Galectin-3-siRNA干扰对食管癌细胞系Eca-109增殖的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:食管癌是消化系统一种常见的恶性肿瘤,占所有恶性肿瘤的2%,我国是食管癌的高发区,因食管癌死亡者仅次于胃癌而居第二位,但是其发生机制尚未完全清楚。肿瘤的发生是一个长期的并且是多因素,多步骤的复杂过程,包括细胞的增殖和分化、细胞的凋亡、细胞的粘附、规避机体免疫系统、新生血管的形成和肿瘤的浸润、转移等。Galectin-3蛋白作为半乳凝集素家族的一员,目前研究认为其广泛表达于正常组织和肿瘤组织,与肿瘤的发生、发展、转移和侵袭有着密切的关系。
     RNA干扰(RNA interference,RNAi)是一种核酸序列特异性阻止基因功能的有效工具,能高效并且特异抑制目标基因的表达。有研究发现用RNAi技术阻止肿瘤相关基因的表达可以有效地抑制肿瘤细胞的增殖。本实验通过设计合成针对Galectin-3蛋白特异性的小干扰RNA(short interfering RNA,siRNA)表达载体,然后采用Galectin-3 -siRNA干扰技术作用于食管癌细胞系Eca-109,从而来研究干扰前后Galectin-3、CyclinD1蛋白表达及细胞增殖和细胞周期的改变,进一步探求Galectin-3蛋白对食道癌细胞系Eca-109细胞增殖和细胞周期的影响以及与CyclinD1之间的关系,从而为食管癌的发生机制提供实验研究资料,为食管癌的临床治疗提供有价值的参考指标。
     方法:采用食管癌细胞系Eca-109为研究对象,设计合成针对Galectin-3的特异性siRNA并转染进食管癌Eca-109细胞。将实验分为转染组、空白对照组、阳性对照组、阴性对照组。采用MTT法检测各组食管癌细胞系Eca-109增殖情况,以检测的光密度值(OD值)代表各组的增殖情况,并计算各组的抑制率;采用免疫细胞化学方法检测实验各组食管癌细胞系Eca-109中Galectin-3、CyclinD1蛋白的表达,采用HIPAS-2000型计算机图像采集系统,在×200倍视野中采集图像,用Imageproplus5.0(IPP)测定阳性细胞的累积光密度值IOD,每张切片选5个视野并求其均值。应用流式细胞仪检测各组食管癌细胞系Eca-109的细胞周期变化,所得结果用细胞周期拟和软件ModFit分析。数据采用方差分析和双变量的相关性分析进行统计学分析,以p<0.05表示差异有统计学意义。
     结果:1.转染效率的检测:应用FAM标记的Negative siRNA转染食管癌细胞Eca-109 6h后用流式细胞仪检测转染效率,转染效率为69.60%。
     2.应用倒置相差显微镜进行细胞学观察,Galectin-3-siRNA转染后48h后细胞形态变化明显,转染组细胞与阴性对照组和空白对照组细胞相比细胞体积变小并趋向于均一,多数细胞由梭形趋向变圆,核浆比变小,瘤巨细胞减少,与空白对照组相比较细胞生长缓慢,部分细胞死亡并脱落。
     3.MTT检测结果显示:Galectin-3-siRNA转染进细胞48h以后,抑制了食管癌细胞系Eca-109的生长,转染组中各组与阳性对照组490nm波长处吸光度值分别为0.63±0.13、0.58±0.19、0.76±0.09、0.77±0.18,明显小于空白对照组(1.43±0.12)和阴性对照组(1.65±0.14),转染组、阳性对照组与空白对照组和阴性对照组相比较,差异均有显著统计学意义(p<0.05),转染各组细胞抑制率分别为55.85%、59.71%、46.17%。
     4.免疫细胞化学检测结果显示:应用Galectin-3-siRNA转染食管癌细胞系Eca-109后48h Galectin-3蛋白表达降低,免疫细胞化学染色明显变浅,应用IPP图像分析系统检测转染组中各组的IOD值分别为20.45±0.15、20.33±0.24、20.36±0.22,空白对照组IOD值为58.15±0.22,阴性对照组IOD值为57.65±0.43,阳性对照组IOD值为19.85±0.67;转染组、阳性对照组与空白对照组和阴性对照组相比较,差异均有显著统计学意义(p<0.05)。
     应用Galectin-3-siRNA转染食管癌细胞系Eca-109后48h CyclinD1蛋白表达降低,免疫细胞化学染色明显变浅,转染组中各组的IOD值分别为39.98±0.05、39.53±0.82、40.86±0.85,空白对照组IOD值为61.83±0.53,阴性对照组IOD值为62.28±0.57,阳性对照组IOD值为40.42±0.60;转染组、阳性对照组与空白对照组和阴性对照组相比较,差异均有显著统计学意义(p<0.05)。
     根据免疫细胞化学结果以IOD作为半定量分析数据,转染后48h转染各组和阳性对照组Galectin-3蛋白和CyclinD1蛋白的IOD值均降低,统计学相关性分析显示Galectin-3蛋白和CyclinD1蛋白存在相关性(r=0.806,p=0.000),随着Galectin-3蛋白的表达减少,CyclinD1蛋白也相应的降低。
