大孔树脂吸附技术分离红霉素A及其异构体的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红霉素(Erythromycin,简称EM)属于传统的大环内酯类抗生素品种,具有抗菌作用强、效率高、毒副作用少、衍生物临床应用广等特点。然而,现有的红霉素生产工艺中还存在许多亟待解决的问题,如产品质量差,提取效率低,溶剂消耗量大,环境污染严重等。本文针对这些问题,以绿色、高效、经济为理念,提出了一条创新的膜分离与大孔树脂吸附耦合的分离工艺路线,从而达到精简流程、高效分离、降低污染的目的。
     本文的主要内容和结论如下:
     (1)通过固定床连续实验,研究了红霉素在SP825树脂上的吸附动力学,考察了进料浓度、温度、床层高度和高径比等因素对红霉素吸附性能的影响,采用同时考虑液膜扩散阻力、孔内扩散阻力和轴向扩散阻力的综合速率模型对吸附过程进行模拟,计算得到相关动力学参数,并对模型进行了误差分析。结果表明:进料浓度的增加对红霉素固定床吸附过程不利,温度和床层高径比的增加可以提高固定床吸附效率,而床层高度的变化对固定床吸附过程影响不大;液膜扩散阻力和孔内扩散阻力均对红霉素固定床吸附过程有重要影响,轴向扩散影响较小;模型的相对误差在10%以内,说明综合速率模型较好的描述了红霉素在SP825树脂上的固定床吸附行为。
     (2)通过间歇吸附平衡实验,研究了红霉素A、C组分在SP825树脂上的竞争吸附热力学,测定了不同温度、pH及离子强度下,红霉素A、C组分的竞争吸附相平衡数据。实验范围内,温度、pH及离子强度的增加均对红霉素A、C组分的吸附过程有利。采用扩展Langmuir吸附等温线模型对平衡数据进行拟合,并对该模型进行了误差分析,其相对误差在20%以内,说明该模型能够较好的描述红霉素A、C组分在SP825树脂上的竞争吸附行为。考察了不同温度、pH及离子强度时,SP825树脂对红霉素A、C组分的选择性系数。结果表明,SP825树脂对红霉素A的吸附力略强于红霉素C,KCA随温度及离子强度的增大而增大,随pH的增大先增大后减小,pH为7.0时有最大值1.317。估算了红霉素A、C组分的吸附热力学参数,发现SP825树脂对红霉素A、C组分的吸附均为自发进行的、吸热的以及熵增的物理吸附过程。相同实验条件下,ΔGAAHC,ΔSA>ΔSC。
     (3)在前述研究的基础上,采用优选的吸附条件,测定了红霉素碱、红霉素A和红霉素C组分的固定床穿透曲线。结果表明,红霉素A组分在固定床吸附过程中对红霉素C组分具有一定的竞争吸附优势,由此构建了适用于红霉素A、C组分分离的两阶段阶跃洗脱层析工艺过程。筛选了层析过程合适的流动相,考察了第一阶段洗脱条件对红霉素A、C组分分离过程的影响。结果表明,采用3%乙酸乙酯的水溶液以0.5 BV·h-1进行第一阶段洗脱5BV时对红霉素A组分的纯化效果最好。
     (4)在固定床阶跃洗脱层析实验的基础上,为了进一步提高层析过程的收率,构建了双柱摆动层析工艺,并对工艺过程进行优化。结果表明,双柱摆动层析工艺在制备出高品质红霉素A产品(红霉素A组分含量为95.2%,红霉素C组分含量为2.3%,红霉素B组分含量为2.5%)的同时,显著提高了固定床阶跃洗脱层析过程的收率(红霉素A组分总收率为93.3%),实现了红霉素A、C组分的有效分离,从而达到了高效分离、有效回收的目的。
     (5)为避免发酵液中色素、蛋白等杂质对分离纯化过程的影响,通过膜分离技术对发酵液进行预处理。以色素、蛋白去除率和红霉素收率为指标,考察了50nm无机陶瓷膜对红霉素发酵液的过滤效果。结果表明,所得滤液的平均脱色率为54.2%,平均脱蛋白率为66.6%,红霉素平均收率为95.0%,满足大孔树脂吸附的条件。
     (6)提出了以吸附、杂质洗涤、脱附和洗脱液成盐等为步骤组成的大孔树脂吸附技术从发酵液中分离纯化红霉素A的整套工艺流程。研究和优化了各单元操作的工艺条件和实际效果,采用pH为10.0左右的硼砂—NaOH缓冲溶液对吸附完毕的树脂进行杂质洗涤,筛选出50%丙酮和50%0.40mol·L-1 NaOH溶液组成的混合溶液对洗脱完毕的树脂进行再生。结果表明,整个工艺过程的总收率一般在90%以上,且可以使红霉素C组分含量达到高品质红霉素产品的要求,而再生后树脂的饱和吸附量不低于新鲜树脂饱和吸附量的80%。
     本文提出了一条可直接应用于工业化规模生产的从发酵液中分离纯化红霉素A的新工艺,研究成果为生产装置的开发和设计提供了理论和实验基础,具有广阔的发展前景。
As a traditional macrolide antibiotic, erythromycin(EM) has become one of the most popular antibiotics due to its features of good curative effect, low side effect and wide clinical use of its derivatives. However, some urgent problems still exist in the present production process of EM, such as the poor quality of products, low extraction efficiency, high consumption of chemicals, and serious pollution of the environment. To solve these problems, an innovative separation process combining the macroporous resin adsorption with the membrane filtration has been proposed in the present paper based on the conception of "green, effective and economic".
     The main contents and conclusions are as follows:
