Candidatus liberibacter asiaticus诱导的柑橘转录组学及蛋白组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘黄龙病病原为韧皮部杆菌属细菌,能侵染柑橘各种类、栽培种和杂交种,以及柑橘近缘属植物,是国内外重要植物检疫性有害生物。迄今尚未发现抗病砧木或抗病柑橘种质资源及根治柑橘黄龙病的有效方法。抗病育种应是解决柑橘黄龙病防治的根本途径,而进行柑橘黄龙病病原与柑橘相互作用机制的研究,挖掘寄主的感病机理或耐抗黄龙病病原的有效基因,无疑会为抗病育种工作奠定基础。
     本试验采用的材料与方法:一是选对黄龙病病原菌敏感的椪柑叶片为材料,采用抑制性差减杂交技术(SSH)研究其感染HLB病菌后早期基因变化情况;采用Solexa测序分析椪柑在发病显症期基因表达情况。旨在探索椪柑易感黄龙病病原的分子机制。二是选用广东主栽砧木资源—江西红橘的根系为材料,采用RNA-sequencing深度测序及iTRAQ技术分析其感染黄龙病病原后差异表达基因及差异表达蛋白,旨在了解江西红橘根系对病原菌的应答机制,为下一步对感病基因的抑制等研究奠定基础。以上序列库都采用实时PCR (qPCR)进行验证。主要研究结论如下:
     1、以实生苗‘和平椪柑'(Citrus reticulata Blanco)为材料,采用SSH技术,分别以感染黄龙病与未感染黄龙病的椪柑叶片为检测方(tester)和驱动方(driver),成功构建了黄龙病诱导的差减cDNA文库。挑选了100个阳性克隆并成功测序得到71条EST,经NCBI基因库同源性比对,有41条非冗余高质量EST序列找到了同源序列,有10条非冗余EST未搜索到同源序列。同源序列的基因涉及抗逆防御、运输、能量代谢、光合作用、蛋白代谢、信号转导、抗氧化等代谢途径和生理生化过程。值得注意的是文库中有由病原引起的韧皮部相关的凝集素蛋白前体积累。挑选了2条进行qPCR定量分析,结果表明感病1周表达量增强不大,2周后tester的表达量明显高于driver,说明材料感病早期所克隆基因表达增强。
     2、以SSH文库构建的同一批椪柑材料,于接种黄龙病病原后第13周、26周取样2次,分别进行Solexa测序,测序结果以clementine unigene为参考基因进行比对,并用qPCR验证,功能注释后,分别分析了各时间点的差异表达基因。结果表明:①上调差异基因比列由第13周的37%上升到第26周的64%,其中差异表达倍数>8的上调基因比列由16.7%上升到87.3%; GO process功能富集分析显示,oxidationreduction功能基因比列由第13周的4.41%上升到第26周的8.48%,其对应的response to stress的功能基因也由1.10%上升至2.08%,但defense response的功能基因由0.74%降至0.64%;相反的是,下调的defense response功能DEGs由0.55%升至0.79%。因此,从基因整体水平来看,椪柑在黄龙病原菌的侵染下,在较短时间内(3-6个月)受到的胁迫压力不断上升,抗逆表达水平得到加强,但防御能力却在下降,这可能是椪柑易感病发病的总体原因所在。②第13周及第26周的光合代谢途径的差异基因全部下调,表明黄龙病感染的椪柑植株的光合作用受到抑制。③植株与病原菌的互作途径中调控因子RIN4(RPM1interacting protein4)基因上调了8.9倍,但RPM1基因并未上调,这可能是椪柑对黄龙病菌的感病机制之一。
     3、以江西红橘接种黄龙病病原后第50天的根系为材料,运用RNA-sequencing进行深度测序,测序结果与clementine基因组进行比对,并用qPCR验证,功能注释后,分析了其感病后的差异表达基因,结果表明:①获得差异表达基因3956个,其中差异倍数>10的65个。显著性富集的pathways有19个,其中植物与病原互作代谢途径的显著性极高。②调控因子RIN4基因也受到上调(2.9倍),不及椪柑的上调倍数。③水杨酸信号转导途径上调明显,其中关键基因非表达子1(NPR1)上调1.6倍,下游PRl抗病基因上调2.4倍。说明红橘对黄龙病菌具有一定的系统性获得抗性。不过茉莉酸信号转导途径并未发挥作用,可能与黄龙病菌诱导相关性不大。④糖代谢途径中,蔗糖转化酶基因上调了1.7倍,而蔗糖合成酶基因下调了1.8倍,说明根系组织染病后蔗糖含量梯度变低。这可能与韧皮部堵塞、蔗糖供应减少有关。另外,铁还原氧化酶(下调2.2倍)受到了抑制,可能与根系营养不足有关。
     4、运用iTRAQ技术,分析了江西红橘接种黄龙病病原后第50天的根系的蛋白差异表达情况,结果表明:①鉴定到的蛋白数量为1455,其中差异性高的蛋白有78个。差异蛋白主要参与生物代谢、防御反应、抗氧化、转运和几丁质代谢等。②与转录组关联性强的差异蛋白有36个,其中半数与抗病(逆)相关,如热休克蛋白、过氧化物酶、奇异果样蛋白、几丁质酶、枯草杆菌样蛋白酶、筛管阻塞蛋白等。③植株感病后韧皮部筛管闭塞有关的筛管阻塞蛋白上调了1.67倍,这与防御黄龙病病原有关。另外,枯草杆菌样蛋白酶表达是对照的282.09倍,其相关基因表达上调了3.14倍,说明该酶参与了黄龙病原菌的抵御及根尖分生区的保护。
Huanglongbing (HLB), the most destructive. serious and uncontrollable citrus disease, is caused by a phloem-restricted bacteria, named Candidatus Liberibacter, Which can infect nearly all citrus species, cultivars and hybrids, as well as some citrus relatives. HLB has been an important harmful plant quarantine disease both at home and abroad. Neither HLB resistant rootstocks and citrus germplasm resources nor effective and durable HLB control methods have so far been found. The commonly used practices in controlling HLB spread are using disease free nursery materials and using chemicals to control its vector insect citrus psyllid in addition to eradicating the infected trees. Apparently, further researches on the plant-pathogen interaction mechanisms are needed to help us in understanding the host pathogenesis and in finding possible solutions to the disease such as potential resistance genes that could be used in breeding for HLB resistance.
