超高压食品处理工艺基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着消费者对食品品质和安全性要求的日益提高,超高压技术作为一种新的食品非热加工技术引起人们的广泛关注。该技术克服了传统食品热处理破坏食品营养成分和天然风味等缺点,在食品处理,尤其是对风味要求较高的果汁和水产品的处理方面具有广阔的应用前景。为了更好地丰富和完善超高压食品处理工艺基础,为该过程的设计计算和工艺优化提供方法和依据,推进该工艺的工业化应用进程,本论文选择果汁(苹果汁/橙汁)和水产品(牡蛎/海参)为研究对象,研究超高压处理参数对食品微生物、酶和食品品质的影响规律;以大豆蛋白、牡蛎蛋白和海参蛋白为研究对象,研究超高压处理对蛋白质结构和溶液性质的影响规律;以小麦淀粉、玉米淀粉、马铃薯淀粉、红薯淀粉为研究对象,研究超高压对淀粉结构和溶液性能参数的影响规律。本论文的主要研究工作及所形成的主要结果与结论如下:
     以果汁和水产品中菌落总数为研究对象,通过实验研究了处理压力、保压时间、处理温度等操作参数对食品微生物的影响规律,结果表明:随处理压力、保压时间和处理温度的升高,食品中微生物灭活率增加、繁殖能力降低。压力协同温度处理可取得更好的灭菌效果。
     通过实验研究了处理压力、保压时间、处理温度等操作参数对果汁中多酚氧化酶/过氧化物酶和海参自溶酶活性的影响规律,结果表明:压力和温度对酶的影响均具有双重性,某一压力和温度范围内,酶活性增强,另一压力和温度范围内,酶活性降低。保压时间对酶活性的影响则以压力和温度的影响为基础,在酶活性增强的压力温度范围内,延长保压时间酶活性上升,反之,随保压时间延长酶活性降低。
     通过实验研究了大豆、海参和牡蛎蛋白质溶液的溶解度、粘度、乳化特性随处理压力的变化规律;通过测定蛋白质溶液的DSC曲线,确定蛋白质在压力作用下的变性程度;通过SDS聚丙烯酰胺凝胶电泳观察蛋白质亚基的变化情况,分析超高压处理对蛋白质四级结构的影响;通过测定巯基含量判断蛋白质三级结构的变化情况;通过红外图谱观察蛋白质二级结构的变化;通过肽键含量和pH值判断蛋白质一级结构的变化。结果表明:随处理压力升高蛋白质的粘度、乳化特性、表面疏水性及在水中的溶解度均增强。在一定压力下,蛋白质的二、三、四级结构发生改变,超高压处理不影响蛋白质的一级结构。
     通过实验研究了小麦、玉米、马铃薯和红薯淀粉溶液溶解度、粘度、透明度、糊化特性等性能参数随处理压力的变化规律,通过测定淀粉溶液DSC曲线和X-射线衍射图谱观察淀粉结构的变化。结果表明:淀粉溶液的溶解度、透明度随压力升高显著增加,随压力升高粘度、糊化温度和糊化焓降低。
     以牡蛎和海参为对象,通过感官、pH值变化、TVB-N含量研究超高压处理对食品保质期的影响;通过灰分含量、多糖含量研究超高压处理对食品营养成分的影响。结果表明:超高压处理可延长食品的保质期,有效保护食品的营养成分和生理活性物质。
     建立了超高压食品处理过程模拟的人工神经网络模型,采用大量实验数据对网络进行训练和测试,成功实施了对超高压灭菌和钝酶效果的模拟和预测。
In recent years, with the increasing requirements of food quality and safety, ultra high pressure food processing technology has attracted many attentions as a new non-thermal processing technology in food manufacture. Unlike the traditional heating processes, the ultra high pressure food processing does not damage original nutrients and natural flavor of the food products. Therefore, this technology is especially suitable for processing such products as juices and seafoods which have high requirements of maintaining original flavor. The aims of this work are to develop the method of process design, optimize process operation conditions, and provide a fundation for the development and industrialization of ultra high pressure food processing technology. Fruit juices (apple juice/orange juice) and seafoods (oyster/sea cucumber) are chosen as model materials to study the effects of ultra high pressure processing parameters on food microorganisms, enzymes and food quality. Proteins of soy, oyster and sea cucumber are used to study the effects of ultra high pressure processing on protein structure and solution properties. Wheat starch, corn starch, potato starch and sweet potato starch are employed to study the effects of ultra high pressure processing on starch structure and solution properties. The main results and conclusions are summarized as follows:
     The effects of pressure, pressure holding time and temperature on the total amount of microorganisms in the fruit juices and seafoods are investigated during the ultra high pressure food processing. The results show that microorganism inactivation rate increases and proliferation rate decreases with the increase of pressure, pressure holding time and temperature. A better sterilization can be achieved with the combined treatment of pressure and temperature.