     (1) The effect of feed concentration, temperature, bed height and aspect ratio on the fixed-bed adsorption characteristics of EM was investigated by using a macroporous resin SP825 as adsorbent. The general rate model taking the film mass transfer, pore diffusion and axial dispersion into account was adopted to describe the breakthrough curves. The mass transfer coefficients and the relative errors of the model were consequently determined. The results showed that the increase of feed concentration was not in favor of the fixed-bed adsorption performance, while the increase of temperature and aspect ratio could improve the mass transfer. In addition, the variation in bed height had little effect on adsorption characteristics. By calculating the mass Biot number and Peclet number, it is clear that both liquid film mass transfer and pore diffusion play important roles in the fixed-bed adsorption of EM onto SP825, whereas the axial dispersion could be negligible in the experimental range. The relative errors of the model were within 10%, indicating a satisfactory simulation.
     (2) The competitive adsorption equilibrium data for the binary system of EA and EC onto a macroporous resin SP825 were tested through batch experiments and modeled using the extended Langmuir equation at different pH, ionic strengths and temperatures. For both EA and EC, the adsorption was enhanced with the increase of pH, ionic strength and temperature. The relative errors of the extended Langmuir model were within 20%, showing a good agreement between the experimental and the model-predicted data. Selectivity coefficients for adsorption of EA and EC onto SP825 were determined. The results suggested that the adsorption ability of SP825 for EA was little stronger than EC, and a higher KCA value was observed at pH 7.0 with the increase of ionic strength and temperature. Some thermodynamic parameters of EA and EC were also calculated. It can be seen that the adsorption of both EA and EC onto SP825 was a spontaneous, endothermic and entropy incresing physisorption process. Under the same experimental condition,△GA<△GC,△HA>△HC, ASA>△SC
     (3) On the basis of the results above, the breakthrough curves for adsorption of EM, EA and EC in the fixed-bed were measured under the optimum condition. EA was found to breakthrough later than EC, thus a 2-stepwise elution chromatography process was established for the separation of EA and EC. The mobile phase and the first step elution mode of the chromatography was determined. By eluting the column with 3% ethyl acetate solution at the flowrate of 0.5 BV·h-1 for 5BV in the first step,the purity of EA could reach 95.4% in product.
     (4) To improve the EA yield of the stepwise elution chromatography process, a double-column swing chromatography process was further proposed and optimized. The results showed that the new process could not only produce high quality EM products(EA: 95.2%, EC:2.3%, EB:2.5%), but also increase the EA yield of the whole process obviously(EA total yield:93.3%). With the new process, the effective seraration of EA and EC components was finally realized.