     5.流式细胞仪检测结果显示:Galectin-3-siRNA转染食管癌细胞系Eca-109 48h后,转染组、阳性对照组的G1期细胞数百分比较空白对照组和阴性对照组明显升高,S期细胞数百分比较空白对照组和阴性对照组则明显减少。转染组、阳性对照组的G1期细胞百分比数分别为65.76±0.45、66.42±0.17、65.10±0.67、65.44±0.42,阴性对照组和空白对照组G1期细胞数分别为36.76±0.15、35.63±0.36,转染组、阳性对照组与空白对照组和阴性对照组相比较,差异均有统计学意义(p<0.05)。转染组、阳性对照组的S期细胞数百分比分别为23.13±1.34、23.19±1.28、24.40±2.17、24.32±1.73,阴性对照组和空白对照组S期细胞数分别为46.79±0.76、45.33±0.72,转染组、阳性对照组与空白对照组和阴性对照组相比较,差异均有统计学意义(p<0.05)。
     结论:将设计合成的针对Galectin-3的特异性siRNA转染进食管癌细胞系Eca-109 48h后,肿瘤细胞的生长受到抑制,明显降低了食管癌细胞系Eca-109中Galectin-3蛋白和Cyclin D1蛋白的表达,使细胞生长阻滞在G1期,转染组G1期细胞数明显高于非转染组和阴性对照组。说明Galectin-3在食管癌细胞系Eca-109增殖调控中与Cyclin D1蛋白的表达密切相关,而共同发挥作用,应用RNAi技术阻止肿瘤相关基因的表达可以有效地抑制肿瘤细胞的生长,有可能为肿瘤的诊断与治疗提供了一种新的重要手段。
Objective Esophageal cancer is a common digestive system, accounting for 2% of all malignant tumors. Esophageal cancer is a high incidence in China, the death rate of which in the second, however, its mechanism remains unkonow. Tumor is a long-term multi-factor, multi-step complex process, including cell proliferation and differentiation, apoptosis, cell adhesion, circumventing the immune system, angiogenesis, tumor invasion, metastasis and so on. Galectin-3 protein as one of the lectin family of galactose is suggested that widely expressed in normal tissue and tumor tissue, and tumor development, metastasis and invasion are closely related
     RNA interference (RNA interference, RNAi) is an effective tool to prevent nucleic acid sequence-specific gene function that can efficiently and specifically inhibits the expression of target genes. Studies have found that using RNAi technology to prevent tumor-related gene expression can effectively inhibit tumor cell proliferation. We design and synthesis small interfering RNA (short interfering RNA, siRNA) expression vector specifically on Galectin-3 gene, and then make Galectin-3-siRNA to interfer on esophageal cancer cell line Eca-109, which in order to study the interference on Galectin-3, CyclinD1 protein expression, cell proliferation and cell cycle, and to explore the effection of the Galectin-3 protein on the esophageal cancer cell line Eca-109 cell proliferation and cell cycle kinetics and the relationship with the CyclinD1, so as to provide data for the mechanism and clinical treatment of esophageal cancer.