     In this study. two citrus varieties(Citrus reticulata Blanco), Ponkan, a HLB sensitive variety, and Jiangxi red tangerine, one of the main rootstock in Guangdong province and seems to be HLB tolerable, were characterized for their reactions to HLB infection at transcriptomic or proteomic levels. Ponkan asymptomatic leaves from the early stage of HLB infection and symptomatic leaves showing blotchy mottle yellowing were used for the construction of a SSH (suppression subtractive hybridization) cDNA library, and were compared for their differences in gene expression patterns by Solexa sequencing of RNAs. Root samples of Jiangxi red tangerine were subjected to RNA-sequencing for profiling the differentially expressed genes (DEGs) and to isobaric tags for relative and absolute quantification (iTRAQ) analysis for detecting differentially expressed proteins. The expression patterns of some DEGs in these experiments were further confirmed by quantitative RT-PCR (qPCR). Results are shown as follows:
     1、A SSH library was successfully constructed using cDNA synthesized from RNA extracted from leaves of ponkan infected with HLB as tester and uninfected as driver. One hundred positive clones were randomly selected and sequenced. and71ESTs were obtained. A search based against NCBI GenBank, after removing the repeats and low quality sequences, revealed that41ESTs share considerable homology with known genes and that10ESTs did not have significant matches. Functional annotation of the genes showed that they were related to metabolic pathways and physiological and biochemical processes such as stress-tolerance, transportation, energy metabolism, photosynthesis, proteometabolism. signaling and anti-oxidation. It is noteworthy that the lectin protein precursor gene that is commonly induced by pathogen was found in the HLB bacteria-infected Ponkan leaf cDNA library. qPCR results showed that those two up-regulated genes were HLB induced. The above results indicated that an active anti-infection reaction was initiated in Ponkan leaves during the early stage of HLB bacteria infection.
     2、Ponkan leaves of13weeks and26weeks after HLB inoculation were used for digital gene expression analysis. BLAST search of the clementine unigene using the sequencing results were carried out. Some of the DEGs were confirmed with qPCR. Results indicated that:①The number of up-regulated genes increased from37%in13wpi (weeks post inoculation) to64%in26wpi. what is more, the DEGs with fold change increased more than8times were increased from16.7%to87.3%. Gene ontology (GO) process molecular function enrichment analysis showed that the DEGs with oxidation reduction function increased from4.41%to8.48%and that DEGs responsive to stresses increased from1.10%to2.08%. but these related to defense responses decreased from0.74%to0.64%. However, those related to defense responses of down-regulated genes increased from0.55%to0.79%. Apparently, the expression level of resistance genes strengthened, while the defense ability of host declined along with enhanced stresses caused by HLB infection.②Photosynthesis related genes were down-regulated in both13wpi and26wpi, which indicated that HLB infection greatly reduced the citrus photosynthesis, perhaps via feedback regulation of the accumulated starches resulted from blockage of sieve tubes by the bacteria in the phloem tissue.③RIN4,a negative regulator in plant-pathogen interaction, was found up-regulated by approximately9-fold. The up-regulated expression of RIN4might play important roles in promoting bacteria growth.
     3、Jiangxi red tangerine root samples at50wpi were used in RNA-sequencing. Some DEGs were confirmed by qPCR. Results showed that:①3956genes were differentially expressed, among which65DEGs were identified with more than10-fold changes. DEGs were involving in19pieces of notable pathways, and the plant-pathogen interaction pathway related DEGs were enrichment very significantly.②RIN4was up-regulated about2.9times, which was much less than that in Ponkan, which may account for the difference in syndromes between the two cultivars.③SA signal transduction pathway related gene was up-regulated, the key gene of this pathway, NPR1was up-regulated1.6times, and the downstream PR1gene were up-regulated2.4times. JA signal transduction pathway related gene didn't have notable responses to HLB infection.④Sucrose invertase was up-regulated1.7times, while the sucrose synthase were down-regulated1.8times. This may indicate that the sucrose level in HLB infected roots decreased as result of plugged phloem. Furthermore, ferredoxin expression was down-regulated2.2times, which may be related to nutrition deficiency.
