柑橘及其近缘属植物DNA条形码研制及其物种的鉴定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界柑橘最重要的起源地之一,具有丰富的柑橘资源。柑橘属于芸香科(Rutaceae)柑橘亚科(Aurantioideae)植物。自1753年林奈创立柑橘属(Citrus L.)以来,国内外学者从形态学、细胞学到分子水平进行了一系列的研究,先后建立了多个柑橘属分类系统。其中,最著名的是美国的Swingle系统,包含16个种;日本的Tanaka系统,包含159个种和3个变种;我国的曾勉系统,包含30个种。由于柑橘属植物具有种间易杂交、无融合生殖及无性变异等特点,柑橘属植物物种的数目、种间亲缘关系和分类问题是迄今尚未解决的科学难题。
     DNA条形码(DNA barcode)概念由加拿大动物学家Paul Hebert于2003年提出,是一种基于DNA分子进化原理,利用短的DNA片段和现代分子系统学的原理和方法对“传统物种”在分子水平进行身份鉴定的最新物种生物学技术。该技术与传统的物种鉴定方法相比,具有准确性高、效率高、不受被鉴定对象的环境、个体发育和鉴定专家个人因素影响等优点。DNA条形码技术自诞生以来,国内外学者运用线粒体细胞色素C氧化酶I(cytochrome c oxidase subunitⅠ, COⅠ)基因作为条形编码序列,对昆虫、鸟类、鱼类等动物进行物种鉴定和新种及隐存种的发现,取得很大的成功。但COⅠ基因在植物中的进化速率较慢,不适于植物条形码的研究。目前,国内外植物DNA条形码研究还处于寻找合适的基因片段的阶段,许多学者进行了积极的探索,报道了多种植物条形码候选片段或片段组合,但迄今仍没有找到能满足所有标准的DNA条形码特征片段。
     本研究选用真正柑橘果树类植物6属59个生物类型为实验材料,采用叶绿体编码基因(matK、rpoB、rpoC1、rbcL)、叶绿体间隔序列(trnH-psbA、trnG-trnS、psbH-petB、trnL-trnF)和核基因内转录间隔序列(ITS)及其间隔区(ITS1、ITS2)共9个DNA序列作为条形码候选序列,使用MEGA5.05软件计算序列的碱基组成、序列间的碱基变异频率和序列间的转换颠换频率及其比率。使用SPSS17.0软件进行wilcoxon检验比较分析不同编码序列之间的差异。通过比较序列种内和种间差异的分布,运用单一片段和组合片段分别对柑橘属Swingle系统植物、Tanaka系统植物和柑橘及其近缘属6属植物进行鉴定,比较了各单一序列及片段组合鉴定率的大小。有关研究结果如下:
     1.在单一序列对柑橘属Swingle系统、Tanaka系统28份材料鉴定中,以富民枳、飞龙枳、枳为外类群构建NJ距离树,比较各单一序列的鉴定率。结果表明:核基因内转录间隔序列(ITS)及其间隔区(ITS1、ITS2)序列的平均鉴定效率最高,叶绿体间隔序列(trnH-psbA、trnG-trnS、psbH-petB、trnL-trnF)次之,叶绿体编码基因(matK、rpoB、rpoC1、rbcL)的鉴定率最低。在Swingle系统中,ITS1鉴定能力最强为100%,psbH-petB、ITS序列鉴定能力次之,鉴定率均为93.8%,rpoC1序列鉴定率最低为12.5%。在Tanaka系统28份材料中psbH-petB、ITS鉴定率分别为100%,rpoC1序列最低为14.8%。
     2.以九里香、酒饼筋和蚝壳刺为外类群,对柑橘及其近缘属植物6属进行鉴定,构建NJ距离树,比较各单一片段的鉴定率。结果表明:ITS的鉴定率最高,达到59.3%,psbH-petB次之为55.9%,matK为50.8%,其余片段均为50%以下。综合1、2结果,核基因ITS、叶绿体间隔序列psbH-petB、叶绿体编码基因matK在相同类型的DNA序列中鉴定率最高,是柑橘及其近缘属植物DNA条形码研究的重要片段。
     3.结合第三届国际生物条形码的提议及前人研究组合方案和单一片段的鉴定结果,选用matK+rbcL、matK+trnH-psbA、matK+ITS、trnH-psbA+ITS、trnG-trnS+ITS2、matK+ITS2、matK+psbH-petB+trnG-trnS、matK+ITS+trnG-trnS、matK+rpoB+rpoC1片段组合为研究对象,以富民枳、飞龙枳、枳为为外类群对柑橘属Swingle、Tanaka系统28份植物构建NJ距离树,比较各组合片段的鉴定率。结果表明:在Swingle系统植物鉴定中,trnH-psbA+ITS的鉴定率最高为100%, matK+trnH-psbA、matK+ITS和trnG-trnS+ITS2次之为93.8%,matK+rpoB+rpoC1的鉴定率最低为81.3%。在Tanaka系统28份植物鉴定中,matK+ITS、trnG-trnS+ITS2及matK+ITS+trnG-trnS三者的鉴定率最高为96.3%,trnH-psbA+ITS、matK+trnH-psbA的鉴定能力均下降,分别为74.1%、51.9%。所以在利用组合片段对柑橘属Swingle、Tanaka系统28份植物鉴定中matK+ITS、trnG-trnS+ITS2的鉴定率最高。
     4.以九里香、酒饼簕和蚝壳刺为外类群,利用组合片段对柑橘及其近缘属植物鉴定,构建NJ距离树,比较各片段组合的鉴定率。结果表明:matK+ITS+trnG-trnS组合鉴定率最高为83.1%, matK+ITS次之为81.4%。两者鉴定率相差不大,但后者少了trnG-trnS片段,序列长度更短,鉴定效率更高。