     Methods Galectin-3 siRNA was transfected into esophageal cancer Eca-109 cells. The experiment was divided into transfection group, blank control group, positive control group and negative control group. MTT assay used in each group of esophageal cancer cell line Eca-109 proliferation, to detect the optical density (OD) on behalf of the group, proliferation, and inhibition rate of each group; detected by immunocytochemistry in each group esophageal cancer cell line Eca-109 in the Galectin-3, CyclinD1 protein expression, the use of HIPAS-2000-based computer image acquisition system,×200 magnification in the images in the collection, use Imageproplus5.0 (IPP) measured integrated optical density of positive cells value of the IOD, each slice select five horizons and find their average. Were detected by flow cytometry esophageal cancer cell line Eca-109 cell cycle, the results to be used and the software ModFit cell cycle analysis. All data between groups by analysis of variance compared mean to p <0.05 indicated significant difference. Results 1. Transfection efficiency of detection: application of FAM labeled N-egative siRNA transfected esophageal cancer cell Eca-109 6h detected by flow cytometry after the transfection efficiency, transfection efficiency was 69.60%.
     2.Inverted phase contrast microscope for cytological observation, G- alectin-3-siRNA transfected cells after 48h obvious morphological changes, cells transfe cted with negative control group and blank control group were smaller than the cell volume and tend to uniformity, the majority of cells tr- end from the spindle an d round, smaller than the nuclear plasma, tumor gi ant cells decreased compared with the control group cells grew slowly, so me cells die and fall off.
     3. MTT results showed that: Galectin-3-siRNA into the cells 48h after transfection, inhibition of the esophageal cancer Eca-109 cell line growth in the group transfected with the positive control group absorbance at 490 nm wave length values were 0.63±0.13, 0.58±0.19, 0.76±0.09, 0.77±0.18, significantly less than control group 1.43±0.12 and the negative control group 1.65±0.14, transfection, positive control group and blank con trol group and negative control group, the difference are There was signifi cant (P <0.05), the cells were transfected with the inhibitory rates were 5 5.85%, 59.71%, 46.17%.
     4. Immunocytochemistry showed that: The Galectin-3-siRNA transfe cted esophageal cancer cell line Eca-109 protein after 48h Galectin-3 expr ession decreased significantly lighter immunocytochemistry, application IPP image analysis system in the detection of the transfected group IOD values were 20.45±0.15, 20.33±0.24, 20.36±0.22, control group IOD valu e of 58.15±0.22, IOD value of the negative control group 57.65±0.43, po- sitive control group IOD value of 19.85±0.67; transfection group, positive control group and blank control group and negative control group compare d to the differences were statistically significant (p <0.05).
     Application of Galectin-3-siRNA transfected esophageal cancer cell line Eca-109 protein after 48h cyclinD1 decreased significantly lighter imm unocytochemistry, transfected IOD values of each group were 39.98±0.05, 39.53±0.82, 40.86±0.85, control group IOD value of 61.83±0.53, IOD value of the negative control group 62.28±0.57, positive control group IO- D value of 40.42±0.60; transfection, positive control group and blank control group and negative control group compared The difference was statistically significant (p <0.05).
     According to the results of immunohistochemistry analysis to IOD as a semi-quantitative data, 48h after transfection, transfection of the group and the positive control group CyclinD1 Galectin-3 and the IOD values were decreased, statistical correlation analysis showed that Galectin-3 and the correlation CyclinD1 Resistance (r = 0.806, p = 0.000), with Galectin-3 expression is reduced, CyclinD1 reduced accordingly.