     4、Comparative proteomic approach was also applied to decipher the pathogenic process of HLB in affected red tangerine roots using iTRAQ technique. Results showed that:①The1445identified proteins mainly ranged from20to70kDa. Differentially expressed proteins were mainly involved in metabolism, defense reaction, antioxidation, transport and chitin metabolism.②36proteins showed high correlation with transcriptome results, and half of them were stress/disease resistance related, such as heat shock proteins, resistance proteins, peroxidase, miraculin-like proteins, chitinase, subtilisin-like protease and sieve element occlusion (SEO).③plugged phloem related protein SEO was up-regulated by1.67times, and this protein may function in inhibiting infection of the HLB bacteria and hampering the long distance transport of sucrose. Subtilisin-like protease was up-regulated with a fold change of282.09and the gene of this protein was also up-regulated3.14times, which suggested that the enzyme play important roles in inhibiting the infection of HLB bacteria and protecting the root meristematic zone.
引文
Achor DS. Etxeberria E, Wang N, Folimonova SY, Chung KR, Albrigo LG.. Sequence of Anatomical Symptom Observations in Citrus Affected with Huanglongbing Disease[J]. Plant Pathol,2010.9:56-64.
    Adams M D, Kelley J M, Gocayne J D. Complementary DNA sequencing:Expressed sequence tags and human genome project [J]. Science.1991.252:1651-1656.
    Bachelier C, Granam J. Manoir J du et al. Integration of all invertase gene to control sucrose metabolism in strawberry cultivars[J]. Acta Horticul,1997,439:161-163
    Boris Riiping. Antonia M Ernst. Stephan B Jekat, Steffen Nordzieke, Anna R Reineke, Boje Muller. Erich Bornberg-Bauer. Dirk Prufer and Gundula A Noll. Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants[J]. BMC Plant Biology 2010.10:219.
    Bove J.M.,Garnier M..Phloem-and xylem-restricted plant pathogenic bacteria[J].Plant Science.2002,163:1083-1098.
    Bove J.M.. Huanglongbing:a destructive, newly-emerging, century-old disease of citrus[J]. Plant Pathol.2006.88:7-37.
    Cantu M.D.,Mariano A.G..Palma M.S..Carrilho E.,Wulff N.A.2008.Proteomic analysis reveals suppression of bark chitinases and proteinase inhibitors in citrus plants affected by the citrus sudden death disease[J].Phytopathology 98:1084-1092.
    Chen J C, Deng X L, Pu X L, et al. Detection of a phytoplasma in citrus showing huanglongbing (yellow shoot disease) symptom in Guangdong, P.R.China[C]. The 11th International Citrus Congress in W uhan. China,2008:54.
    Chen J..Pu X.,Deng X.,Xiu S.,Li H.,Civerolo E.2009.A phytoplasma related to Candidatus Phytoplasma asteri is associated with citrus showing Huanglongbing (yellow shoot disease) symptoms in Guangdong.P.R.China[J].Phytopathology 99: 236-242.
    da Graca JV and Korsten L. Citrus huanglongbing:review, present status and future strategies[C].In:"Diseases of Fruits and Vegetables, Volume I", S.A.M.H. Naqvi, ed., Kluwer Academic Publishers,2004,pp.229-245.
    David Mackey, Ben F. Holt Ⅲ. Aaron Wiig and Jeffery L. Dang. RIN4 Interacts with Pseudomonas syringae Type Ⅲ Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis[J]. Cell, Vol.108,743-754.22,2002.
    Degenhardt J, Al-Masri AN. Kurkcuoglu S. Szankowski I. Gau AE. Characterization by suppression subtractive hybridization of transcripts that is differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica[J]. Mol Genet Genomics,2005.273 (4):326-335.
    Diatchenko L,Lauy FC, Campbell AP, etal. Suppression subtractive hybridization: method for generating differentially regulated or tissue specific cDNA probes and libraries[J]. Proc. Natl. Acad. Sci. USA,1996,93(12):6025-6030.
    Doehlert D.C.. and Huber S.C.. Regulation of spinach leaf sucrose phosphate synthase by glucose-6-phosphate.inorganic phosphate.and pH[J].Plant Physiol.,1983.73 (4):989-994
    Duan Y.P..Zhou L.J.,Hall D.G.,Xi W.B.,Doddapaneni H.,Xin H.,Liu L.,Vahling C.M.,Gabriel D.W.,Williams K.P.,Dickerman A.,Sun Y.J.,Gottwald T. Complete genome sequence of citrus Huanglongbing bacterium,'Candidatus Liberibacter asiaticus'obtained through metagenomics[J].Molecular Plant-Microbe Interactions 2009.22:1011-1020.
    F. Ding, G. Wang. G. Yi, et al.2005. Infection of wampee and lemon by the citrus Huanglongbing pathogen (Candidatus Liberobacter asiaticus) in China[J]. Journal of Plant Pathology,87 (3),207-212.
    Folimonova S Y. Robertson C J. Garnsey S M. et al. Examination of the responses of different genotypes of citrus to Huanglongbing (citrus greening) under different conditions[J]. Phytopathology 2009(99):1346-1354.
    Gamier M, Danel N, Bov6 J M. The greening organism is a Gram negative bacterium[c]. Proceedings of 9th Conference IOCV. IOCV. Riverside. 1984:115-124.
    Gamier M.Jagoueix-Eveillard S..Cronje P.R.,Xe Roux H.F..Bove J.M., Genomic characterization of a Liberibacter present in an ornamental rutaceous tree. Calodendrum capense. in the Western Cape province of South Africa.Proposal of 'Candidatus Liberibacter africanus subsp capensis'[J].International Journal of Systematic and Evolutionary Microbiology.2000.50:2119-2125.