     综上所述,在单一序列鉴定柑橘属Swingle系统、Tanaka系统28份材料和柑橘及其近缘属植物中,psbH-petB、ITS具有最高的鉴定率,并且psbH-petB、ITS、matK序列在相同类别的DNA序列中鉴定率最高,三者是柑橘条形码研究的重要片段;组合片段与单一片段相比,鉴定率均有较大幅度提高,matK+ITS与其它组合片段相比,具有较高的鉴定率、较短的序列长度等特点,可用于柑橘及其近缘属植物DNA条形码研究。DNA条形码技术作为一种新型的物种鉴定手段,可用于柑橘及其近缘属植物的鉴定。
China is one of the most important origin centers of the genus Citrus and is rich in citrus germplasm resources in the world. The genus Citrus belongs to the subfamily Aurantioideae of Rutaceae family. The genus Citrus L. was established by Carl Linnaeus in 1753. Since then, scholars both in China and abroad have carried out a series of studies on the taxonomy of Citrus using morphology, cytology, and molecular data. In the current literature several classification systems for the genus Citrus have been suggested, of which the well-recognized are Swingle's 16 species system and Tanaka's 159 species system. In addition, Chinese scholar Tseng has also suggested a system composed of 30 species. Up to now, however, because of hybridization, apomixes and asexual variation, the number of species, inter-specific relationship and classification of the genus Citrus L. are still unresolved scientific questions.
     DNA barcoding is a technique for identifying and characterizing species of organisms using a short DNA region, which was proposed by Canadian zoologist Paul Hebert in 2003. DNA barcodes compared with the traditional morphological data can rapidly identify species based on DNA molecular evolution principles, and have many advantages in species identification, such as high accuracy, high efficiency, and not influenced by environmental factors and development stage of materials. Since the birth of DNA barcoding technology, the mitochondrial cytochrome c oxidase subunitⅠ(COⅠ) fragment as the barcoding sequence has been successfully used to identify species, find new species and cryptic species in insects, birds, fish and other animals. Unfortunately, CO I gene has a very slow evolutionary rate in plants, which makes it unsuitable for DNA barcoding in plants. Until now, plant barcoding is still at the stage of searching for a suitable locus and kinds of candidates. Many researchers propose a single barcoding region or combinations of regions from the chloroplast genome. At present, a well-characterized plant locus that meets all necessary criteria is lacking.