     5.Flow cytometry showed that: Galectin-3-siRNA transfected esophageal cancer cell line Eca-109 48h after transfection group in each group, positive control group sub-G1 phase cells compared hundreds of blank control group and negative control group increased, Sphase cells compared hundreds of hours the control group and negative control group were significantly reduced. Transfected in each group, the positive control group the percentage of G1 phase cells, respectively 65.76±0.45, 66.42±0.17, 65.10±0.67, 65.44±0.42, negative control group and blank control group G1 phase cells were 36.76±0.15, 35.63±0.36, transfection, positive control group and blank control group and negative control group, the difference was significant (p<0.05). Transfected in each group, the positive control group the percentage of S phase cells were 23.13±1.34, 23.19±1.28, 24.40±2.17, 24.32±1.73, negative control group and blank control group the number of S phase cells were 46.79±0.76 , 45.33±0.72, transfection, positive control group and blank control group and negative control group, the difference was significant (p <0.05).
     Conclusions Being transfected specific Galectin-3 siRNA into esophageal cancer cell line Eca-109, after 48h the cell growth was significantly inhibited; expression of Galectin-3 protein and Cyclin D1 protein in esophageal cancer cell line Eca-109 reduced; the cell growth was arrested in G1; the number of cells in transfection group was significantly higher than that of non-transfection group and negative control group. Galectin-3 was closely related with Cyclin D1 protein in the proliferation of esophageal cancer cell line Eca-109. Using RNAi technology can prevent tumor-related gene expression and effectively inhibit tumor cell growth, which possibly provides an important method in diagnosis and treatment of tumors.
引文
1.杨光华主编.病理学.第五版,北京:人民卫生出版社, 2002,91-100
    2. Liu FT, Hsu DK. The role of galectin-3 in promotion of the inflammatory Response[J]. Drug News Perspect, 2007; (20): 455-460
    3. Yang RY, Liu FT. Galectins in cell growth and apoptosis[J]. Cell Mol life Sci, 2003; 60(2): 267-276
    4. Barondes SH, Castronovo V, Cooper DN, et al. Galectins: A family of animal beta-galactoside-binding lectins [J]. Cell, 1994; (76):597-598
    5. Fausto J. Rodriguez, MD, Bernd W. Scheithauer, MD, Federico Roncaroli, MD, et al. Galectin-3 Expression is Ubiquitous in Tumors of the Sellar Region, Nervous System, and Mimics[J]. Am JSurg Pathol, 2008; 32 (9): 32-36
    6.石菲,孙永刚,姚大鹏. Galectin-3在食管鳞癌中的表达及其临床意义.第四军医大学学报, 2008; 29(4) 351-353
    7. Yi Wang, Pratima Nangia-Makker, Larry Tait, et al. Regulation of Prostate Cancer Progression by Galectin-3[J]. The American Journal of Pathology, 2009; 174(4): 46-54
    8. Fausto J. Rodriguez, MD, Bernd W. Scheithauer, MD, Federico Roncaroli, MD, et al. Galectin-3 Expression is Ubiquitous in Tumors of the Sellar Region, Nervous System, and MimicsAm [J]. Surg Pathol, 2008; 32 (9):54-66
    9. Tachibana KE, Gonzalez MA, Coleman N. Cell-cycle-dependent regulat- ion of DNA replication and its relevance to cancer pathology[J]. Pathol, 2005, 205(2): 123-129
    10. Musat M, Vax VV, Borboli N, et al. Cell cycle dysregulation in pituitary Yoncogenesis [J]. Front Horm Res, 2004; (32): 34-62
    11. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer[J]. Nature, 2004; 432(7015): 316-323