     The effects of pressure, pressure holding time and temperature on the enzyme activity (polyphenol oxidase/peroxidase in juice and autoenzyme in sea cucumber) are studied. It is found that there is an enhancement of enzyme activity within a certain range of pressure and temperature, while the enzyme activity decreases in another range of pressure and temperature. The effect of the time on the enzyme activity is affected by pressure and temperature. When the enzyme activity increases with the pressure and temperature, it is also enhanced as time increasing. Otherwise, the enzyme activity decreases when the time increases.
     The effects of pressure on solubility, viscosity, and emulsifying properties of soy, sea cucumber and oyster protein solutions are studied. The degree of protein denaturation under high pressure is determined by DSC curve of the protein solution. The change of protein subunits obtained by SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) is used to analyze the effect of high pressure treatment on protein quaternary structure. The change of protein tertiary structure is studied by sulphydryl content measurement. The change of protein secondary structure is studied by IR spectra, while the change of protein primary structure by peptide bond content and pH value. The results indicate that viscosity, emulsifying properties, surface hydrophobicity and solubility of protein increase with the increase of the pressure. The secondary, tertiary and quaternary structures of protein are changed under a certain high pressure, while the primary structure of protein is not affected.
     The effects of high pressure on solubility, viscosity, transparency, gelatinization properties and other performance parameters of different materials (wheat, corn, potato and sweet potato starch solutions) are studied. The change of starch structure is observed by DSC curves and X-ray diffraction patterns. The solubility and transparency of the starch solution increase with the increase of the pressure, while viscosity, gelatinization temperature and gelatinization enthalpy decrease with the increase of the pressure.
     The effect of high pressure on food shelf life is studied by pH value, TVB-N content, and the changes of oysters and sea cucumbers appearances. The effect of high pressure on food nutrients is determined by the ash content and polysaccharide content. The results show that ultra high pressure treatment extends the shelf life of food, and protects food nutrients and physiologically active substances effectively.
     A model is established based on artificial neural network to study ultra high pressure food processing. After training the model with a large volume of experimental data, the effects of high pressure on sterilization and enzyme deactivation are simulated and predicted successfully.
引文
[1]夏远景,薄纯智,张胜勇,等.超高压食品处理技术[J].食品与药品,2006,8(2):62-67.
    [2]吴怀祥,高压食品加工[J].食品科学,1996,17(1):3-9.
    [3]Sendra E, Guamis B. Destruction of Salmonella enteritidis inoculated in liquid whole egg by high hydrostatic pressure:comparative study in selective and non-selective media[J]. Food Microbiology.1999,16(4):357-365.
    [4]Mertens,B., Hydrostatic pressure treatment of food:equipment and processing[C]. In:New Method of Food Preservation. Gould, G.W.(ed.), Blackie,London,1994, p159-175
    [5]Knorr,D., Effects of High-hydrostatic-pressure processes on food safety and quality[J]. Food Technology,1993,47(6):156-161.
    [6]赵俊芳,赵玉生,姚二民.超高压技术处理食品的特点[J].食品科技,2006,28(10):11-13.
    [7]B. J. Hamrock, B.O. Jacobson. Measurement of the Density of Base Fluids at Pressure to 2.2GPa[J]. ASLE Transactions,1997,30(2):196-202.
    [8]张勇,段旭昌,白燕红,等.超高压杀菌处理对牛乳感官和理化特性的影响[J].中国乳品工:业,2007,35(6):13-16.
