几种水泥混凝土桥面防水粘结层性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
公路桥梁桥面防水粘结层的质量直接影响桥梁结构的耐久性。如何选取合适的材料并设计性能优良的防水粘结层已引起越来越多工程师的重视。目前,国内外对大跨径桥梁钢桥面柔性铺装层的数值模拟、材料应用、层问粘结防水等做了大量工作,取得了一定的研究成果,然而对应用较多的水泥混凝土桥梁防水粘结层体系研究较少。已有研究表明,混凝土桥梁早期病害与桥面铺装结构中防水粘结层的设置直接相关。因此,深入开展水泥混凝土桥梁桥面防水粘结层性能研究,对于实际工程具有重要的理论指导意义。
     本文在对国内外桥面防水粘结层研究状况调查的基础上,在实验室制备了一种橡胶微粉改性沥青。测定了不同温度、掺量、制备时间等工艺条件下改性沥青的针入度、软化点、延度和储存稳定性等指标,得出了橡胶微粉改性沥青的最佳制备工艺为:掺量12%,剪切时间60min、制备温度200℃。采用DSR动态剪切流变仪研究了橡胶微粉改性沥青的复数剪切模量及相位角,试验结果验证了最佳制备工艺条件下所得改性沥青具有最佳的高、低温综合性能。
     其次,本文考察了在不同用量、不同温度、不同界面处理条件下AH-90重交沥青、SBR乳化沥青、橡胶微粉改性沥青三种沥青作为桥面防水粘结材料时的剪切强度和拉伸强度。结果表明:在高温和常温时,SBR乳化沥青粘结层剪切强度最大,而在低温时,橡胶微粉改性沥青抗剪强度值最大;经历冻融循环后,橡胶微粉改性沥青抗剪强度比值下降最小;人工凿毛界面条件下粘结层的抗剪切强度最大,钢丝刷拉毛次之,原状界面下剪切强度最小。拉伸试验表明:SBR乳化沥青的拉伸强度最大,橡胶微粉改性沥青次之,并且界面处理对强度值影响不大。
     最后,通过万能伺服液压试验仪(UTM)对三种粘结材料的抗剪切疲劳寿命进行了研究。试验表明常温下SBR乳化沥青粘结层抗疲劳性能最佳,而在低温下橡胶微粉改性沥青粘结层抗疲劳性能最佳。并运用现象法理论建立了常温和低温下三种桥面防水粘结层的疲劳-应力方程,为三种防水粘结材料疲劳寿命的预测提供了依据。
The quality of the waterproof adhesive layer in concrete bridge has great effects on the duration of bridge structure directly. Engineers begin to attach more and more importance to how to choose proper material and design well waterproof adhesive layer. Now, a great deal of work has been done for deck paving design of the long-span steel bridge in the fields of numerical simulation, material application, interlay waterproof adhesive layer and so on. Although some research productions have been gained already, there is little work on waterproof adhesive layer of many concrete bridge decks. The results from the present investigation suggest that the early damage of concrete bridge deck is directly relevant to the performance of waterproof adhesive layer. The profound research on the properties of waterproof adhesive layer in concrete bridge deck is significant for the application of it in practical projects.
     On the basis of research on status of waterproof adhesive layer at home and abroad, micro rubber powder modified asphalt was prepared in the paper .To confirm the influence of preparing time, preparing temperature and addition of modifier, the penetration degree, ductility and soft point were determined and investigated. The results showed that favorable modified asphalt could be obtained under conditions of addition 12%, shear time 60min, shear temperature 200℃. Dynamic Shear Rheometer was chosen to conduct the researches on the complex modulus and phase angle of micro rubber powder modified asphalt and the results indicated that the modified asphalt with addition of 12% had the best comprehensive performance in low and high temperature.
     Additionally, the shear strength and tensile strength of three type of the waterproof adhesive material making up of AH-90 asphalt, SBR emulsified asphalt, and micro rubber powder were studied at different concentrations, temperatures, and surface modification methods. The results showed that the shear strength of SBR emulsified asphalt had a maximum value at high (60℃) and room (25℃) temperature. The shear strength of micro rubber powder modified asphalt was the largest one in three materials at low (0℃) temperature. After freeze-thaw cycle, SBR emulsified asphalt had the largest shear strength value, and the shear strength ratio variation of micro rubber powder was the lowest. And the shear strength of the adhesive layer decorated by artificial chiseling was largest, steelwire brush scuffing second and original surface lowest. The tensile testing results showed that SBR emulsified asphalt had the largest tensile strength and layer decorating had little influence on tensile strength.