    H. D. Coletta Filho. M.L.P. N. Targon.M.A.Tak First Report of the Causal A gent of Huang Long Bing its "Candidatus Liberibacter Americans"in Brazil [J].Plant D is. 2004.88:1382 Paulo [J]. Plant D is.2005:89-0848.
    Halbert S. The Discovery of Huanglongbing in Florida. Second international Citrus Canker and Huanglongbing Research Workshop[M]. Orlando. Florida.2005, November.7-10.
    Halbert SE and Manjunath KL. Asian citrus psyllids (Sternorrhyncha:Psyllidae) and greening disease of citrus:a literature review and assessment of risk in Florida[J]. Florida Entomologist,2004,87:330-353.
    Hammond-Kosack K.E., Jones J.D.G., Resistance gene-dependent plant defense responses[J]. Plant Cell,1996.8:1773-1791.
    Hirokazu Tanaka. Hitoshi Onouchi, Maki Kondo, Ikuko Hara-Nishimura, Mikio Nishimura. Chiyoko Machida and Yasunori Machida. A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. Development,2001,128,4681-4689.
    Hiroyuki T. Kazuhiro T, Gento T, et al. Identification of genes expressed during spore germination of Mycosphaerella pinodes[J]. J Gen Plant Pathol,2005.71:190-195.
    Hisada S, Akihama T, Endo T, et al. Expressed sequence tags of Citrus fruit during rapid cell development phase[J]. J Amer Soc HortSci.1997.122(6):808-812.
    Hocquellet A, Toorawa P, Bov4 J M, et al. Detection and identification of the tWO Candidatus Liberobacter species associated with citrus huanglongbing by PCR amplification of ribosomal protein genes of the p operon[J]. Molecular and Cellular Probes,1999,13:373-379.
    Hong-Ji Su. Research and Health Management of Citrus Huanglongbing in Taiwan. International Research Conference on Huanglongbing, Orlando Rlorida. December 2008. Proceedings of the Meeting. P58-93.
    Huang A L. Electronmicroscopical studies on the morphology and population dynamic of fastidious bacteria causing citrus likubin[D]. National Taiwan University, Taiwan,1987.
    Hubank M.. Schatz D.G. Identifying differences in mRNA expression by representational difference analysis of cDNA[J].Nucleic Acids Research,1994.22 (25):5640-5648.
    J.M. Bove. HUANGLONGBING:A DESTRUCTIVE. NEWLY-EMERGING. CENTURY-OLD DISEASE OF CITRUS. Journal of Plant Pathology,2006.88 (1): 7-37
    Jagoueix, S. et al.1997. Comparison of the 16S/23S Ribosomal Intergenic Regions of "Candidatus Liberobacter asiaticum" and "Candidatus Liberobacter africanum.' the two species associated with Citrus Huanglongbing (Greening) Disease[J]. International Journal of Systematic Bacteriology[J].47(1):224-227.
    Jing Fan, Chunxian Chen, Qibin Yu, Ronald H. Brlansky. Zheng-Guo Lia and Frederick G. Gmitter Jr. Comparative iTRAQ proteome and transcriptome analyses of sweet orange infected by 'Candidatus Liberibacter asiaticus'. Physiologia Plantarum 2011,143:235-245.
    Jones J D G, Dangl J L. The plant immune system[J]. Nature,2006,444:323-329.
    kang d., Lafrance R., Su Z.Z., and Fisher P. B., Reciprocal subtraction differential RNA display:an efficient and rapid procedure for isolating differentially expressed gene sequences. Proc. Natl. Acad. Sci[J]. USA,1998,95(23):13788-13793.
    KepplerF, HamiltonJTG. McRoberts WC,2008. Methoxyl groups of plant pectin as a precursor of atmospheric methane:evidence dromdeuterium labeling studies[J]. New Phytologist.178:808-814
    Kim B. G., Fukumoto T., Tatano S., Gomi K., Ohtani K.. Tada Y., Akimitsu K., Molecular Cloning and Characterization of a Thaumatin-like protein-encoding cDNA from Rough Lemon[J]. Physiological and Molecular Plant Pathology. 2009.74:3-10.
    Kim J.S., Sagaram U.S., Burns J.K., Li J. L., Wang N., Response of sweet orange (Citrus sinensis) to 'Candidatus Liberibacter asiaticus" infection:microscopy and microarray analyses[J]. Phytopathology,2009.99:50-57.
    Kirankumar S M. Markd D, He X H, et al.2003. Over expression of the disease resistance gene Pto in tomato induces gene expression changes similar to immune responses in human and fruit fly [J]. Plant physiology online.132:1901-1912.
    Klann EM. Hall Bradford. Bennett AB Antisense acid invertase (TIV1)gene alters soluble sugar composition and size in transgenic tomato fruit[J].. Plant Physiol.1996.112:1321-1330.
    Koizumi M.,Prommintara M.,Xinwattana G.,Kaisuwan T.. Field evaluation of citruscultivars for greening disease resistance in Thailand[C].Proc 12th Conf Int Organ of CitrusVirol.at New Delhi,India.1993.
    Kong. Anderson J M, Ohm H W.2005. Induction of wheat defense and stress-related genes in response to Fusarium gram inearum. Genome,48 (1):29-40.
    Kuwabara, C., Takezawa. D., Shimada. T., Hamada, T., Fujikawa, S. and Arakawa. K.. Abscisic acid- and cold- induced thaumatin-like protein in winter wheat has an antifungal activity against snow mould, Microdochium nivale[J]. Physiol Plant, 2002,115:101-110.