     (5) Since the fermentation broth contains a lot of impurities, such as color, protein, etc, the effect of pretreatment of fermentation broth using membrane filtration technology was investigated. As a result, the 50nm ceramic membrane was selected, for the average decolorization rate, the average deproteinization rate and the average EM yield rate of the filtrate was 54.2%,66.6% and 95.0%, respetively. After the membrane filtration, the fermentation broth was then qualified for the adsorption process by macroporous resins.
     (6) A complete set of separation process for recovering EA from fermentation broth was introduced, including adsorption, impurity washing, desorption and salification in the eluate. The technological conditions and its practical effect of each unit operation were studied and optimized. The borax buffer solution with pH 10.0 was chosen to wash impurities and the mixture of 50% acetone and 50% 0.40mol·L-1 NaOH solution was selected to regenerate the resins. Through the whole separation process, the content of EC in product could meet the requirement of high quality EM product with a total yield over 90%. Moreover, the saturated adsorption capacity of the regenerated resin was no less than 80% compared with that of the fresh resin.
     An innovative technology routine which can be applied to industrial production directly for separation and purification of EA from fermentation broth has been presented in this paper. The results of this research provides the experimental foundation for the design and development of large-scale industrial equipments and has an expansively prospect.
引文
[1]上海第三制药厂.抗生素的生产[M].上海化工学院抗菌素教研组编,1979.
    [2]俞文和.新编抗生素工艺学[M].北京:中国建材工业出版社,1996.
    [3]孙京国,良建华等.克拉霉素的合成进展[J].有机化学.2002,22(12):951-963.
    [4]李啸,陈长华,朱凤,李友元.红霉素生产及其有效组分的转化[J].中国抗生素杂志.2005,2(30):65-69.
    [5]俞文和,杨纪根.抗生素工艺学[M].沈阳:辽宁科学技术出版社,1988.
    [6]European Pharmacopoeia, fifth ed., Suppl.5.0. European Directorate for Quality of Medicines, Strasbourg, France.2005.
    [7]林杰勋.红霉素的临床应用进展[J].安徽医药.2004,9(3):224-225.
    [8]董希俊,侯清明.红霉素临床应用与研究进展[J].中国误诊学杂志.2003,3(10):1494-1496.
    [9]Brisson-Noel A, Trieu-Cuot P, Courvalin P. Mechanism of action of spiramycin and other macrolides. Journal of Antimicrobial Chemotherapy [J].1988,22(suppl B):13-23.
    [10]高雅杰.红霉素类抗生素研究进展[J].Chinese Manipulation & Rehabilitation Medicine.2010,23(8):36-38.
    [11]Morimoto S, Takahashi Y, Watanabe, Y, et al. Chemical modification of erythromycin. Ⅰ. synthesis and antibacterial activity of 6-O-methylerythromycin A[J]. J Antibiot. 1984,37(2):187-189.
    [12]Chantot JF, Bryskier A, Gasc JC. Antibacterial activity of roxithromycin:a laboratory evaluation[J]. J Antibiot.1986,39(5):660-668.
    [13]Retsema J, Girard A, Schelkly W, et al. Spectrum and mode of action of azithro mycin (CP62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms[J]. Antimicrob Agents Chemother.1987,31(12):1939-1947
    [14]Massey EH, Kitchell BS, Martin LD, et al. Antibacterial activity of 9(S)-erythromycylamine-aldehyde condensation products[J]. J Med Chem.1974,17(1): 105-107.
    [15]Toscano L, Fioriello G, Silingarcli S, et al. Preparation of 8(S)-8-fluoroerythronolide A and B, potential substrates for the biological synthesis of new macrolide antibiotics[J]. Tetrahedron.1984,40(11):2177-2181.
    [16]Chu DTW, Plattner JJ, Katz L. New direction in antibacterial research[J]. J Med Chem. 1996,39(20):3853-3874.
    [17]Faghih R, Nellans HN, Plattner JJ. Motilides and motiaclides:design and development of motilin receptor agonists as a new class of gastrointestinal prokinetic drugs[J]. Drugs Fut.1998,23(8):861-872.