     In the present study, the 59 biological types of 6 genera belonged to the true citrus fruit plants were selected as the experimental materials. The chloroplast encoded genes (matK, rpoB, rpoC1, rbcL) and chloroplast intergenic sequences (trnH-psbA, trnG-trnS, psbH-petB, trnL-trnF), as well as nuclear ITS and its first and second space sequence (ITS 1, ITS2) were analysed as the candidate plant barcoding regions. The MEGA 5.05 software was used to calculate the basic composition, the frequency of DNA mutation and the ratio of transition/transversion. Additionally, SPSS17.0 software was used to analyse the sequence divergence through wilcoxon test. In our study, the distribution of intra-specific and inter-specific genetic distance was compared to identify the species of Citrus Swingle, Tanaka systems and the species of the Citrus and its related genera using the single fragment and the combined fragments respectively. The results of this study are as follows:
     1. Using Poncirus polyandra, P.trifoliata var. monstrosa, P.trifoliata as outgroups, the NJ trees of the Swingle system and Tanaka system with a single fragment were constructed to compare the identification rate. The results showed that the average identification ratio of nuclear ITS and its spacer sequence (ITS1, ITS2) was the highest, followed by the chloroplast intergenic sequence (trhH-psbA, trnG-trnS, psbH-petB, trnL-trnF), and the chloroplast encoded genes (matK, rpoB, rpoC1, rbcL) were third. In Swingle system, the strongest capability of identification was ITS 1 with a ratio of 100%; psbH-petB and ITS were second, and the rate was 93.8%; the rpoC1 was lowest, only 12.5%. In Tanaka system, the identification rate of psbH-petB and ITS were 100%, and the rate of rpoC1 was 14.8%.
     2. Using Murraya paniculata, Atalantia buxifolia, and Severinia buxifolia as outgroups, the NJ trees of the Citrus and its related genera with each fragments were constructed to compare the identification rate. The results showed that the identification rates of ITS, psbH-petB and matK were 59.3%,55.9% and 50.8% respectively, and the remaining fragments were below 50%. ITS was the highest, rpoC1 was lowest with only 23.7%. So because of the highest identification rate in their alike type, the nuclear gene ITS, chloroplast intergenic sequence psbH-petB, chloroplast encode gene matK were the important fragments in the DNA barcode of the Citrus and its related genera.
     3. Following the proposal of the third international barcode conference and the combined schemes of the predecessors, as well as the the identification results of the single fragment, matK+rbcL, matK+trnH-psbA, matK+ITS, trnH-psbA+ITS, trnG-trnS+ITS2, matK+ITS2, matK+psbH-petB+trnG-trnS, matK+ITS+trnG-trnS, matK+rpoB+rpoC1 fragments were selected together as the objects in our research. Using Poncirus polyandra, P.trifoliata var. monstrosa, P.trifoliata as outgroups, the phylogenies NJ trees of the Swingle system and Tanaka system with the combined fragments were constructed to compare the identification rate. The results showed that, in Swingle system, the rate of trnH-psbA+ITS was highest, reached 100%. The matK+trnH-psbA、matK+ITS and trnG-trnS+ITS2 were second with 93.8%, and matK+rpoB+rpoC1 was lowest with 81.3%. In Tanaka system, the rate of matK+ITS、trnG-trnS+ITS2 and matK+ITS+trnG-trnS were highest, reached 96.3%. However, the rate of trnH-psbA+ITS and matK+trnH-psbA was 74.1% and 51.9% respectively. So the rate of matK+ITS and trnG-trnS+ITS2 were higher than the other combined fragments to identify the speciese of Swingle system and Tanaka system.
     4. Using Murraya paniculata, Atalantia buxifolia, and Severinia buxifolia as outgroups, the NJ trees of 59 species of the Citrus and its related genera with combined fragments were constructed to compare the identification rate. The results showed that:the rate of matK+ITS+trnG-trnS was the highest, reached 83.1%, and matK+ITS was second with 81.4%. There was little difference of the identification rate between matK+ITS and marK+ITS+trnG-trnS, but there wasn't a fragment of trnG-trnS in matK+ITS, which made it more efficient in the identification because of its shorter sequence length.
     In conclusion, in the identification of Swingle and Tanaka system of the Citrus and its related genera, ITS、psbH-petB as single fragment had the highest identification rate, and ITS、psbH-petB、matK were important fragments in the research of Citrus DNA barcode, which had a higher identification rate in the same category. Compared the combined fragments with the single fragments, the identification rate of combined fragments were greatly improved. Compared matK+ITS with other combined fragments, matK+ITS was more suitable for the research of Citrus and its related genera of plant, which had the characteristics of high identification rate and shorter sequence length. From what we have studied above, we can draw a conclusion that the DNA Barcode technique can be used to identify the species of Citrus and its related genera as a new species-identification method.
引文
[1]同号文.有关物种概念与划分中的一些问题.古生物学报.1995.34(6):761-776.
    [2]陈世骧.进化论与分类学(第二版).北京:科学出版社.1987.
    [3]Darwin, C.. On the origin species by means of natural selection or the preservation of favoured races in the struggle for life. J.Murray. London.1859.