    Lafleche D, Bove J. M. Structures de type mycoplasme dans les feuilles d' orangers atteints de 1' maladie du greening [J]. Comptes Rendus de 1' Academie des Sciences, Paris,1970,270:1915-1917.
    Li W B, John S, Hartung L L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing[J]. Journal of Microbiological Methods,2006(2):1-11.
    LiangP, PardeeAB. Differential Display of eukaryotic messenger RNA by means of differential display:refinements and optimization [J].Nucleic Acids Research.1992. 121(14):3269-3275.
    Lou B.H., Zhou C.Y., Zhao X.Y., Li Z.G., Xu M., Liu J.X., Zhou Y., Tang K.Z.. Primary study on species and intraspecific differentiations of HLB pathogens in eight provinces of China[C]. in:X. Deng, J. Xu, S. Lin. R. Guan (Eds.). Proc. of the International Society of Citriculture, vol.2, China Agricultural Press. Wuhan, China,2010, p.1195.
    Lu TT, Lu GJ, Fan DL, Zhu CR, Li w, Zhao Q, FengQ, Zhao Guo YL, Li WJ, Huang XH, Hart B. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq[J]. Genome Res,2010,20(9): 1238-1249.
    Matilde Tessitori, Giovanna Maria. Clemente Capasso. Giuliana Catara. Serena Rizza. Viviana De Luca. Antonino Catara. Antonio Capasso, Vincenzo Carginale. Differential display analysis of gene expression in Etrog citron leaves infected by Citrus viroid Ⅲ [J]. Biochimica et Biophysica Acta.,2007,1769:228-235.
    McLeodAR, FrySC. LoakeGJetal. Ultraviolet radiation drives methane emissions from terrestrial plant pectins[J]. New Phytologist.2008,180:124-132
    Michael Knoblauch and Aart J. E. van Bel. Sieve Tubes in Action[J].. The Plant Cell. 1998, Vol.10.35-50.
    Milkins M R, Pasquali C, Appel R D, et al. From proteins to proteomes:large scale protein identification by two-dimensional electrophoresis and amino acid analysis [J]. Biotechnology(NY),1996,14(1):61-65.
    Nagalakshmi U, WangZ, WaernK, ShouC, RahaD, GersteinM, Snyder M. The transcriptional landscape of theyeast genome defined by RNA sequencing [J].. Science,2008,320(5881):1344-1349.
    NRC (Committee on the Strategic Planning for the Florida Citrus Industry Addressing Citrus Greening Disease and National Research Council)2010.Strategic Planning for the Florida Citrus Industry:Addressing Citrus Greening Disease[M].Washington,D.C:The National Academies Press.
    Okita T W. Is there an alternative pathway for starch synthesis. Plant Physiol,1992, 100:560-564
    Okoniewski MJ, Miller CJ. Hybridization interactions between probesets in short oligo microarrays lead to spurious corelations[J].. BMC Bioinformatics,2006,7(1): 276.
    PABLO TORNERO. VICENTE CONEJERO, AND PABLO VERA.Primary structure and expression of a pathogen-induced protease (PR-P69) in tomato plants: Similarity of functional domains to subtilisin-like endoproteases[J].. Plant Biology, June 1996, Vol.93:6332-6337.
    Pazhouhandeh M,Dieterle M,Marrocco K.Proc. Natl Acad Sci USA[J].2006. 103(6):1994-1999.
    Ping Lan, Wenfeng Li, Tuan-Nan Wen, Jeng-Yuan Shiau. Yu-Ching Wu. Wendar Lin. and Wolfgang Schmidt. iTRAQ Protein Profile Analysis of Arabidopsis Roots Reveals New Aspects Critical for Iron Homeostasis[J].. Plant Physiology,2011. Vol.155.821-834.
    Planet P, Jagouxie S, Bo v6 J M, et al. Detection and characterization of the African citrus greening liberobacter by amplification, cloning and sequencing of the rplKAJL rpoBC operon [J]. Current Microbiology,1995,30:137-141.
    R.H.B rlansky, K.R.Chung, M.E Rogers. Florida Citrus Pest Management Guide: Huanglongbing (Citrus Greening) [EB/OL].2006.
    Reinking O. A.1919.Diseases of economic plants in Southern China[J].8:109-135.
    Rogozhin E.A, Odintsova T.I.. Musolyamov A Kh., Smimov A.N., Babakov A.V., Egorov T.A., and Grishin E.V., The purification and characterization of a novel lipid transfer protein from caryopsis of barnyard grass (Echinochloa crusgalli) [J]. Applied Biochemistry and Microbiology,2009,45(4):363-368.
    Roistacher C.N.. The economics of living with citrus diseases:huanglongbing (greening) in Thailand. In:Proceedings of 13th Conference IOCV. IOCV, Riverside 1996.279-285.
    Ross P L, Huang Y N, Marchese J N, et al. Muhiplexed protein quantitation in Saccharomyces cerevisiae using amine reactive isobaric tagging reagents[J]. Mol Cell Proteomics,2004,3(12):1154-1169.
    Roy-Barman S., Sautter C., and Chattoo B.B., Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses[J]. Transgenic Research,2006.15(4):435-446.
    Sagaram M. Burns J K. Leaf Chlorophyll Fluorescence Parameters and Huanglongbing[J].. J. Amer. Soc. Hort. Sci,2009(134):194-201.
    Sankaran S, Ehsani R, Etxeberria E. Mid-infrared spectroscopy for detection of Huanglongbing (greening) in citrus leaves[J].. Talanta,2010 (83):574-581.