    [18]李小辉,毕小玲.新一代红霉素衍生物及其构效关系研究进展[J].药学进展.2009,33(11):491-497.
    [19]刘长一,张为革.红霉素化学修饰研究的新进展[J].中国药物化学杂志.2002, 6(12):363-370.
    [20]顾觉奋.抗生素[M].上海:上海科学技术出版社,2001.
    [21]易健民,唐课文,阎建辉.伯胺N1923对螺旋霉素和红霉素的萃取性能研究[J].湖南化工.2000,30(6):34-38.
    [22]Le Q.H., Shong L.L., Shi Y.H. Extraction of erythromycin from fermentation broth using salt-induced phase separation processes[J]. Separation and Purification Technology.2001,24(1-2):85-91.
    [23]G. J. Lye, D. C. Stuckey. Extraction of erythromycin-A using colloidal liquid aphrons: Ⅰ. Equilibrium partitioning [J]. Journal of Chemical Technology and Biotechnology. 2000,75(5):339-347.
    [24]G. J. Lye, D. C. Stuckey. Extraction of erythromycin-A using colloidal liquid aphrons: Part Ⅱ [J]. Mass tansfer kinetics.2001, Chemical Engineering Science.2001,56: 97-108.
    [25]K. F. Loh, S. E. Lau, S. W. Lau, et al. Reverse micelle extraction of erythromycin[R]. Proceedings of the 18th Symposium of Malaysian Chemical Engineerers.2004,1: 340-345.
    [26]Nitin W. Fadnavis, B. Satyavathi, Ashlesha A. Deahpande. Reverse Micellar Extraction of Antibiotics from Aqueous Solutions[J]. Biotechnol Prog.1997,13(4):503-505.
    [27]李武德,李洲,宋喜芳.红霉素协同萃取新工艺研究[J].河南化工.2009,26(2):17-19.
    [28]李洲,秦峰,谷雪蔷.红霉素萃取新工艺研究Ⅰ.中性络合萃取体系研究[J].中国抗生素杂志.2000,25(3):167-171.
    [29]朱自强,李勉等.双水相萃取法提取红霉素的方法[P].CN1054131C.2000-7-5.
    [30]J. Kawasaki, R. Egashira, T. Kawai, et al. Recovery of erythromycin by a liquid membrane[J]. Journal of Membrane Science.1996,112:209-217.
    [31]Habaki H., Egashira R., Stevens G.W., Kawasaki J. A novel method improving low separation performance for W/O/W ELM permeation of erythromycin[J]. Journal of Membrane Science.2002,208(1-2):89-103.
    [32]张朝晖,刘丽,聂丽华.溶胶—凝胶法制备红霉素印迹固相萃取材料及其选择吸附性[J].高分子学报.2010,6(6):677-683.
    [33]曹正芳,乐清华.红霉素固定床溶剂萃取法提取的研究[J].中国医药工业杂志.2001,32(8):349-351.
    [34]冯建立,许振良,王学军等.超滤去除红霉素发酵液乳化现象的研究[J].中国抗生素杂志.2007,32(3):150-153.
    [35]柳小强.红霉素发酵液过滤工艺的研究与改进[D].西北大学,2008.
    [36]Yasan He, Gang Chen, Zhijuan Ji, et al. Combined UF-NF membrane system for filtering erythromycin fermentation broth and concentrating the filtrate to improve the downstream efficiency [J]. Separation and Purification Technology.2009,66:390-396.
    [37]Samsonov G.V., Fleer L.P. Study of erythromycin adsorption by cation-exchange resins[J]. Tr. Leningr. Khim-Farmalt. Inst.1962,15:225-232.
    [38]Fujita S, Takatsu A, Shibuya K, et al. Process for purifying erythromycin[P]. US3629233,1971.
    [39]冯长根,陈涛,曾庆轩.聚丙烯基弱酸阳离子交换纤维的制备及机理研究[J].功能材料.2007,38(4):535-539.
    [40]陈涛,曾庆轩,冯长根等.离子交换纤维对红霉素吸附特性的研究[J].功能材料.2009,40(11):1895-1899.