     Research on the fatigue life of shearing resistance of three waterproof adhesive materials was carried out using Universal Servo Hydraulic Testing Machine (UTM). The results showed that the fatigue resistance of SBR emulsified asphalt were the best one at room temperature. But the fatigue resistance of micro rubber powder modified asphalt was better than SBR emulsified asphalt at low temperature. The phenomenological fatigue methodology was applied and the fatigue life versus stress equations of bridge deck waterproof adhesive layer was constructed in low (0℃) and room (25℃) temperature to supply reliable basis for the fatigue life predication of the bridge pavement structure.
引文
[1]中国交通运输行业发展研究年度报告(2007/2008)[R].北京:人民交通出版社,2008.2
    [2]国家高速公路网规划(2004)[R].北京:人民交通出版社,2005.2
    [3]沈金安.沥青与沥青混合料路用性能[M].北京:人民交通出版社,2001
    [4]Martinelli P.Bridge Deck Waterproof Membrane Evaluation[J].Journal of Material Science,1996,(9):281-289
    [5]L.CARR,B.VALLERGA.Nator proof of Membranes for Protection of Concrete Bridge Decks[J].Asphalt Paving Technol,1999(28):125-155
    [6]柏园.桥面铺装粘结层的研究:[硕士学位论文].西安:长安大学,2005
    [7]胡宗文,陈倩,李东旭.沥青混凝土桥面铺装早期病害问题的分析.现代交通技术,2005(5):45-47
    [8]徐伟.大跨径混凝土桥梁沥青桥面铺装技术试验研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2002
    [9]Waterproofing Membranes for Concrete Bridge Decks[R].NCHRP Synthesis of Highway Practice,1995:220
    [10]郭莹莹.胶粉改性沥青桥面防水性能实验研究:[硕士学位论文].呼和浩特:内蒙古工业大学,2007
    [11]蒋维祥,魏为成.水泥混凝土桥面防水粘结层研究综述.公路交通技术,2007.9:87-90
    [12]马彦芹,梁志林.桥面铺装粘结防水层材料的选择及性能研究.公路,2007.6(6):101-103
    [13]陈兆坤.胶粉改性沥青及其粘层应用技术研究:[硕士学位论文].长沙:长沙理工大学,2005
    [14]王庆国.超细全硫化粉末橡胶及其纳米无机填料复合体系对硬质聚氯乙烯的改性研究:[博士学位论文].北京:北京化工大学,2006
    [15]张金升,李志,李明田等.纳米改性沥青相容性和分散稳定机理研究.公路,2005.8(8):142-146
    [16]A.R.Price.A field trial of waterproofing systems for concrete bridge decks[J].Energy &Fuels,1989.17(4):981-996
    [17]梁志标,何惠红.桥面铺装过早损坏的原因分析及处治对策.中南公路工程,1997.22(2):25-29
    [18]PRICE AR.Waterproofing of concrete bridge decks site practice and failures[R].TRRL Report No.RR317,1991
    [19]Vailerga B.A,Monismith C.L,Granthem K.A study of some factors influencing the weathering of paving asphalts[J].Proc.Assn.Asphalt Paving Technol,1957(26):126-150
    [20]Gianni Bartoli,Claudio Mannini.A simplified approach to bridge deck flutter[J].Journal of Wind Engineering and Industrial Aerodynamics,2008,96:229-256
    [21]Methee Chiewanichakorn,Amjad J.Aref,Sreenivas Alampalli.Dynamic and fatigue response of a truss bridge with fiber reinforced polymer deck[J].International Journal of Fatigue:2007.29:1475-1489
    [22]Tadashi Kanno,Masato Takeichiand Feng Yi.Detecting De-Lamination of Reinforced Concrete Deck and Overlay[R].In Transportation ResearchReeord3061,TRB,National Research Council,Washington,D.C,2001:15-23
    [23]Waterproofing of Concrete Bridge Decks.Organization for economic,Evaporation and development[R],1972
    [24]张占军,曹东伟,胡长顺.水泥混凝土桥面沥青铺装层厚度的研究[J].西安公路交通大学学报,2000.20(2):16-19
    [25]张占军.水泥混凝土桥面沥青混凝土铺装结构研究:[硕土学位论文].西安:西安公路交通大学(长安大学),2000
    [26]Zureick A.H,Shih B,Munley E.Fiber-Reinforced Polymeric Bridge Decks,Structural Engineering Review,Pergamon Press Ltd.,1995.17(3):257-266