    Schneider H.. Anatomy of greening-diseased sweet orange shoots. Phytopathology. 1968,58:1155-1160.
    Schweizer P, Gess R, Mosinger E. Effect of jasmonic acid on the interaction of barley (Hordeum v ulgare L) with the powedery mildew erysiphe graminis[J].. Plant Physiol,1993,102 (2):503-511.
    Sechler A, Schuenzel E L, Co oke P, et al. Cultivation of Candidatus Liberibacter asiaticus, Ca.L africanus,andCa.L.americanus associated with Huanglongbing [J]. Phytopathology,2009,99(5):480-486.
    Shintaro Tsukuda, Kenji Gomi, Hiroyuki Yamamoto, Kazuya Akimitsu. Characterization of cDNAs encoding two distinct miraculin-like proteins and stress-related modulation of the corresponding mRNAs in Citrus jambhiri Lush[J]. Plant Molecular, Biology,2006,60:125-136.
    Shokrollah H, Abdullah T L. Sijam K et al.Ultrastructures of Candidatus Liberibacter asiaticus and its damage in huanglongbing (HLB) infected citrus[J].. African Journal of Biotechnology,2010,9(36):5897-5901.
    Subandiyah, S, et al.2000. Comparison of 16SrDNA and 16S/23S intergenic region sequences among citrus greening organisms in Asia[J]. Plant Disease.84(1):15-18.
    Tatineni S, Sagaram U S, Gowda S et al. In planta distribution of Candidatus Liberibacter asiaticus'as revealed by polymerase chain reaction (PCR) and real-time PCR[J].. Phytopathology 2008(98):592-599.
    Teixeira D C, Saillard C, Eveillard S, et al.'Candidatus Liberibacter americanus', associated with citrus huanglongbing(greening disease)in Silo Paulo State, Brazil[J]. International Journal of Systematic and Evolutionary Microbiology, 2005,55:1857-1862.
    Teixeira D.C.Ayres J.Kitajima EW.Danet L,Jagoueix-Eveillard S,Saillard C, Bove JM..1st report of a Huanglongbing-like disease of citrus in Sao Paulo State, Brazil and association of a new Liberibacter species."Candidatus Liberibacter americanus". with the disease[J].Plant Disease,2005a,89:107.
    Teixeira D.C.,Saillard C.,Couture C.,Martins E.C.,Wulff N.A.,Eveillard-Jagoueix S.,Yamamoto P.T.,Ayres A.J.,Bove J.M.2008b.Distribution and quantification of Candidatus Liberibacter americanus,agent of huanglongbing disease of citrus in Sao Paulo State.Brasil. in leaves of an affected sweet orange tree as determined by PCR[J].Molecular and Cellular Probes 22:139-150.
    Terryn N, Montagu R P. Plant genomics. FEBS Lettera.,1999.452:3-6.
    Staffan Erling Tjus. Henrik Vibe Scheller, Bertil Andersson and Birger Lindberg Meller. Active oxygen pmduced during selective excitation of photosystem I is damaging not only to photosystem Ⅰ, but also to photosystem Ⅱ [J]. Plant Physiol, 2001.125:2007-2015
    Tyler H L, Roesch L F W, Gowda S et al. Confirmation of the Sequence of 'Candidatus Liberibacter asiaticus'and Assessment of Microbial Diversity in Huanglongbing-Infected Citrus Phloem Using a Metagenomic Approach Molecular[J].Plant-Microbe Interactions,2009.22(12):1624-1634.
    Ute Albrecht, Kim D. Bowman. Gene expression in Citrus sinensis (L.) Osbeck following infection with the bacterialpathogen Candidatus Liberibacter asiaticus causing Huanglongbing in Florida[J]. Plant Science,2008,175:291-306.
    Verica J A, Maximova S N. Sterm M D, et al.2004. Isolation of ESTs from cacao (Theobrom a cacao L.) leaves treated with inducers of the defense response [J]. Plant Cell Rep,23 (6):404-413.
    Villechamoux, S. et al.1993. The genome of non-cultured. bacterial-like organism associated with citrus greening disease contains the nusG-rplKAJL-rpoBC gene cluster and the gene for a bacteriophage type DNA polymeras[J]e. Current Microbiology.26(3):161-166.
    Villechanoux S, Gamier M, Renaudin J, et al. Detection of several strains of the bacterium like organism of citrus greening disease by DNA probes[J]. Current Microbiology,1992,24:89-95.
    Von Stein O D, Th lesw G, Hofmann M.1997. A high throughout screening for rarely transcribed differentially expressed genes[J].. Nucleic Acid Res.,25 (13): 2598-2602.
    Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics [J]. Nat Rev Genet,2009,10(1):57-63.
    Wenbin L, Divac, Teixeira JS, et al. Development of Multiplex Real Time PCR for Detection and Identification of Candidatus Liberibacter Species Associated with Citrus Huan glongbing [J]. Journal of Microbiological Methods.2006,66:104-115.
    Zhang GJ, Guo G Hu XD, Zhang Li Q Li RQ, Zhuang RH, Lu ZK, He ZQ, Fang XD, Chen L, Tian w1 Tao KristiansenK, ZhangXQ, Li SG,YangHM, Wang J, W ang J. Deep RNA sequencing at single base pair resolution reveals high complexity of the rice transcriptome[J].. Genome Res,2010,20(5):646-654.