    [41]胡秀峰,冯长根,曾庆轩等.大孔树脂在红霉素提取中的应用进展[J].国外医药抗生素分册.2004,25(1):17-19.
    [42]王跃生,王洋.大孔吸附树脂研究进展[J].中国中药杂志.2006,31(12):961-965.
    [43]Vertesy L, Ehlers H, Kogler H, et al. Friulimicins:novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. nov. II. Isolation and structural characterization[J]. J Antibiot.2000,53(8):816-827.
    [44]Nakai R, Kakita S, Asai A, et al. Chrolactomycin, a novel antitumor antibiotic produced by Streptomyces sp.[J]. J Antibiot.2001,54(10):836-839.
    [45]Sasaki T, Igarashi Y, Saito N, et al. Cedarmycins A and B, new antimicrobial antibiotics from Streptomyces sp.TP-A0456[J]. J Antibiot.2001,54(7):567-572.
    [46]Cang S, Ohta S, Chiba H, et al. New naphthyridinomycin-type antibiotics, aclidinomycins A and B, from Streptomyces halstedi[J]. J Antibiot.2001,54(3): 304-307.
    [47]Sasaki O, Igarashi Y, Saito N, et al. Watasemycins A and B, new antibiotics produced by Streptomyces sp.TP-A0597[J]. J Antibiot.2002,55(3):249-255.
    [48]Yun BS, Cho Y, Lee IK, et al. Sterins A and B, new antioxidative compounds from Stereum hirsutum[J]. J Antibiot.2002,55(2):208-210.
    [49]Carney JR, Ashley GW, Arslanian RL, et al. Structure elucidation of new ascomycins produced by genetic engineering [J]. J Antibiot.2005,58(11):715-721.
    [50]Vertesy L, Kurz M, Paulus EF, et al. The chemical structure of mumbaistatin, a novel glucose-6-phsphate translocase inhibitor produced by Streptomyces sp.DSM 11641 [J]. J Antibiot.2001,54(4):354-363.
    [51]Woo EJ, Starks CM, Carney JR, et al. Migrastatin and a new compound, isomigrastatin, from Streptomyces platenis[J]. J Antibiot.2002,55(2):141-146.
    [52]Zengguo He, Duygu Kisla, Liwen Zhang, et al. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin[J]. Applied and Environmental Microbiology.2007,73(1):168-178.
    [53]Stefanie Baur, Jorg Niehaus, Amalia D Karagouni, et al. Fluostatins C-E, novel members of the fluostatin family produced by Streptomyces strain Acta 1383[J]. J Antibiot.2006,59(5):293-297.
    [54]Julia Riedlinger, Silvia D. Schrey, Mika T. Tarkka, et al. Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505 [J]. Applied and Environmental Microbiology.2006, 72(5):3550-3557.
    [55]Shao Jie Wu, Serge Fotso, Fuchao Li, et al. N-carboxamido-staurosporine and selina-4(14),7(11)-diene-8,9-diol, new metabolites from a marine Streptomyces sp.[J]. J Antibiot.2006,59(6):331-337.
    [56]Suparna Das Choudhuri, Sloan Ayers, William H Soine, et al. A pH-stability study of phoslactomycin B and analysis of the acid and base degradation products[J]. J Antibiot. 2005,58(9):573-582.
    [57]Wang K, Guo LH, Zhou YS, et al. A new metabolite produced by the Streptomyces sp. 4849 as an inhibitor of IL-4 receptor[J]. J Antibiot.2007,60(5):325-327.
    [58]严希康,庄英萍,杨雅琴等.用大网格吸附剂提取麦迪霉素[J].中国抗生素杂志.1990,15(5):353-356.
    [59]顾觉奋,任爱华.H-103大孔吸附剂提取螺旋霉素的研究[J].中国抗生素杂志.1991,16(2):98-102.
    [60]刘叶青,邬行彦.用絮凝和大网格吸附法提取螺旋霉素[J].中国抗生素杂志.1993,18(6):447~450.
    [61]汤志刚,周荣琪.国产大孔吸附树脂浓集分离赤霉素[J].离子交换与吸附.1999,15(5):440-446.