    [4]Dobzhansky, T.. Genetics and the origin of species, Columbia Univ. Press, New York.1951.
    [5]Mayr, E. The growth of biological thought. Harvard University Press, Cambridge, Mass.1982a.
    [6]Mayr, E. Speciation and macroevolution. Evolution.1982,36(6):1119-1132.
    [7]Simpson, G. G. Principles of animal taxonomy. Columbia University Press, New York.1961.
    [8]牛乐耕.论定义物种概念的三项指标.衡水师专学报.1999.1:44-46.
    [9]周开隆,叶荫民.中国果树志(柑橘卷).2010:79.
    [10]吴耕民.中国温带果树分类学.北京:农业出版社.1984.
    [11]Swingle, W.T., P. C. Reece. The botany of Citrus and its wild relatives. In:Reuther, W., Webber, H.J., Batchelor, L. D. (eds.), The Citrus Industry. vol.1. Univ. of Calif., Berkeley, CA.1967. 190-423.
    [12]蒋聪强.柑橘分类研究.西南农学院学报.1982.(2):9-15.
    [13]方德秋.柑橘分类研究的过去、现在及未来.武汉植物学研究.1993.11(4):375-382.
    [14]曾勉.对柑橘分类的认识体会和整理意见.中国果树.1960.(2):31-37.
    [15]Swingle, W. T. The botanical name of the lime, Citrus aurantifolia. Journal of Washington Academy of Sciences.1913.3:463-463.
    [16]Swingle, W. T. Citrus ichangensis, a promising hardy new species from southwestern China and Assam. J.Ari.Res.1913.1:1-14.
    [17]Swingle, W.T. A new genus Fortunella. comprising four species of kumquat orange. Journal of Washington Academy of Sciences.1915.5:165-176.
    [18]Swingle, W.T. The botany of Citrus and its wild relatives of the orange subfamily. In:H.J. Webber and L.D. Batchelor (eds.). The citrus industry. vol.1. Univ. of Calif., Berkeley, CA. 1943. p.128-474.
    [19]Bhattacharya, S.C. and S. Dutta. Classification of citrus fruits of Assam. Indian Council of Agricultural Research, Delhi.1956.
    [20]Hodgson, R.W. Taxonomy and nomenclature in Citrus. Intern Org. Citrus Virol Proc.1961.2: 1-7.
    [21]Santiago, A. An illustrated guide to Malayan Citrus species and varieties. Div. Agr. Min. Agr, Coop. Federation of Malaya.1962.138.
    [22]Tanaka, T. Citrologia (Semi-centennial commemoration papers on Citrus studies).Citrologia Supporting Foundation:Osaka, Japan.1961.114.
    [23]曾勉.对柑橘分类的认识体会和整意见理.中国果树.1960.(2):31-37.
    [24]蒋聪强.论柑橘三属左右线分类系统.西南农学院学报.1983.(4):10-23.
    [25]国家自然科学基金委.中国植物志第43卷第2分册.北京:科学出版社.1997.
    [26]周开隆.中国果树志(柑橘卷).北京:中国林业出版社.2010.
    [27]罗丽娟.植物分类学.北京:中国农业大学出版社.2007.
    [28]周志钦.真正柑橘果树群植物的分支学研究.武汉植物学研究.1991.9.(2):130-134.
    [29]李润唐.湖南几种野生宽皮柑橘的植物学性状调查.湖南农业科学.2000.(5):30-31.
    [30]李润唐,张映南,田大伦.柑橘类植物叶片的气孔研究.果树学报.2004.21(5):419-424.
    [31]吉尔恰兰·辛格,刘全儒(译).植物系统分类学.北京:化学工业出版社.2010.
    [32]叶荫民,孔炎,郑向红.柑橘花粉形态的研究.中国农业科学.1982.5:62-69.
    [33]刘庚峰,李文斌,张映南.宽皮橘类野生种花粉形态的研究.园艺学报.1992.19(3):203-208.
    [34]李润唐.湖南野生柑橘花粉形态研究.湖南农业大学学报.1998.24(5):365-369.
    [35]范眸天,梁明清,浦为琼.富民枳与枳的花粉形态与分类位置探讨.云南农业大学学报.1998.13(3):298-300.
    [36]张连永,杜桂森,汪楣芝,司治国,罗先海.数值分类在藓类植物中的应用.首都师范大学学报(自然科学版).2001.22(4):48-56.