    Zhang H, Zhang R. Differential screening of differential display cDNA products by reverse northern [J]. Method Mol Biol.1997,85:87-93.
    Zhonglin Mou, Weihua Fan, Xinnian Dong. Inducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes[J].. Cell, Volume 113, Issue 7,27 June 2003:935-944.
    Zhu M, Simons B, Zhu N, et al. Analysis of abseisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging[J]. J Proteomics,2010, 73(4):790-805.
    鲍锦库.植物凝集素的功能[J].生命科学,2011(6):533-540.
    蔡明段,易干军,彭成绩主编.柑橘病虫害原色图鉴[B].中国农业出版社.2011年11月,第1页
    陈善春,张进仁,黄自然.根癌农杆菌介导柞蚕抗菌肽D基因转化柑橘的研究[J].中国农业科学,1997,30(3):7-13.
    陈作义,沈菊英,陶世珍,等.广西相橘黄龙病株中类菌原体病原的发现[J].生物化学与生物物理学报,1979,11(4):379-381.
    邓晓玲.快速检测柑橘黄龙病病原的研究[J].华南农业大学学报,1999,20(1):14.
    丁芳,王国平,易干军等.柑橘黄龙病、裂皮病和衰退病病原的多重RT-PCR检测[J].园艺学报,2006,,33(5):947-952.
    丁芳,易干军,王国平.柑橘黄龙病病原PCR检测技术研究[J].广东园艺,2004,5(1):17-18.
    丁芳,易干军,王国平.应用PCR及Nested-PCR技术检测柑橘黄龙病病原[J].园艺学报,,2004,31(6):803-806.
    甘海峰,秦玉明,梅正敏?邱柱石.防控柑橘黄龙病的实践与经验[J].中国南方果树,2007,36(6):19-20.
    甘霖,孙中海,邓秀新.柑橘体细胞杂种的抗性研究[J].园艺学报,1995,,22(3):209-214.
    高会燕,李润植,毛雪,李彩霞.植物凝集素的防卫功能及其研究进展.世界农业[J],2000(2):33-35.
    郭文武,邓秀新.柑橘黄龙病及其抗性育种研究[J].农业生物技术学报,1998,1:37-42.
    郭延平,曾光辉,胡美君.果树光合作用的光抑制与防御机理研究进展.福建果树,2006.3:6-11
    何江峰,韩冰,赵宏鑫.植物β-1,3-葡聚糖酶的研究进展[J].内蒙古农业科技,2006(5):21-25.
    贺红,潘超美,吴立蓉,黄海波,张桂芳.应用聚合酶链反应技术检测广佛手黄龙病病原的研究[J].广州中医药大学学报,2005,22(6):479-481.
    洪勇,何永睿,陈善春,等.柑橘栽培品种高效基因转化新技术研究[J].热带作物学报,2000,21(2):37-41.
    胡桂兵、张上隆,徐昌杰,林顺权.韧皮部特异性启动子的克隆及含绿色荧光蛋白报告基因新植物表达载体的构建[J].果树学报.2005:22(5):582-585.
    胡修峰,殷幼平,石小刚,李颜方,王中康.黄龙病菌侵染过程中柑橘CsMYB基因克隆及表达分析[J].植物研究.2011,31(5):543-549.
    黄文峰,王立丰,田维敏.荣莉酸反应基因转录抑制因子JAZ蛋白家族研究进展.热带作物学报,2009, Vol.30 No.9:1383-1387.
    黄鑫,戴思兰,孟丽,郑国生.抑制性差减杂交(SSH)技术在分离植物差异表达基因中的应用[J].分子植物育种,,2006,,4(5):735-746.
    蒋浩,秦红敏,红梅,田颖.笋瓜韧皮部蛋白基因启动子的克隆及其功能初探.农业生物技术学报,1999,7(1):63-68.
    蒋自珍,袁亦文,孟幼青.不同柑橘品种对柑橘黄龙病抗性试验[J].中国植保导刊,2006,26(9):23-24.
    金田蕴,李辉,郭涛,刘晓璐,苏宁,吴赴清,万建民.水稻稳定高垩白率突变体的获得与理化特性分析.作物学报,2010,36(1):121-132
    柯冲.柑橘黄龙病与类立克次体及线状病毒的研究初报[J].科学通报,1979(10):463-466.
    李韬,陈长忠,邓朝军,陈志峰.福建省柑橘黄龙病虫媒木虱的野生寄主及其带毒率研究[J].江西农业大学学报,2007,29(5):743-745.
    李韬,柯冲.应用Nested-PCR技术检测柑橘木虱及其寄主九里香的柑橘黄龙病带菌率[J].植物保护学报,2002,29(1):31-35.
    李雪燕,项宇,胡文召.中国柑橘黄龙病发生情况及防治现状.中国植保导刊,2011,Vo1.31(4):14-18
    李岩强,王春连,高英.植物天然免疫性研究进展及其对作物抗病育种的可能影响[J].作物学报,2011,37(6):935-942.
    林孔湘.柑橘黄梢(黄龙)病研究[J].植物病理学报,1956,2(1):1-4.
    刘春燕,王伟权,陈庆山.大豆花叶病毒诱导的消减文库构建及初步分析[J].生物工程学报,2005,21(2):320-322.
    刘继红,许小勇,邓秀新.甜橙与酸橙体细胞杂种核质组成鉴定[J].植物学报(英文版),2004,46(10):1206-1211.