    12. Gunter M, Thomas T, Mechanisms of gene silencing by doubletranded RNA [J]. Nature, 2004; (431):343-349
    13. Robin A. RNAi and Heterochromatin-a Hushed-up affair[J]. Science,2002, (297): 1818-1819
    14. Derek MD, Carl DN, Phillip A.Killing the messenger: short RNAs that silence gene expression[J]. Nature, 2003; (4):457-467
    15. Fire A, Xu S, Montgomery MK, et al. potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998; (391): 806-811
    16. Wianny F, Zernicka, Goetz. Specific interference with gene funetion double stranded RNA in earlymouse development[J]. Nature Cell Biol, 2000; 9(2): 70-75
    17. Tchurikov N A,Christyakova L G,Zavilgelsky G B,etal.Gene specific silencing by expression of parallel complementary RNA in Escheriehi- aco[J]. Biological Chemistry 2000; 275(5): 26523-26529
    18. Hammond S M,Bernstein E,Beaeh D,etal. An RNA 2 directed nueleas mediates Post transcriPtion algene sileneing inDrosoPhila cells[J]. Nat- ure, 2000; 404(6775): 293-296
    19. Bilanges B, Stokoe D. Direct comparison of the specificity of gene silencing using antisense oligonucleotides and RNAi[J]. Biochem, 2005; 388(2): 573-583
    20. Nesterova M, ChoChung YS. Killing the messenger: antisense DNA and siRNA[J] . Curr Drug Targets, 2004; 5(8): 683-689
    21. Miyagishi M, Hayashi M, Taira K. Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells[J]. Antisense Nucleic Acid Drug Dev, 2003; 13(1): 1-7
    22. Kretschmer, Kazemi Far R, Sczakiel G, et al. The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides[J]. Nucleic Acids Res, 2003; 31(4): 4417-4424
    23. Bertrand JR, Pottier M, Vekris A, et al. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo[J]. Biochem Biophys Res Commun, 2002; 296(4): 1000-1004
    24. Peter J. Davidson, Su-Yin Li, Andrew G. Vandergaast, et al. Transport of galectin-3 between the nucleus and cytoplasm[J]. Glycobiology, 2006; 16(7): 602-611
    25. Dabelic S, Supraha S, Dumic J. Galectin-3 in macrophage-like cells exposed to immunomodulatory drugs[J] . Biochim Biophys Acta, 2006; 1760(4): 701-709
    26. riedrichs J,Manninen A, Muller D J,et al. Galectin-3 regulates integrin alpha2betal-me-diated adhesion to collagen-I and-IV[J]. Biol Chem, 2008; 283(47): 32264-32272
    27. Hughes RC. Secretion of the galectin family of mammalian carbohy- dratebinding proteins[J]. Biochim Biophys Acta, 1999; 234(8): 1472-1483
    28. Moutsatsos IK, Wade M, Schindler M, et al. Endogenous lectins from cultured cells: nuclear localization of carbohydrate - binding protein 35 in proliferating 3T3 fibroblasts[J]. Proc Natl Acad Sci USA, 1987; 84(9 ): 6452-6455
    29. Hubert M, Wang SY, Wang JL, et al. Intranuclear distribution of galectin-3 in mouse 3T3 fibroblasts: comparative analyses by immunofluorescence and immunoelectron microscopy[J]. Exp Cell Res, 1995, 220 (6): 397-399
    30. Raimond J,Zimonjic DB,Mignon C,et al. MaPPing of the galectin-3 Gene (LGALS3) to human chromosome 14 at region 14q21-22[J]. MammGenome, 1997; 8(9): 706-707
    31. Nangia-Makker P, Baccarini S, Raz A.Carbohydrate-recognition and angiogenesis [J]. Cancer Metastasis Rev, 2000; 19(1-2): 51
    32. Nangia-Makker p, Honjo Y, Sarvis R, et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis [J]. Am J Pathol, 2000; 156(3): 899-903