    [62]阎国华,甘立军,周燮.大孔吸附树脂提取赤霉素A3的初步研究[J].南京农业大学学报.1999,22(1):22-25.
    [63]顾觉奋,李睿岩.大孔网状树脂吸附法分离纯化柱晶白霉素的研究[J].中国抗生素杂志.2002,27(10):587-589.
    [64]张咏梅,张恺瑞,陈贵斌等.大孔吸附树脂提取泰乐星的研究[J].中国抗生素杂志.2000,25(2):100-102.
    [65]刘叶青,张秀萍,曹学君等.泰乐星提取方法的研究[J].中国抗生素杂志,2000,25(6):412-446.
    [66]倪雍富.大网格吸附剂提取3,2’,6’-三-N-乙酰西索米星[J].中国抗生素杂志.2001,26(1):39-40.
    [67]王耀伟,王鲁燕,路兵.大网格吸附剂提取头孢氨苄[J].离子交换与吸附.1998,14(1):18-22.
    [68]白硕可,王南金,郑焕荣等.康乐霉素C的稳定性及其提炼工艺改进[J].中国抗生素杂志.2001,26(4):30-308.
    [69]陈骏,宁方红,张志丕等.一种大孔吸附树脂的合成及在红霉素提取中的应用[J].中国抗生素杂志.2002,27(5):270-272.
    [70]宋应华,朱家文,陈葵等.大孔树脂提纯红霉素的研究[J].中国抗生素杂志.2007,32(5):284-286.
    [71]石磊,史丽娟,蒋沁等.达托霉素发酵液大孔树脂吸附分离的研究[J].中国抗生素杂志.2008,33(2):84-86.
    [72]王海燕,李晓露,王健等.大孔树脂法分离纯化那他霉素的工艺研究[J].中国抗生 素杂志.2010,35(3):194-196.
    [73]王兴昌,须景贤.大孔吸附剂提取红霉素[J].中国抗生素杂志.1981,6(3):39.
    [74]严希康,庞国强,王雩等.用大网格吸附剂提取红霉素[J].中国抗生素杂志.1991,16(4):266-270.
    [75]Maria H.L. Ribeiro, Isabel A.C. Ribeiro. Modelling the adsorption kinetics of erythromycin onto neutral and anionic resins[J]. Bioprocess Biosyst Eng.2003,26: 49-55.
    [76]Maria H.L. Ribeiro, Isabel A.C. Ribeiro. Recovery of erythromycin from fermentation broth by adsorption onto neutral and ion-exchange resins[J]. Separation and Purification Technology.2005,45:232-239.
    [77]宋应华,朱家文,陈葵等.大孔吸附树脂对红霉素的平衡吸附行为及其热力学性质[J].化工学报.2006,57(4):715-718.
    [78]宋应华,朱家文,陈葵等.大孔树脂对红霉素的吸附动力学研究[J].离子交换与吸附.2007,23(4):349-359.
    [79]宋应华,朱家文,陈葵.大孔吸附树脂HZ816对红霉素的固定床吸附过程研究[J].化学工程.2007,35(11):9-12.
    [80]宋应华,朱家文,陈葵等.红霉素在大孔树脂上的吸附动力学研究[J].高校化学工程学报.2008,22(1):23-27.
    [81]宋应华,朱家文.红霉素固定床吸附过程研究[J].中国医药工业杂志.2010,41(3):194-196.
    [82]Ying Sun, Jia-Wen Zhu, Kui Chen, et al. Mass transfer mechanisms in fixed-bed adsorption of erythromycin. Frontiers of Chemical Engineering in China[J].2008,2(4): 353-360.
    [83]孙瑛,朱家文,陈葵等.离子强度与温度对大孔树脂吸附红霉素A的影响[J].华东理工大学学报(自然科学版).2009,35(1):15-20.
    [84]YING SUN, JIA-WEN ZHU, KUI CHEN, et al. Modeling Erytromycin Adsorption to the Macroporous Resin Sepabed SP825[J]. Chem Eng Comm.2009,196:906-916.
    [85]冯长根,陈涛,曾庆轩.现代分离技术在红霉素提取中的应用[J].化工时刊.2007,21(1):59-62.