    [37]Barrett, H. C. and A. M. Rhodes. A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Systematic Botany.1976.1:105-136.
    [38]朱立武.中国柑橘数量化学分类研究.植物分类学报.1988.26(5):353-361.
    [39]钟广炎.叶荫民.柑橘植物的数值分类学研究.植物分类学报.1993.31(3):252-260.
    [40]刘勇.孙中海.刘德春,吴波.部分柚类品种数值分类研究.果树学报.2006.23(1):35-40.
    [41]杨纯瑜,王徽勤.中国植物细胞分类学的回顾与展望.植物学通报.1985.3(6):1-6.
    [42]梁国鲁.柑橘类的细胞分类学研究.武汉植物学研究.1990.8(1):1-7.
    [43]李润唐.湖南野生宽皮柑橘的核型研究.湖南农业大学学报.2000.26(1):54-57.
    [44]吴安仁,张进仁,王大元.用过氧化物同工酶对柑橘分类的探讨.园艺学报.1985.12(2):83-88.
    [45]朱立武,蒋康众,王华君.不同生物型柑橘过氧化物同工酶分析.安徽农业大学学报.1988.4:53-58.
    [46]钟广炎,叶荫民.柑橘种子资源过氧化物酶同工酶分析.植物分类学报.1991.29(5):418-422.
    [47]李润唐.湖南野生宽皮柑橘同工酶分析.湖南农业科学.1993.18(4):923-928.
    [48]方德秋,章文才,肖顺元.应用同工酶进行柑橘分类和进化研究.植物分类学报.1993.31(4):329-352.
    [49]方德秋,章文才,肖顺元.柑橘同工酶及其在分类中应用的研究.植物学报.1994.36:124-138.
    [50]周延清.DNA分子标记技术在植物研究中的应用.北京:化学工业出版社.2005.
    [51]Jarrell, D. C., M. L. Roose, S. N. Traugh, R. S. Kupper. A genetic map of citrus based on segregation of isozymes and RFLPs in an intergeneric cross. Theoretical and applied genetics. 1992.84(1):49-56.
    [52]Roose, M. L. Isozymes and DNA restriction fragment length polymorphisma in Citrus breeding and systematica. In:Proceedings of the Sixth International Citru Congress.1988.57-67.
    [53]Durham, R. E., P. C. Liou, F. G. Gmitter, G. A. Moore. Linkage of restriction fragment length polymorphisms and isozymes in Citrus. Theoretical and applied genetics.1992.84:39-48.
    [54]萧顺元,章文才.RFLP在柑橘遗传多样性研究上的应用.果树科学.1995.12(1):1-4.
    [55]Federici, C. T., D. Q. Fang, R.W. Scora, M. L. Roose. Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theoretical and applied genetics.1998.96:812-822.
    [56]范眸天,高俊,吴兴恩.十五种柑橘种质资源的RAPD分析.中国南方果树.2002.31(6):3-6.
    [57]张太平,彭少麟,王铮峰.柚类品种遗传相互关系的RAPD标记研究.热带植物学报.2001.9(4):322-328.
    [58]刘勇,孙中海,刘德春.柚类种质资源AFLP与SSR遗传多样性分析.中国农业科学.2005.38(11):2308-2315.
    [59]熊光明.应用AFLP分析标记对柑橘属(Citrus)植物进行鉴别与系统分类研究[硕士学位论文].重庆:西南大学.2002.
    [60]庞晓明,邓秀新,胡春根.枳属36份特异种质的AFLP指纹图谱构建与分析.园艺学报.2003.30(4):394-398.
    [61]谢让金,周志钦,邓烈.真正柑橘果树类植物基于AFLP分子标记的分类与进化研究.植物分类学报.2008.46(5):682-691.
    [62]庞晓明,胡春根,邓秀新.用SSR标记研究柑橘属及其近缘属植物的亲缘关系.遗传学报.2003.30(1):81-87.
    [63]刘勇,刘德春,吴波.柚类资源及其近缘种SSR标记的分子评价.应用与环境生物学报.2006.12(5):628-634.
    [64]张连峰,何健,冯炎.金柑属及其近缘属植物亲缘关系的SSR分析.果树学报.2006.23(3):335-338.
    [65]吴兴恩,范眸天,龚洵,杨杨.22份柑橘资源的ISSR分析.云南农业大学学报.2006.21(1):36-51.
