盐水振荡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地总结了盐水扩散振荡的实验方法、现象、机理、模型、应用及其演变过程,指出了目前该领域研究的种种不足之处,对盐水扩散振荡进一步的发展前景、实际应用提出自己的见解。本文采用不同的电极方法,系统而全面地监测了自制盐水振荡装置内的变化过程,并通过相关分析,得出一些规律性的结论:1)用不同的电极方法监测同一盐水扩散体系,所得时间振荡参数相同而振幅不同,其中用系列成对纯金属电极监测,振幅与纯金属第一电离能与最高电离能之和成正比关系,而复合电极(纯金属电极+参比电极)监测结果与水溶液中纯金属的标准电极电位EO成正比关系;且电极位置与振幅密切向关,指示电极位于水相时所得振幅较指示电极位于盐相时所得振幅大;2)用离子选择性电极分别对同一电解质的正负离子扩散的系列监测表明,两种离子迁移数之差越小振幅越大,非离子型化合物不仅振幅小,且不规则,可见两种离子扩散的协同效应对振荡产生重要影响;对不同电极组成,监测所得振幅大小顺序为: 纯金属(加参比电极)> 一对纯金属电极>离子选择性电极(加参比电极);3)两种不同密度(D)的两种溶液,只有D(上)>D(下)时才会产生振荡,这表明重力在振荡过程中起重要的作用;4)精密温度变化测量和电导率测定结果表明,在盐水振荡过程中亦存在温度与电导率的周期变化。本文通过对加入表面活性剂、乳化剂、乳液的盐水振荡器的研究发现,改进过得盐水振荡器不仅振幅增大,而且使盐水振荡可逆,扩展了盐水振荡的应用范围。实验结果表明,有表面活性作用的物质可以增加盐水振荡的振幅,有络合性能的物质的络合作用是盐水振荡可逆的关键,既有络合作用,又可以起到表面活性剂作用的物质既可以增加盐水振荡的振幅,又可以使盐水振荡可逆。为进一步改进盐水振荡的可逆性、增大振荡产生的电势差,我们将液膜振荡与盐水振荡串联,组成一个复合的振荡器。实验结果发现:耦合后的盐水振荡器振荡产生的振幅增大,由于实验所选的缔合物难溶于水,存于油相,通电后缔合物解离,从而造成反扩散,形成可逆振荡,且可逆程度及逆反应产生的电势差、即振幅大大提高。从而扩展了盐水振荡的应用范围,在二次电池的开发方面有广阔的应用前景。
The phenomena, the mechanism and the mathematical model of the salt-water oscillator were discussed in this paper. Some shortages were brought also and some new opinions of the application were given. Different methods were used to detect widely and systematically the salt-water oscillator designed by us and some rule conclusions were summarized by data’s correlation analysis, as the follows: 1)As different electrodes used to detect the same salt water oscillator, all of the time oscillatory parameters are like, while the amplitude different which proportion the sum of the metal’s first ionization energy and the metal’s highest ionization energy when detected by a series of double metal electrodes. As the multiple electrodes used, the amplitudes are direct ratio to the metal electrodes’ potential EO. In addition, the electrode’s position has great role on the amplitude, that is, the bigger can be gotten when the indicatory electrode at the outer than it at the inner. 2) A series of detections by ionic elect electrodes on the positive/ negative ions of a same electrolyte show that the smaller the difference of the two ionic transference number is, the bigger the amplitude is; and not only the oscillation cure of the non-ionic compound is irregular, but also the amplitude is small. It is obvious that the cooperation of ions play an important role in the salt-water oscillation. And there are such rule of the amplitudes resulted from the different electrodes: the metal electrode (reference electrodes)> a couple of metal electrode>the ionic elect electrode (reference electrodes); 3) Only when the solution density of the inner is bigger than that the outer, the oscillations happen. It means the gravity may have a key effect on the oscillation. 4) The periodic changes of temperature and conductivity in salt-water oscillation were also been found from precision determination. In order to increase the reversibility and the amplitude of the salt-water oscillation, the salt-water oscillation and the liquid membrane oscillation were coupled to create a compound oscillator. The experiment data showed that, after the coupling of the two oscillators, the amplitude were increased largely. And because the coordination dissolved in the oil state but not in the water state, the reversible diffuse was created after the coordination was electrified. At the same time, the amplitude and the oscillation period of the reversible oscillation were increased largely. So the application of the salt-water oscillator, especially in the second battery, was increased also.