    [86]宋应华,朱家文,陈葵.红霉素发酵液大孔树脂法脱色过程研究[J].中国抗生素杂志.2006,31(7):408-411.
    [87]俞俊堂,唐孝宣.生物工艺学(上册)[M].上海华东化工学院出版社.1994.
    [88]国家药典委员会.中国人民共和国药典.北京:化学工业出版社.2005.
    [89]顾惕人.表面活性剂在固液界面上的吸附理论[J].化学通报.1990,9:1-8.
    [90]李佐虎.论固体表面的单分子与多分子吸附[J].化工学报.1985,(2):129-140.
    [91]张常群,苏海云,赵传钧.表面活性剂在液固界面吸附的热力学[J].化工学报.1995,47(2):137-142.
    [92]DeVault, D. The theory of chromatography[J]. J. Am. Chem. Soc.1943,65:532-540.
    [93]Ruthven, D.M. Principles of Adsorption and Adsorption Processes[M]. John Wiley and Sons, New York, USA.1984.
    [94]M. Morbidelli, A. Servida, G. Storti, et al. Simulation of multicomponent adsorption beds. Model analysis and numerical solution[J]. Ind. Eng. Chem. Fundam.1982,21(2): 123-131.
    [95]M. Morbidelli, G. Storti, S. Carra, et al. Study of a separation process through adsorption of molecular sieves:application to a chlorotoluene isomers mixture[J]. Chem. Eng. Sci.1984,39(3):383-393.
    [96]A.J. Berninger, R.D. Whitley, X. Zhang, et al. A Versatile Model for Simulation of Reaction and Nonequilibrium Dynamics in Multicomponent Fixed-Bed Adsorption Processes[J]. Comput. Chem. Eng.1991,15(11):749-768.
    [97]K. Kaczmarski, D. Antos. Modified Rouchon and Rouchon-like algorithms for solving different models of multicomponent preparative chromatography[J]. J. Chromatogr. A. 1996,756:73-87.
    [98]T. Gu, G.J. Tsai, G.T. Tsao. Modeling of nonlinear multicomponent chromatography[J]. Advances in Biochemical Engineering.1993,49:45-71.
    [99]K. Kaczmarski. Use of orthogonal collocation on finite elements with moving boundaries in the simulation of non-linear multicomponent chromatography. Influence of fluid velocity variation on retention time in LC and HPLC[J]. Comput. Chem. Eng. 1996,20(1):49-64.
    [100]王春红,施荣富,温珍珍等.吸附质大小对吸附树脂孔内扩散行为的影响(Ⅰ)—大孔聚苯乙烯型吸附树脂粒内扩散机制的考察[J].高等学校化学学报.2001,22(10):240-244.
    [101]V.C. Taty-Costodes, H. Fauduet, C. Porte, et al. Removal of lead (Ⅱ) ions from synthetic and real effluents using immobilized Pinus sylvestris sawdust:Adsorption on a fixed-bed column[J]. Journal of Hazardous Materials B.2005,123:135-144.
    102] I.A.W. Tan, A.L. Ahmad, B.H. Hameed. Adsorption of basic dye using activated carbon prepared from oil palm shell:batch and fixed bed studies[J]. Desalination.2008, 225:13-28.
    103] P.Y. Lanfrey, Z.V. Kuzeljevic, M.P. Dudukovic. Tortuosity model for fixed beds randomly packed with identical particles[J]. Chemical Engineering Science.2010,65: 1891-1896.
    [104]F.P. Incropera, D.P. Dewitt, T.L. Bergman. Fundamentals of Heat and Mass Transfer, 6th ed[M]. John Wiley and Sons, New York, USA.2007.
    [105]S.V. Patankar. Numerical Heat Transfer and Fluid Flow[M]. Hemisphere Publishing Corporation, Washington, USA.1980.
    [106]A. Felinger, A. Cavazzini, G. Guiochon. Numerical determination of the competitive isotherm of enantiomers[J]. Journal of Chromatography A.2003,986:207-225.
    [107]D. Zhou, D. E. Cherrak, K. Kaczmarski, et al. Prediction of the band profiles of the mixtures of the 1-indanol enantiomers from data acquired with the single racemic mixture[J]. Chemical Engineering Science.2003,58:3257-3272.