    33. Moiseeva EP, Javes Q, Spring EL, et al. Galectin-1 is involved in vascular smooth muscle cell proliferation[J]. Cardiovasc Res, 2000; 45(2): 493-496
    34. Zucker S, Cao J, Chen WT. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment[J]. Oncongene, 2000; 19(56): 642-648
    35. Takenaka Y, Inohara H, Yoshii T, et al. Malignant transformation of thyroid follicular cells by Galectin-3[J]. Cancer Lett, 2003; 195(1): 111-119
    36. Califice S , Castronovo V , Bracke M , et al. Dual activities of galectin -3 in human prostate cancer: tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3[J]. Oncogene, 2004; 23(45); (45): 7527-7536
    37. Hoyer K, Pang M, Gui D, et al.Ananti-apoptoticmle for galectin-3 in diffuse large B-cellly mphomas[J]. AmJPathol, 2004; 164(3): 893-902
    38. Kim HR. C, Akahani S, Nangia-Makker. Galeetin-3: a novel antiapop- totic molecule with a functional BHI (NWGR) domain of Bcl-2 fmily [J]. Cancer Res, 1997; 57(8): 5272-5276
    39. Lu F, Gladden AB, Diehl JA. An alternatively spliced CyclinD1 isoform, CyclinD1b, is a nuclear oncogene[J]. Cancer Res, 2003; 63(4): 7056 -7061
    40.韦富贵,徐志文. Cyclin D1与头颈部恶性肿瘤.中国医学文摘耳鼻咽喉科学. 2005; 20(6): 323-326
    41. Shiozaki H, Doki Y, Yamana H, et al. A multi-institutional study of immunohis to chemical investigation for the roles of cyclinD1 and E-cadherin in superficial squamous cell carcinoma of the esophagus[J]. Surg Oncol, 2002; 79(3): 166-173
    42. Nagaswa S, Onda M, Saajima K, et al. CyclinD1 overexpression as a prognostic factor in patients with esophageal[J]. Surg Oncol, 2001; 78(3)208-214
    43. Zhang L, Xu Y, Ge Y, et al. Expression of p27 protein and CyclinD1 in lalaryngeal carcinoma[J]. Lin Chuang Er Bi Yan Hou Ke Za Zhi, 2002; 16(4): 646-652
    44. Gugger M, Kappeler A,Vonlanthen S, et al. Alterations of cell cycleregulators are less frequent in advanced non-small cell lung cancer than in reseectable tumours[J]. Lung Cancer, 2001; 33(4): 229-239
    45.周正平,王进京,苏俊,等.乳腺浸润性导管癌中p57kip2、cyclinD1和cyclin E的表达及意义.临床与实验病理学杂志. 2005, 20(3): 282 -285.
    46. Arber N, Doki Y, Han EK,et al. Antisense to cyclin D1 inhibits the growth and tumorigenicity of human colon cancer cells[J]. Cancer Res, 1997, 57: 1569-1574
    47. Solomon DA, Wang Y, Fox SR, et al. CyclinD1 splice variants: Differential effects on localization, RB phosphorylation, and cellular transformation[J]. Biol Chem, 2004; 16; 27(29): 30914-30916
    48. Lin H M, Pestell R G, Raz A, et al. Galcetin-3 enhances cyclinD1 promoter activity through SPI and a cAMP-resPonsive element in human bteast epithelial cells[J]. Oncogene, 2002; 21(52): 8001-8010
    1. Liu RF, Rabinovich GA.Galectins as modulators of tumor progression [J]. Nat ReV Cancer, 2005; 5(1): 29-41
    2.Barondes SH, Castronovo V, Cooper DN, Cummings RD, et al. Galectins: A family of animal beta-galactoside-binding lectins[J]. Cell, 1994; 76 (3): 597-8
    3. Chiariotti L, Salvatore P, Frunzio R, et al. Galectin genes: regulation of expression[J].Glycoconjugate, 2004 ; 19(729): 441-449
    4. Saggiorato E, Bergero N, Volante M, et al. Galectin-3 and Ki-67 expression in multi-glandular parathyroid lesions[J]. Am J Clin Pathol, 2006; 126 (1): 59-66
    5. Takenaka Y, Fukumori T, Raz A. Galectin-3 and metastasis [J]. Glycoconjugate, 2004 ; 19 (7-9): 543-549
    6.石菲,孙永刚,姚大鹏. Galectin-3在食管鳞癌中的表达及其临床意义.四军医大学学报, 2008; 29(4): 351-353