    [66]吴波,刘勇.柑橘类植物SOD基因片段的克隆和SNP分析.安徽农业科学.2010.38(2):11719-11721.
    [67]吴波,刘勇.柑橘类植物GPAT基因片段克隆和SNP分析.江西农业大学学报.2010.32(1):51-56.
    [68]魏昭新.柑橘单核苷酸多态性分子标记的筛选及其在遗传多样性研究中的应用[硕十学位论文].重庆:西南大学,2010.
    [69]Tautz, D., P. Arctander, A. Minelli, R.H. Thomas, A.P. Vogler. DNA points the way ahead in taxonomy. Nature.2002.8(1):418-479.
    [70]Tautz, D., P. Arctander, A. Minelli, R.H. Thomas, A.P. Vogler. A plea for DNA taxonomy. Trendsin Ecology & Evoiution.2003.18(2):70-74.
    [71]陈士林,姚辉,宋经元,李西文.基于DNA barcoding(条形码)技术的中药材鉴定.世界科学技术.2007.9(3):7-12.
    [72]Hebert, P. D. N., M.Y. Stoeckle, T. S. Ze mLak, C. M. Francis. Identification of birds through DNA barcodes. PLos Biology.2004.2:1657-1663.
    [73]Yoo, H. S., J. Y. Eah, J. S. Kim, Y. J. Kim, M. S. Min, W. K. Paek, H. Lee, C. B. Kim. DNA Barcoding Korean birds. Molecules and Cells.2006.22(3):323-327.
    [74]Kerr, K. C. R., M. Y. Stoeckle, C. J. Dove, L. A. Weight, C. M. Francis, P. D. N. Hebert. Comprehensive DNA barcode coverage of North American birds. Molecular Ecology Notes. 2007.7:535-543.
    [75]Hebert, P. D. N., E. H. Penton, J. M. Burns, D. H. Janzen, W. Hallwachs. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the USA.2004.101:14812-14817.
    [76]Hajibabaei M, D. H. Janzen, J. M. Burns, W. Hallwachs, P. D. N. Hebert. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences USA.2006.103:968-971.
    [77]Barrett, R. D. H, P. D. N. Hebert. Identifying spiders through DNA barcodes. Canadian Journal of Zoology.2005.83(3):481-491.
    [78]Ward R D, T. S. Ze mLak, B. H. Innes, P. R. Last, P. D. N. Hebert. DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society.2005.360:1847-1857.
    [79]Yancy H. F., T. S. Ze mLak, J. A. Mason, J. D. Washington, B. J. Tenge, N. L. T. Nguyen, J. D. Barnett, W. E. Savary, W. E. Hill, M. M. Moore, F. S. Fry, S. C. Randolph, P. L. Rogers, P. D. N. Hebert. Potential use of DNA bar-codes in regulatory science:applications of the regulatory fish encyclopedia. Journal of Food Protection.2008.71:210-217.
    [80]Hubert, N., R. Hanner, E. Holm, N. E. Mandrak, E. Taylor, M. Burridge, D. Watkinson, P. Dumont, A. Curry, P. Bentzen, J. B. Zhang, J. April, L. Bernatchez. Identifying Canadian freshwater fishes through DNA barcodes. PloS One.2008.3(6):378-385.
    [81]Hebert, P. D. N., L. Ratnasingham, J. R. Dewaard. Barcoding animal life:cytochrome coxidase subunit 1 related species. Proceedings of the Royal Society of London.2003.270(Suppl): S96-S99.
    [82]Hebert, P. D. N., A. Cywinska, S. L. Ball et al. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London.2003.270:313-321.
    [83]王鑫,黄兵.DNA条形编码技术在动物分类中的研究进展.生物技术通报.2006.(4):67-72.
    [84]Chase, M. W., R. S. Cowan, P. M. Hollingsworth, C. van den Berg, S. Madrinan, G. Petersen, O. Seberg, T. Jorgsensen, K. M. Cameron, M. Carine, N. Pedersen, T. A.J. Hedderson, F. Conrad, G. A. Slazar, J. E. Richardson, M. L. Hollingsworth, T. G. Barraclough, L. Kelly, M. Wilkinson. A proposal for a standardised protocol to barcode all the plants. Taxon.2007.56(2):295-299.
    [85]Kress, W. J., D. L. Erickson. A two-locus global DNA barcode for landplants:the coding rbcL gene complements the non-coding trnH-psbA spacer region. PloS ONE.2007.2(6):508-513.