    [108]A. Cavazzini, A. Felinger, K. Kaczmarski, et al. Study of the adsorption equilibria of the enantiomers of 1-phenyl-1-propanol on cellulose tribenzoate using a microbore column[J]. Journal of Chromatography A.2002,953:55-66.
    [109]A. Seidel-Morgenstern. Experimental determination of single solute and competitive adsorption isotherms[J]. J. Chromatogr. A.2004,1037(1-2):255-272.
    [110]V.C. Srivastava, I.D. Mall, I.M. Mishra. Removal of cadmium (Ⅱ) and zinc (Ⅱ) metal ions from binary aqueous solution by rice husk ash[J]. Colloids and Surfaces A.2008, 312:172-184.
    [111]Xinpeng Geng. Study on the Fractions of Thermodynamic Function Changes for both Adsorption and Desorption form a Liquid-Solid System[J]. Termochimica Acta.1998, 308(1-2):131-138.
    [112]梁锐杰,陈炳稔.流动注射分光光度法研究离子强度与温度对活性炭吸附阴离子燃料的影响[J].化学通报.2004,67:64-71.
    [113]J. D. Seader, Ernest J. Henley. Separation Process Principles[M]. John Wiley and Sons, New York, USA.1998.
    [114]孙瑛.红霉素A和红霉素C的层析过程研究[D].华东理工大学,2009.
    [115]王龙耀,杨刚,邢卫红等.头孢菌素C发酵液陶瓷膜过滤过程中的影响因素研究[J].高效化学工程学报.2007,21(4):604-607.
    [116]黄金,陈宁,温廷益.L-苏氨酸发酵液有机膜过滤工艺研究[J].食品与发酵工业.2009,35(2):87-90.
    [117]曾坚贤,邢卫红,徐南平.肌苷发酵液的陶瓷膜过滤研究[J].湖南科技大学学报(自然科学版).2004,19(2):91-94.
    [118]毕生雷,杜平,王珂.对1,3-丙二醇发酵液用金属纳滤膜过滤的研究[J].河南化工.2010,27(7):39-41.
    [119]刘杰,秦苏东,于广瑛等.利用陶瓷膜过滤古龙酸发酵液的研究[J].苏州科技学院学报(自然科学版).2008,25(1):30-34.
    [120]徐俭.陶瓷膜过滤在耐热级L-乳酸提取工艺中的应用[D].江南大学,2008.
    [121]王焕章,许赵辉,邢卫红等.陶瓷膜在谷氨酸发酵液除菌过程中的应用[J].食品与发酵工业.2001,27(5):42-46.
    [122]史荣梅,徐亲民.抗生素发酵液的超滤与溶剂萃取[J].国外医药抗生素杂志分册.1997,18(1):33-39.
    [123]李十中,王淀佐,胡永平.抗生素提取过程中溶剂萃取技术新方法—超滤/萃取法[J].中国抗生素杂志.2000,25(1):12-15.
    [124]余作龙,姜岷,吴昊等.陶瓷膜超滤在丁二酸发酵液纯化中的应用[J].膜科学与技术.2010,30(2):93-96.
    [125]刘彬彬,沈飞,苏仪等.利用旋转膜组件超滤澄清乳酸发酵液的初步研究[R].第五届全国化工年会.2008:1-4.
    [126]徐庆阳,陈宁,方正星.金属膜对L-缬氨酸发酵液过滤的研究[J].天津科技大学学报.2006,21(1):4-6.
    [127]王琴,宋如,任卓等.膜技术在万古霉素生产工艺中的应用[J].河北化工.2007,30(11):50-51.
    [128]凌雪萍,冯杰.膜过滤技术在维生素B12生产中的应用[J].膜科学与技术.2008,28(2):92-94.
    [129]王永斌,王允祥.翘鳞伞胞外多糖无机陶瓷膜分离工艺研究[J].中国酿造.2009,(2):103-105.
    [130]赵南,刘义雄,阙好新等.发酵法生产丙酮酸钠提取工艺的研究[J].江西农业学报.2010,22(3):161-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700