    7. Yi Wang, Pratima Nangia-Makker, Larry Tait, et al. Regulation of Prostate Cancer Progression by Galec-tin-3[J]. The American Journal of Pathology, 2009; 174(4): 789-792
    8. Fausto J. Rodriguez, MD, Bernd W. Scheithauer, MD, Federico Roncaroli, MD et al. Galectin-3 Expression is Ubiquitous in Tumors of the Sellar Region, Nervous System, and Mimics[J]. Am J Surg Pathol, 2008; 32(9): 1098-1102
    9. Peter J. Davidson, Su-Yin Li, Andrew G. Lohse, et al.Transport of galectin-3 between the nucleus and cytoplasm[J]. Glycobiology, 2006; 16(7): 602–611
    10. Dabelic S, Supraha S, Dumic J. Galectin-3 in macrophage-like cells exposed to immunomodulatory drugs[J]. Biochim Biophys Acta,2006; 17 60(4): 701-709
    11. Yang RY, Liu FT. Galectins in cell growth and apoptosis [J] . Cell Mol Life Sci, 2003; 60(2): 267-276
    12. Califice S, Castronovo V, Bracke M, et al. Dual activities of Galectin-3in human prostate cancer : tumor suppression of nuclearGalectin-3 vs tumor promotion of cyt-oplasmic galectin-3 [J]. Oncogene, 2004, 23(45: 752-7536
    13. Baptiste TA, James A, Saria M, et al. Mechanotransduction mediated secretion and uptake of galectin-3 in breast carcinoma cells; implications in the extracelluar functions of the lectin [J]. Exp Cell Res, 2007; 313(4): 652 -64
    14. Yi Wang, Pratima Nangia-Makker, et al. Regulation of Prostate Cancer Progression by Galectin-3[J]. The American Journal of Pathology, 2009; 174(4): 56-65
    15. Lin HM, Pestell RG, Raz A, et al. Galectin-3 enhances cyclin D1 promoter activity through SP1 and a cAMP2 responsive element inhuman breast epithelial cells. Oncogene , 2002 , 21( 52): 8001-8010
    16. Shimura T, Takenaka Y, Tsutsumi S, et al. Galectin-3, a novel binding partner of beta-catenin[J]. Cancer Res, 2004; 64(18): 6363-6367
    17. Hoyer KK,Pang M,Gui D,et al.An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas [J]. Am J Pathol, 2004; 164(3): 893- 902
    18. Califice S, Braeke M. Dual activities of galectin-3 inHuman prostate cancer: tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3[J]. 0ncogene, 2004, 23(45): 7527-7536
    19. Hughes R C. Galectins as modulators of ceU adhesion[J]. Biochimie, 2001; 83(7): 667-676
    20. Jun Zou, Vladislav V. Glinsky, Linda A. Landon, et al. Peptides specific to the galectin-3 carbohydrate recognition domain inhibit metastasis- associated cancer cell adhesion Carcinogenesis [J]. Biol Chem 2005; 26(2): 309-318
    21. Khaldoyanidi S K, Glinsky V V, Sikora L, et al. MDA-MB-435 human breast carcinoma cell homo-and heterotypic adhesion under now conditions is mediated in pan by Thomsen-Friedenreich antigen Galectin-3 interactions[J] . Biol Chem, 2003; 278(6): 4127-4134
    22. Ochieng J, Fridman R, Nangia-Makker P, et al. Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9[J]. Biochemi- stry, 1994; 33(47): 14109-12
    23. Nangia-Makker P, Baccarini S, Raz A. Carbohydrate-recognition and angiogenes[J]. Cancer Metastasis Rev, 2000, 19(1-2): 51-57
    24. Moiseeva EP, Javed Q, Spring EL, et al. Galectin-1 is involved in Vascular smooth muscle cell proliferation[J]. CardioVasc Res, 2000; 45(22): 493-502
    25. Allen G.Greenwald, Rongyu Jin, Thomas K. Galectin-3 Mediated Xenoa ctivation of Human Monocytes Transplantation. 2009; 87(8): 44-51
    26. Alison C.MacKinnon, Sarah L. Farnworth, Philip S. Hodkinson, et al. Regulation of Alternative Macrophage Activation by Galectin-3 The Journal of Immunology, 2008; 180(5): 2650-2658