    [86]Pennisi, E. Wanted:A barcode for plants. Science.2007.318(5848):190-191.
    [87]Hollingsworth, P. M., J. L. Forrest, J. L. Spouge, M. Hajibabaei, S. Ratnasingham, M. V. D. Bank, M. W. Chase, R. S. Cowan, D. L. Erickson, A. J. Fazekas, S. W. Graham. K. E. James, K. J. Kim, W. J. Kress, H. Schneider, J. V. A. Stahl, S. C. H. Barrett, C. V. D. Berg, D. Bogarin, K. S. Burgess, K. M. Cameron, M. Carine, J. Chacon, A. Clark, J. J. Clarkson, F. Conrad, D. S. Devey, C. S. Ford. T. A. J. Hedderson, M. L. Hollingsworth. B. C. Husband. L. J. Kelly. P. R. Kesanakurti. J. S. Kim, Y. D. Kim. R. Lahaye. H. L. Lee, D. G. Long. S. Madrinan. O. Maurin. I. Meusnier. S. G. Newmaster, C. W. Park, D. M. Percy, G. Petersen, J. E. Richardson. G. A. Salazar, V. Savolainene, O. Seberg, M. J. Wilkinson, D. K. Yi, D. P. Little. A DNA barcode for land plants. Proceedings of the National Academy of Sciences USA.2009.106 (31):12794-12797.
    [88]Schindel, D. E., S. E. Miller. DNA barcoding a useful tool for taxionomists. Nature.2005.5, 435(7038):17.
    [89]Lahaye, R., V. Savlainen, S. Duthoit, O. Maurin, M. V. D. Bank. A test of psbK-psbI and atpF-atpH as potential plant DNA barcodes using the flora of the Kruger National Park as a model system (South Africa). Nature Prcedings.2008.1-21.
    [90]Dettman, J. R., C. Sirjusingh, L. M. Kohn, J. B. Anderson. Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature.2007.447(5):585-588.
    [91]Miller, S. E.. DNA barcoding and the renaissanceof taxonomy. Proceedings of the National Academy of Sciences USA.2007.104:4775-4776.
    [92]Chase, M. W. and M. F. Fay. Barcoding of Plants and Fungi. Science.2009.325(5941): 682-683.
    [93]Min, X. J. and D. A. Hickey. Assessing the effect of varying sequence length on DNA barcoding of fungi. Molecular Ecology Notes.2007.7:365-373.
    [94]Ivanova, N., T. Ze mLak, R. H. Hanner, P. D. N. Hebert. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes.2007.7(4):544-548.
    [95]Dasmahapatra, K. K. and J. Mallet. DNA barcodes:recent successes and future prospects. Heredity.2006.97:254-255.
    [96]Lahaye R, M. V. D. Bank, D. Bogarin, J. Warner, F. Pupulin, G. Gigot, O. Maurin, S. Duthoi, T. G. Barraclough, V. Savolainen. DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences.2008.105(5):2923-2928.
    [97]宁淑萍,颜海飞,葛学军.植物DNA条形码研究进展.生物多样性.2008.16(5): 417-425.
    [98]Chen, S. L., H. Yao, J.Y. Song, X.W. Li. Use of DNA barcoding to identify Chinesemedicinal materials. World Science and Technology-modernization of Traditional Chinese Medicine and Materia Medica.2007.9(3):7-12.
    [99]刘宇婧,刘越,黄耀江,龙春林.植物DNA条形码技术的发展及应用.植物资源与环境学报.2011.20(1):74-82,93.
    [100]闫化学,于杰.DNA条形码技术在植物中的研究现状.植物学报.2010.45(1):102-108.
    [101]朱英杰.基于天南星科、芸香科的植物DNA条形码通用序列研究[硕士学位论文].武汉:湖北中医药大学.2010.70-72.
    [102]Chase, M. W., N. Salamin, M. Wilkinson, J. M. Dunwell. R. P. Kesanakurthi, N. Haidar. V. Savolainen. Land plants and DNA barcodes:short-term and long-term goals. Philosophical Transactions of the Royal Society B:Biological Sciences.2005.360:1889-1895.
    [103]Kress, W. J., K. J.Wurdack, E. A. Zimmer, L.A. Weigt, D. H. Janzen. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences USA.2005.102: 8369-8374.
    [104]于杰,闫化学,鲁振华,周志钦.基于柑橘及其近缘属植物DNA条形码的叶绿体编码序列筛选.中国农业科学.2011.44(2):341-348.