    [27]Lopez-Anido,R.Life-Cycle Cost Evaluation of FRP Composite Bridge Decks.Technical Report,West Virginia University Research Corporation,Morgantown,WV,1998(6):9-16
    [28]王小妹,熊伟等.SBS改善道路沥青的研究[J].橡胶工业,2000.47(6):25-27
    [29]董诚春.胶粉改性沥青的制备方法及其应用[J].中国橡胶,2003.19(12):20-22
    [30]凌坚,李志能.对桥面裂缝及铺装层破坏的讨论[J].公路,1996(9):7-9
    [31]李洪烈.利用废胶粉改善沥青路面性能的研究[J].橡胶工业,1995.42(5):189-194
    [32]叶智刚,孔宪明,余剑英.橡胶粉改性沥青的研究.武汉理工大学学报,2003.1(25):11-14
    [33]裴建中.桥面柔性防水材料技术性能研究:[硕士学位论文].西安:长安大学,2001
    [34]李鹏辉.HB-2001型桥面防水材料开发与应用技术研究:[硕士学位论文].西安:长安大学,2003
    [35]王涓.水泥混凝土桥面沥青混凝土铺装防水粘结层的性能研究:[硕士学位论文].南京:东南大学,2004
    [36]王朝锋.基于高聚物的桥面防水材料应用技术研究:[硕士学位论文].西安:长安大学,2006
    [37]中华人民共和国交通部.JTJ 052-2000.公路工程沥青及沥青混合料试验规程[S].北京:人民交通出版社,2000.11
    [38]中华人民共和国交通部.JTJ E42-2005.公路工程集料试验规程[S].北京:人民交通出版社,2004.11
    [39]中华人民共和国交通部.JGJ55-2000.普通混凝土配合比设计规程[S].北京:人民交通出版社,2000.11
    [40]Qinwu Xu,Qinghua Zhou,Cesar Medina.Experimental and numerical analysis of a waterproofing adhesive layer used on concrete-bridge decks.International Journal of Adhesion and Adhesives,2009.29(5):525-534
    [41]蒋维祥,魏为成.水泥混凝土桥面防水粘结层研究综述.公路交通科技,2007.9(suppl):87-90
    [42]于静涛.沥青铺装与桥面板层间粘结改善技术研究:[硕士学位论文].西安:长安大学,2006
    [43]Hee Mun Park,Ji Young Choi.Performance evaluation of a high durability asphalt binder and a high durability asphalt mixture for bridge deck pavements.Construction and Building Materials,2009.23(1):219-225
    [44]王粲,郑晓光,何慧斌.桥面铺装防水粘结层抗剪性能试验研究.石油沥青,2005.19(4):14-17
    [45]胡晓,贾璐,胡小弟等.混凝土桥面沥青铺装结构的剪切分析.公路工程,2007.32(4):137-141
    [46]Gianni Bartoli,Claudio Mannini.A simplified approach to bridge deck flutter.Journal of Wind Engineering and Industrial Aerodynamics,2008.96:229-256
    [47]范书龙,郑晓光.砼桥面铺装防水粘结层的试验研究.公路与汽运输,2004.12(6):67-69
    [48]Zhou Qinghua,Xu Qinwu,Zhang Zhanjun.Measurements with a new peel adhesion test on waterproof membranes used on concrete bridge decks.Journal of Testing and Evaluation,2008.36(4):320-325
    [49]林伍湖.海沧大桥钢桥面铺装层损坏原因及维修探讨.公路,2004.10(10):77-80
    [50]姜海涛,兰吉仁,韩八晓.胶粉改性沥青桥面防水层力学特性的试验研究.武汉理工大学学报,2007.29(9):77-80
    [51]X.Lu,U.lsacsson.Rheological characterization of styrene-butadiene-styrene copolymer modified bitumens.Construction and Building Materials,1997.11(1):23-32
    [52]ANDREW C.COLLOP.Creep Testing of Bitumens Using the Dynamic Shear Rheometer.The International Journal of Pavement Engineering,2002.3(2):107-116
    [53]Gordon D.Airey.Rheological properties of styrene butadiene styrene polymer modified road bitumens[J].Fuel,2003.82:1709-1719
    [54]王朝锋.桥面柔性防水材料的性能指标和疲劳试验.山西建筑,2005.31(5):94-95
    [55]吴浩.混凝土桥面防水粘结层不透水性能试验研究.长安大学学报(建筑与环境科学版),2004.21(3):12-15
    [56]黄卫.大跨径桥梁钢桥面铺装设计理论与方法.北京:中国建筑工业出版社,2006
    [57]Tong Guo,Aiqun Li,Hao Wang.Influence of ambient temperature on the fatigue damage of welded bridge decks.International Journal of Fatigue,2008.30:1092-1102
    [58]黄晓明,吴少鹏等.沥青与沥青混合料[M].南京:东南大学出版社,2002
    [59]王旭东.沥青路面材料动力特性与动态参数[M].北京:人民交通出版社,2002
    [60]许志鸿,李淑明,高英.沥青混合料疲劳性能研究[J].交通运输工程学报,2001.1(1):20-24
    [61]AASHTO Designation:T 321-03.Standard method of test for determining the fatigue life of compacted hot-mix asphalt(HMA) subjected to repeated flexural bending[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700