引文
贺占博,化学振荡的研究方法,化学通报,1992,2,57-62
    普利高津. G·尼科里斯,《非平衡系统的自组织》,第一版,科学出版社,北京,1986
    贺占博,化学振荡的应用,化学工业与工程,1992,9(4),29-32
    贺占博,设计振荡反应的简易方法:分解-偶合法,化学工业与工程,1995,12(2),22-26,33
    哈肯. 赫尔曼,《协同学——大自然构成的奥秘》第一版,上海译文出版社, 上海,2001
    Epstein I R, Nonlinear Chemical Dynamics: Oscillators Patterns and Chaos, J. Phys. Chem. 1996, 100(3), 13132-13147
    SHEN P, KIM J T, Larter R, et al, Chaos in a membrane oscillator, J. Phys. Chem. 1993, 97(8), 1571-1575
    RASTOGI R P, SRINIVAS G & SRIVASTAVA R C, et al. Nonlinear dynam- ics of membrane processes: bistability and oscillations in electrokinetic phenomena[J]. J Phys Chem, 1996, 100(3): 13132-13147
    贺占博,化学振荡研究领域中的若干问题,化学通报(网络版),2001,7,55
    Johnson B R, Scott S K &Thompson B W., Modelling Complex Transient Oscillations for the BZ Reaction in a Batch Reactor, Chaos, 1997, 7(2), 350-358
    Aliev R R, Oscillation Phase Dynamics in the Belousov-Zhabotinsky reaction: implementation to image processing, J. Phys. Chem. 1994, 98(15), 3999- 4002
    Rosenthal J A , Spectroelectrochemical demonstration of a modified Belousov-Zhabotinskii reaction. J. Chem. Educ. 1991 68 794
    Noriaki. Okazaki, Ichiro. Hanazaki, Photo-induced Chaos in the Biggs-Rauscher reaction, J. Chem.Phys. 1998, 109(2), 637-642
    Vanag V K, Light-induced Nonequilbriun Phase Transition Between Quasistationary States of The Biggs-Rauscher reaction Under Bath Conditons, J. Phys. Chem. 1993, 97(9), 1878-1883
    Zaikin A N, Zhabotinsky A M, Concentration Wave Propagation in Two-Dimensional Liquid-Phase Self-Oscillating System, Nature, 1970, 225,535
    DUPEYRAT M, NAKAACHE E,Spontaneous Oscillation in Oil-Water Interface, Bioelectrochen. Bioenerg, 1978, 5(1), 134-141
    
    Yamashita Y, KITAGAWA R & TAKENO S,Liesegang Rings Developed in Pyrophyllitic Ore Deposit, Nendo Kagaku, 1998, 38 (2), 83-90
    Martin S, A hydrodynamic curiosity. Geopys Fluid Dyn, 1970, 1, 143-160
    Alfredsson P H, Lagerstedt, T, The behavior of the density oscillator, Phys. Fluids,1981, 24,10-14
    YOSHIKAWA K, NATAKA S,YAMANAKA M, et al, Amusement with a salt-water oscillator, J. Chem. Educ, 1989, 66(3), 205-207
    Yoshikawa K, Maeda S & Kawakami H,Various Oscillatory Regimes and Bifurcations in A Dynamic Chemical System at An Interface, Ferroelectrics, 1998, 86, 281-298
    Noyes R M, A Simple Explanation of The Salt-water Oscillator, J. Chem. Educ, 1989, 66(3), 207-209
    Aoki K, Mathematical Model of A Saline Oscillator, Physica. D, 2000, 147, 187-203
    Moron-villarreyes J A, Some applications of salt-water oscillator in Chemical Engnineering teaching and process equipment design. Computers & Chemical Engineering, 2000, 24, 1753-1757
    UPADHYAY S, DAS A K & AGARWALA V, et al,Oscillations of Electrical Potential Differences in the Salt-Water oscillator, Langmuir, 1992,8, 2567-2571