    刘凌霄,沈法富,卢合全,韩庆点,刘云国.蔗糖代谢中蔗糖磷酸合成酶(SPS)的研究进展.分子植物育种,2005,Vol3(2):275-281
    刘伟,邵菁,庞宏,等.大规模筛选表达序列标签(ESTs)方法的改进[J].安徽农业科学,2007,35(24):7410-7411.
    骆蒙,孔秀英,刘越,等.小麦抗病基因表达谱中的文库构建与筛选方法研究[J].遗传学报,2002,29(9):814-819.
    祁云霞,刘永斌,荣威恒.转录组研究新技术:RNA-Seq及其应用[J].遗传(Beijing),2011,33(11):1191-1120.
    全先庆,张洪涛,单雷,毕玉平.植物金属硫蛋白及其重金属解毒机制研究进展[J].遗传,2006,28(3):375-382.
    孙秀玲,孙同虎,薄鹏飞,张维静,杜希华.热激蛋白90在植物发育和疾病抗性中的作用[J].生命科学,2008,Vol.20(1):142-146.
    汤华,帅爱华,向福英.植物基因差异表达的研究方法及进展[J].海南大学学报自然科学版,,2006,24(3):308-316.
    田亚南,柯穗,李韬.等.应用电镜与PCR技术检测王官溪蜜柚黄龙病病原[J].植物病理学报,.2000,30(1):76-81.
    田亚南,应用多聚酶链式反应(PCR)技术检测和定量分析柑橘黄龙病[J].植物病理学报,1996,26(3):243~250.
    田振东,柳俊,谢从华.利用抑制差减杂交技术分离马铃薯晚疫病抗性相关基因[J].遗传学报,2003,30(7):597-605.
    万里红,周奕华,陈正华.植物防御系统中抗病相关基因的研究[J].遗传,2002,24(4):486-492.
    王爱民,邓晓玲.柑橘黄龙病诊断技术研究进展[J].广东农业科学,,2008(6):101-103.
    王彩霞.柑橘衰退病毒的血清学特性分析及其诱导寄主差异表达基因的筛选[D].武汉:华中农业大学,2007.
    王春梅,张秋明,罗齐克,王红.柑橘黄龙病病原DNA提取方法比较.西南农业学报,2009,vo1.22(5):1341-1344
    王辉,丁芳,钟云,姜波,易干军,王国平.柑橘黄龙病菌侵染九里香不同方法研究[J].果树学报,2011,28(2):268-272.
    王辉.柑橘黄龙病昆虫媒介-柑橘木虱的研究及九里香感染黄龙病菌后的差减文库构建[D].武汉:华中农业大学.2011.
    王家麟,孙佳莹,于清岩,等EST-SSRs的开发及应用研究进展[J].生物信息学,2007,5:140-142.
    王力华,戴小枫,方宣均,等.大丽轮枝菌毒素诱导表达陆地棉cDNA序列的克隆与定位[J].中国农业科学,2004,37(10):1474-1480.
    王林纤,戴勇,涂植光iTRAQ标记技术与差异蛋白质组学的生物标志物研究[J].生命的化学,2010,30(1):135-140.
    王声斌,邹伟权,余让才.农杆菌法将抗菌肽D基因导入蕉柑胚性细胞的研究[J].华南农业大学学报(自然科学版),2002,4:47-50.
    王文娟,张飞云.植物抗病分子机制研究进展[J].生物技术通报,2007,1:19-23.
    肖远辉,丁芳,曾继吾,易干军,张秋明.柑橘黄龙病和衰退病的同步PCR和RT-PCR检测[J].果树学报,2006,23(4):642-645.
    谢秀枝,王欣,刘丽华,董世雷,皮雄娥,刘伟.iTRAQ技术及其在蛋白质组学中的应用.中国生物化学与分子生物学,2011,27(7):616-621
    禤维言,郑学勤.无核荔枝果实形成差异表达基因cDNA的克隆[J].广西植物,2006(6):597-601.
    杨克强,王跃进,张今今,等.基于表达序列标签(EST)的基因克隆和基因表达分析研究进展[J].西北农林科技大学学报(自然科学版),2002.30(4):141-143.
    叶庆亮,彭爱红,曹立,江东,钟广炎.2007.柑橘类果树组织总RNA优异且通用的提取方法[J].江西农业大学学报[J],29(5):732-735,739.
    余萍,刘艳如,郑怡.二种蕨类植物凝集素的细胞凝集和抑菌活性比较[J].福建师范大学学报:自然科学版,2004(2):77-81.
    张水军,曾千春,卢秀萍,李文正.植物富含甘氨酸蛋白的研究进展[J].中国农学通报2010,26(14):54-58.
    张以顺,向旭,傅家瑞,黄上志.荔枝胚败育差异表达基因cDNA片段的克隆及序列分析[J].园艺学报,2004,31(1):25-28.
    张玉刚,许雪峰,李天忠,等.抑制性消减杂交分离苹果缺铁诱导的相关基因[J].园艺学报,2007,34(3):555-560.
    章玉平,吴赐彦,朱饱卿.柑橘黄龙病的研究进展[J].汕头科技,1998,(3):25-27.
    赵鸿燕,周咏芝,葛宗民,等.柑橘黄龙病病原类细菌(Bacterium like organism, BLO)的培养与性质[J].湖南大学学报(自然科学版),1990,12(1):6-20.
    郑启发,陈大成,黄自然.人工合成柞蚕抗菌肽D基因转化沙田柚[J].华南农业大学报,1999,1:103-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700