,104,14-18.
    [125]Doleschall, F. Kemeny Z. S., Recseg, K. et al. Monitoring of lipid degradation products by solid-phase microextraction[J]. Microcolumn Separations,2001,13:215-220.
    [126]钟海雁,张余权,孙汉洲,李忠海.茶油水化脱胶工艺的研究[J].经济林研究, 2004,22(1)29-31.
    [127]庞文胜,毛洗荣.茶油精炼工艺初探[J].林业科技开发,2004,18:54-55.
    [128]IOOC Method of analysis:Spectrophotometric investigation in the ultraviolet. COI/T20/Doc. no.19/Rev.1,2001.
    [129]AOCS. Official methods and recommended practices of the American Oil Chemists' Society.5th edition. AOCS Press, Champoign, Illinois,1998.115.
    [130]IUPAC. Standard methods for the analysis of oils, fats and derivatives,7th revised edition, Blackwell Scientific Publications, London 1992.
    [131]Patterson H. B. W. Bleaching and purifying fats and oils[M]. Theory and Practice, AOCS Press, llinois(USA),1992, pp.69-71.
    [132]满时勇,胡颖慧.脱色工艺对油脂品质的影响[J].中国油脂,2001,26(6):31-33.
    [133]娄桂艳,赵清,王贤丰,等.玉米色拉油脱色工艺研究[J].中国油脂,1998,23(4):36-37.
    [134]Maga J., Sizer C. E.. Pyrazines in foods[J]. CRC Critical Review in Food Technology,1973,4:39-115
    [135]Siegmund B., Murkovic M. Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil. (Part 2:volatile compou-nds) [J]. Food Chemistry,2004,84:367-374.
    [136]Perkins E.G. Volatile odour and flavour components formed in deep frying. In:Deep Frying:Chemistry, Nutrition, and Practical Applications[M]. Eds. E.G. Perkins, M.D. Erickson, AOCS Press, Champaign IL(USA),1996, pp.43-48.
    [137]Hamilton R.J., Perkins E.G.Chemistry of Deep Fat Frying. In:New Developments in Industrial Frying. Ed. S.P. Kochhar, P.J. Barnes & Associates, Bridgwater (UK),1997, pp.9-33.
    [138]Kochhar S.P. Advances in chemistry and technology in deep-fat frying-European trends in 21st century[C]//Emerging Technologies and Opportunities in the next Millennium. Chemistry and Technology, Proceedings of the 1999 Palm Oil Research Institute of Malaysia (PORIM) International Palm Oil Congress. Malaysia:PORIM, 1999:141-158.
    [139]黄安诚,周淑婷,吴雪辉,等.不同加热方式对茶油品质指标的影响[J].食品科技,2009,34(6):132-134.
    [140]Gomez-Alonso S., Fregapane G.. Change in phenolic composition and antioxidant activity of virgin olive oil during frying[J]. Agric. Food chem.,2003,51(3):667-672
    [141]Yaghmur A., Aserin A., Mizrahi Y., et al. Evaluation of argan oil for deep-fat frying[J]. Lebensm-Wiss. u.-Technol.,2001, (34):124-130.
    [142]龙奇志,黄永辉,钟海雁,等.茶油挥发性成分的固相微萃取-气相色谱-质谱分析[J].中国食品学报,2009,9(3):187-194.
    [143]GB/T 14195-93中华人民共和国标准感官分析-选拔与培训感官分析优选评价员导则[S].北京:中国标准出版社,1993.
    [144]Warne K. Assessment of fat and oil quality sensory methodology [M]. D. Firesone. Analyses of fats, oils and other lipids. Champaign, IL, AOCS,1989.
    [145]Melton S., R. Mayers P. Lipid extracts from soya products by different procedures[J]. Am. Oil Chem. Soc.,1979,56:489-493.
    [146]Loon W. A. M., Linssen J. P. H., Legger A., et al. Identication and olfactometry of French fries flavour extracted at mouth conditions[J]. Food Chemistry,2005,90:417-425.
    [147]Abdalla, A., E.. Antioxidative effect of olive oil deodorizer distillate on frying oil and quality of potato chips[J]. Fett/Lipid,1999,101, Nr.2, S:57-63.
    [148]Pokorny, J., Kovarova H. Effect of oxidation of frying oil on sensory value of fried fish fillets[J]. Die Nahrung,1982,26:121-126.
    [149]奚如春,邓小梅,龚春,等.高亚油酸含量油茶优良无性系的选育[J].林业科学研究,2006,19(2):158-164.
    [150]刘存存,姚小华,费学谦,等.加工工序对油茶籽油活性物质含量及理化性质的影响[J].广东农业科学,2011(6):100-102.
    [151]罗凡,费学谦,方学智,等.固相萃取/高效液相色谱法测定茶油中的多种天然酚类物质[J].分析测试学报,2011,30(6):696-700.
    [152]Matthaus B. Virgin grape seed oil:Is it really a nutritional highlight? [J]. Eu. J. Lipid Sci. Technol,2008,110:645-650.
    [153]吕杰,钟海雁,袁英姿,曹清明.油茶籽多酚微波辅助提取响应面法的优化[J].经济林研究,2010,28(3):40-44.
    [154]毛方华,王鸿飞,林燕,等.多酚类物质对自由基的清除作用[J].中国粮油学报,2010,25(1):64-68.
    [155]Matsui, T., Guth H. A comparative study of poent odorants in peanut, hazelnut, and pumpkin seed oils on the basis of aroma extract dilution analysis (AEDA) and gas chromatography-olfactometry of headspace sample (GCOH) [J]. FETT/Lipid,100, Nr,2,S. 1998,51-56.
    [156]Shimoda M, Nakada Y, Nakashima M. et al. Quantitative comparison of volatile flavor compounds in deep-roasted and light-roasted sesame seed oil[J]. Agric. Food Chem.,1997,45:3193-3196.
    [157]Fujisaki M, Mohri S, Endo Y, et al.The effect of oxygen concentration on oxidative deterioration in heated higholeic safflower oil[J]. Am Oil Chem Soc,2000,77:231-234.
    [158]Selke, E., Rohwedder WK. Volatile components from triolein heated in air. [J]. Am. Oil Chem. Soc.,1980,57:25-30.
    [159]Lee S., Reddy B. R, Stephen S.et al.. Formation of a potato chip-like flavor from methionine under deep-frying conditions [J]. Journal of Food Science,1973,38(5): 788-790.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700