    YOSHIKAWA K, KATSUNORI F, A Tri-phase Mode is Stable When Three Non-linear Oscillators Interact With Each Other, Chem. Phys. Lett, 1990, 174(2), 203-207
    YOSHIKAWA K, OYAMA N & SHOJI M, et al, Use of saline oscillator as a simple nonlinear dynamical system: rhythms, bifurcation, and entrainment, Am. J. Phys, 1991, 59(2), 137-141
    STEINBOCK O, LANGE A & REHBERG I,et al, Density Oscillator: Analysis of Flow Dynamics and Stability, Phys. Rew. Lett, 1998, 81(4), 798-801
    OKAMURA M, YOSHIKAWA K,Rhythm in a saline oscillator. Phys. Revi. E, 2000, 61(3),2445-2452
    CERVELLA R, SOLDA R, An alternating voltage battery with two salt-water oscillators, Am. J. Phys, 2001, 69(5), 543-545
    陈庆安,孙迪,薄膜中的盐水振荡现象,苏州大学学报(自然科学),1993, 9(1),86-89
    Teorell T, Electrokinetic Membrane Processes in Relation to Properties of Exciteable Tissues:
    
    
    I. Experiments on Oscillating Transport Phenomena in Artificial Membranes, J. Gen. Phys, 1959, 42, 831-845
    Teorell T, Electrokinetic Membrane Processes in Relation to Properties of Exciteable Tissues: II. Some Theoretical Cosiderations, J. Gen. Phys, 1959, 42, 847-863
    Jeenok T K, Simple and Complex Oscillations in Lipid-Doped Membranes, J. Phys. Chem. 1991, 95, 7948-7955
    YOSHIKAWA K, MATSUBARA Y. Chemoreception by an excitable liquid membrane: characteristic effect of alcohols on the frequency of electrical oscillation [J]. J Am Chem Soc, 1984, 106(16): 4423-4427
    Ishii T, Kuroda Y & Omochi T, et al,Spontaneous Pulsing In a Porous Membrane Covered with a Langmuir-Blodgett Film of Dioleoyllecithin Separating Equimolar NaCl and KCl Aqueous Solutions, Langmuir, 1986, 2, 319-321
    Yoshikawa K, Hayashi H & Shimooka T, et al, Stable Phospholipid Membranes Supported on Porous Filter Paper, Biochem. Biophys. Res. Commun, 1987, 145, 1092-1097
    Rastogi R P, Interface-mediated Oscillatory Phenomena, Advanced in Colloid and Interface Science, 2001, 93, 1-75
    Srivastava R C,Salt-water Oscillator and its non-electrolyte analogues, Pure & Appl.Chem. 1994, 66(3), 455-460
    Larter R, Oscillations and Spatial Nonuniformities in Membranes, Chem. Rew, 1990, 90(2),355-381
    Nakata S, Miyata T & Ojima N, et al, Self-synchronization in Coupled Salt-water Oscillators, Physica. D, 1998, 115, 313-320
    Miyakawa K, Yamada K,Entrainment in coupled salt-water oscillators, Physica.D, 1999, 127,177-186
    Miyakawa K, Yamada K,Synchronization and Clustering in Globally Coupled Salt-water Oscillators, Physica. D, 2001, 151, 217-227
    NAKATA S, YOSHIKAWA K & KAWAKAMI H, Chemical Sensing by Use of Entrainment , Springer Proceedings in Physics, 1990, 52, 215-216
    McCraty R, Tiller W A & Atkinson M,Head-Heart Entrainment: A Preliminary Survey, In Proceedings of the Brain-Mind Applied Neurophysiology EEG,Neurobiofeedback Meeting, Key West, FL, Institute of HeartMath, Boulder Creek, 1996.