    27. Müller S , Schaffer T, Flogerzi B , et al . Galectin-3 modulates T cell activity and is reduced in the inflamed intestinal epithelium in IBD [J]. Inflamm Bowel Dis, 2006; 12 (7): 588-597
    28. Moon B K, Lee Y J, Battle P, et al. Galectin-3 protects human breast carcinoma cells against nitric oxide-induced apoptosis: implication of galectin-3 function during metastasis[J]. AmPathol. 2001; 159 (3): 105 5-1060
    29. Honjo Y, Inohara H, Akahani S, et al. Expression of cytoplasmic galectin-3 as a prognostic marker in tongue carcinoma[J]. Clin Cancer Res, 2000; 6(12): 4635
    30. Cvejic D, Savin S, Golubovic S, et al. Galectin-3 and carcinoembryonic antigen expression in medullary thyroid carcinoma: possible relation to tumour progression[J].Histopathology, 2000; 37(6): 530-538
    31. Inohara H, Honjo Y, Yoshii T, et al. Expression of galectin-3 in fine-needle aspirates as a diagnostic marker differentiating benign from malignant thyroid neoplasms[J]. Cancer, 1999, 85(11): 2475
    32. Yang ZM, Wu XT, He T, et al. Expression of galectin-3 mRNA ingastric cancer with peritoneal metastasis[J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2006; 37(1): 105-108
    32. Miyazaki J, Hokari R, Kato S, et al. Increased expression of Galectin-3 in primary gastric cancer and the metastatic lymphnodes[J]. Oncol Rep, 2002; 9(6): 1307-1312
    33. Chung E J, Sung Y K, Farooq M, et al. Gene expression profile analysis in human hepatocellular carcinoma by cDNA microarray[J]. Mol Cells, 2002; 14(3): 382-387
    34. Bresalier RS, Mazurek N, Stemberg LR, et al. Metastasis of human colon cancer is altered by modifying expression of the beta-galactoside- binding protein galectin-3[J]. Gastroenterology, 1998; 115(2): 287
    35. Lotz MM, Andrews CW Jr, Korzelius CA, et al. Decreased expression of Mac-2(carbohydrate binding protein 35) and loss of its nuclear localization are associated with the neoplastic progression of colon carcinoma[J]. Proc Natl Acad Sci USA, 1993, 90(8): 3466
    36. Camby I, Belot N, Rorive S, et al. Galectins are differentially expressed in supra-tentorial pilocytic astrocytomas, astrocytomas,anaplastic astrocytomas and glioblastomas, and significantly modu-late tumor astrocyte migration[J]. Brain Pathol, 2001; 11(1): 12-17
    37. Bresalier RS, Yan PS, Byrd JC, et al. Expression of the endoge-nous galactose binding protein galectin-3 correlates with the malignant potential of tumors in the central nervous system[J]. Cancer, 1997, 80(4): 776-782
    38. Yuichio Honjo, Hidenori Indhara, Shiro Akahani, et al. Expression of cyto-plasmic Glectin-3 as a prognostic Marker in Tongue Carcinoma[J]. Clinical Cancer Research, 2000; 6: 4635-4640
    39. Cindolo L, Benvenuto G, Salvatore P, et al. galectin- 1 and galectin-3 expression in human bladder transitional- cell carcinomas[J]. Cancer, 1999; 84(1): 39-45
    40. Young AN, Amin MB, Moreno CS, et al. Expression profiling of renal epithelial neoplasms: a method for tumor classification and discoveryof diagnostic molecular markers [J]. Am J Pathol, 2001, 158(5): 1639- 1647
    41. Grassadonia A, Tinari N, Iurisci I, et al. Iacobelli S90K(Mac-2BP) and galectins in tumor progression and metastasis[J]. Glycoconj, 2004, 19 (7- 9): 551-557

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700