    [105]Wolfe, K. H., W. H. Li, P. M. Sharp. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast. and nuclear DNAs. Proceedings of the National Academy of Sciences USA.1987.84(24):9054-9058.
    [106]Crayn, D. M., D. L. Alpers, M, M, Heslewood. Relationships within Cupressacea sensu lato:a combined morphological and molecular approach. American journal of botany.2000.87: 1044-1057.
    [107]Johnson, L.A. and D. E. Solfis. matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Systematic Botany.1994.19(1):143-156.
    [108]Sass, C., D. P. Little, D. W. Stevenson, C. D. Specht. DNA barcoding in the cycadales:testing the potential of proposed barcoding markers for species identification of cycads. PloS One. 2007.2(11):e1154.
    [109]Newmaster, S. G., A. J. Fazekas, R. A. D. Steeves, J. Janovee. Testing candidate plant barcode regions in the Myristicaceae. Molecular Ecology Resources.2008.8(3).480-490.
    [110]Kress, W. J. and D. L. Erickson. DNA barcodes:Genes, genomics and bioinformatics. Proceedings of the National Academy of Sciences USA.2008.105:2761-2762.
    [111]Newmaster, S. G., A. S. Fazekas, S. Ragupathy. DNA barcoding in land plants:evaluation of rbcL in a multigene tiered approach. Canadian Journal of Botany.2006.84(3):335-341.
    [112]Shaw, J., E. B. Lickey, J. T. Beck, S. B. Farmer, W. S. Liu, J. Miller, K. C. Siripun, C. T. Winder, E. E. Schilling, R.L. Smail. The tortoise and the hare. Ⅱ. Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany. 2005.92(1):142-166.
    [113]刘涛,纪运恒.蒿属药用植物叶绿体上的trnH-psbA序列分析.中国农学通报.2009.25(12):46-49.
    [114]Gao, T. and S. L. Chen. Authentication of the medicinal plants in Fabaceae by DNA barcoding technique. Planta medica.2009.75:417-417.
    [115]Chen, S. L., H. Yao. J. P. Han, C. Liu. J. Y. Song. L. C. Shi. Y. J. Zhu. X. Y. Ma. T. Gao. X. H. Pang, K. Luo, Y. Li, X. W. Li, X. C. Jia, Y. L. Lin, C. Leon. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One.2010.5(1):e8613.
    [116]高婷,姚辉,马新业.中国黄芪属药用植物DNA条形码(ITS2)鉴定.世界科学技术.2010.12(2):222-226.
    [117]韩建萍,李美妮,石林春等.砂仁及其混淆品的ITS2序列鉴定.环球中医药.2011.4(2):99-102.
    [118]柴华,沙伟.地衣的ITS序列系统发育分析和DNA条形码的初探.生物技术.2011.21(1):1-4.
    [119]Lee, H. L., D. K. Yi, J. S. Kim. Development of plant DNA bar-coding markers from the variable noncoding regions of chloroplast genome. Abstract presented at the Second International Barcode of Life Conference. Academia Sinica. Taipei, Taiwan.2007:18-20.
    [120]Hollingsworth, P. M. DNA barcoding plants in biodiversity hotspots progress and outstanding questions. Heredity.2008.101:1-2.
    [121]于杰,闫化学,鲁振华,周志钦.基于matK和rbcL DNA序列条形码鉴定柑橘及其近缘属植物.园艺学报.2011.38(9):1733-1740.
    [122]Meyer, C. P. and G. Paulay. DNA barcoding:error rates based on comprehensive sampling. PLoS Biology.2005.3(12):2229-2238.
    [123]Li, X. M., R. J. Xie, Z. H. Lu, Z. Q. Zhou. The origin of cultivated citrus as inferred from internal transcribed spacer and chloroplast DNA sequence and amplified fragment length polymorphism fingerprints. Journal of the American Society for Horticultural Science, 2010.135 (4):341-350.
    [124]Fazekas, A. J., K. S. Burgess, P. R. Kesanakurti. S. W. Graham, S. G. Newmaster, B. C. Husband, D. M. Percy, M. Hajibabaei, S. C. H. Barrett. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS one.2008.3(7):1-12.
    [125]Kocyan, A., Y. L. Qiu, P. K. Endress, E. Conti. A phylogenetic analysis of Apostasiodeae (Orchidaceae) based on ITS, trnL-F and matK sequences. Plant systematics and evolution. 2004.247:203-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700