    
    
    ( http://www.heartmath.org/ResearchPapers/HeadHeart/HeadHeart.html0)
    胡英,《物理化学》(下)第四版,高等教育出版社,1999
    沈小峰等,《耗散结构论》,上海人民出版社,1987
    Nekhamkina O A, Nepomnyashchy. A. A & Rubinstein. B. Y, Nonlinear analysis of stationary patterns in convection-reaction-diffusion systems, Phys. Rev E, 2000,3, 2436-2444
    Fayos J, Emergence of order from chaos by cooperative non-biased learning between random bit-strings, Chao. Soli & Frac, 2001, 12(5), 865-873
    Schreiber I, Marek M,Dynamics of Oscillatory Chemical Systems; Chapter 1 in E. Mosekilde and O. G. Mouritsen, Eds. Dynamical Phenomena in Living Systems, Springer Verlag, Berlin, 1994
    Wang. J. C, Chemical oscillations induced by flow transports, Chem Phys Lett, 2002, 360, 289–293
    MORON-VILLARREYES J A, BRUM DA COSTA H J, KOKUBUM F, et al. Some applications of salt-water oscillator in chemical engnineering teaching and process equipment design [J]. Computers & Chemical Engineering, 2000, (24): 1753-1757.
    Carrillo J, Challal S & Lyaghfouri A, et al, A Free Boundary Problem for a Flow of Fresh and Salt Groundwater with Nonlinear Darcy’s Law, In The Abdus Salam International Centre for Theoretical Physics, Trieste, 1999, 26 IC 99/4
    Ernest C N. Technical note Some new characteristics of El Nino events, Renewable Energy, 1999, 17(2), 243-253
    Ernest C N. Generalised Theory of Enso and Related Atmospheric Phenomena, Renewable Energy, 1996, 7(1), 105-108
    陈殿友等,厄尔尼诺事件研究的新进展, 地球物理学进展, 2000, 17(1), 176-179
    巢纪平,对“厄尔尼诺”、“拉尼娜”发展的新认识,中国科学院院刊,2001, 6, 412-417
    王若禹, 厄尔尼诺的成因、影响及防范措施, 河南大学学报(自然科学版), 2000,30 (4),78-81
    Kane R P, Some characteristics and precipitation effects of the El Ni?o of 1997–1998, Journal of Atmospheric and Solar-Terrestrial Physics, 1999, 61(18), 1325-1346
    孙延兵,陈秉良,贾强等,运动对血液透析充分性的影响。中华内科杂志,2002,41(2),
    
    
    79–81
    贺占博,同类振荡反应也存在着等动力学关系吗?自然杂志,2001,23(4),231-234
    贺占博,李冬梅,时雨荃. 无机化学学报, 2002,18(11),979-984
    He ZB, Yan XL, Nie YM. Chem.Ind.& Eng., 2001,18(3),130
    Inorganic Chemistry Office of Dalian Thec & Eng University., Inorganic Chemistry, Beijing: Advanced Education Press., 1977
    Zhu YB, Shen ZC, Zhang CF, etc. Handbook of Electrochemical Data, Changsha: Hunan Sci. Press., 1985
    周永贤,贺占博,一种界面上的振荡反应——盐水振荡 [J]. 化学工业与工程,2004,2
    Hennenberg, M., Mass Transfer, Marangoni Effect and Instability of Longitudinal Waces. Ⅱ. Diffusional Exchanges and Adsorption-Desorption Processes. J.Coll.Int.Sci. , 1980 74(2): 495-508
    贺占博, 翟俊红, 可逆型化学振荡器,化学进展,2003, 15(2), 92 – 200
    Z B He, Inter J Chem kinet, 1995,27(2), 195 - 196
    贺占博, 顾惕人,表面活性剂的络合作用对振荡反应的影响,Transaction of Tianjin Uinv., 天津大学学报.1996,29(5),732-739
    I Yosihiro, CN1120063A. US5620570A,JP240775/94
    贺占博 张向华, 曹汇川, 乳液变化的pH与电导率振荡, 物理化学学报. 2001,17(3), 238-240
    J A Dean Edited, Lange’s Handbook of Chemistry. 13th edition, McGraw-Hill Book Company, 1985. Table 5-15
    贺占博,李冬梅,Marangoni效应与液膜振荡,化学进展,2003,15(1),1 – 8
    翟俊红,贺占博,天津大学学报(英文版),2003,9(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700