    [9]李汴生,曾庆孝,芮汉明.高压对食品胶溶液流变特性的影响[J].高压物理学报,2001,15(1):64-69.
    [10]Indrawati Oey, Martina Lille, Ann Vanloey, et al. Effect of high pressure processing on colour, texture and flavour of fruit and vegetable-based food products[J]. Trends in Food Science & Technology,2008(19):320-328.
    [11]赵玉生,赵俊芳.食品工业中超高压灭菌技术[J].粮食与油脂,2006(3):25-26.
    [12]潘见,张文成.超高压食品杀菌工艺及设备的设计[J].食品与机械,1999,73(5):32-33.
    [13]B. A. Bauer, M. Hartmann, K. Sommer, et al. Optical in situ analysis of starch granules under high pressure with a high pressure cell[J]. Innovative Food Science & Emerging Technologies,2004,5(3):293-298.
    [14]Trujillo A J, Capellas M, Buffa M, et al. Application of high pressure treatment for cheese production [J]. Food Research International,2000,33(3/4):311-316.
    [15]Jongen W. Fruit and vegetable processing:Improving quality[M]. Cambridge, England: Woodhead Publishing,2002:346-362.
    [16]陈祥全.超高压杀菌新技术[J].食品与发酵工业,1995(4):69-79.
    [17]Dickinson, Galazka, et al. Gums and Stabilisers for the Food Industry[M]. Oxford:IRL Press,1992:351.
    [18]Hite, Giddings, Weakly. The Effect of Certain Microorganisms Encountered in the Preservation of Fruits and Vegetables[J]. West Virginia Agr. Exp. Sta,.1914,146:3-67.
    [19]陈寿鹏.超高压在食品方面的应用[J].食品科学,1994(3):3-7.
    [20]生庆海,程建军,王辉兰.一种新的食品加工技术-超高压技术[J].中国乳品工业,2000,28(5):23-25.
    [21]田晓琴,宋社果.超高压对鲜牛奶杀菌效果研究[J].安徽农业科学,2006,34(17):4397-4398.
    [22]曾庆梅,潘见,谢慧明,等.西瓜汁的超高压杀菌效果研究[J].高压物理学报,2004,18(1):70-74.
    [23]张英,唐玉峰,王换玉,白杰.超高压处理对枸杞鲜果中微生物致死效应的研究.[J].内蒙古农业大学学报,2009,30(1):146-148.
    [24]Arroyo G, Sanz P D, Prestamo G..Effect of high pressure on the reduction of microbial populations in begetables[J]. Journal of Applied Microbiology,1997,82(6):735-742.
    [25]Baymdirli A,Alpas H,Bozoglu F,et al.Efficiency of high pressure treatment on inactivation of pathogenic microorganisms and enzymes in apple,orange,apricot and sour cherry juices[J].Food Control,2006,17(l):52-58.
    [26]Shimada S, Andou M, Naito N,et al. Effects of hydrostatic pressure on the ultra-structure and leakage of internal substances in the yeast Saccharomyces cerevisiae[J].Applied Microbiology and Biotechnology,1993,40(1):123-131.
    [27]Ludwig, Van Almsick, Sojka. High Pressure Inactivation of Microorganisms[M]. Tokyo: Elsevier,1996:237-244.
    [28]Knorr D, Heinz V, Buckow R. Review:High pressure application for food biopolymers[J]. Bioch in ica et Biophysica Acta,2006,1764:619-631.
    [29]Morild E. The theory of pressure effect on enzymes[J].Advance of protein. Chemistry, 1981,(34):93-166
    [30]Fang L, Jiang B, Zhang T. Effect of combined high pressure and thermal treatment on kiwifruit peroxidase[J].Food Chemistry,2008,109:802-807.
    [31]Buckow R, WeissU, HeinzV, eta.l Stability and catalytic activity of alpha-amylase from barley malt at different pressure-temperature conditions [J]. Biotechnology and Bioengineering,2007, 97:1-11
    [32]Bruins M E, Janssen A E.Boom RM. Equilibrium shifts in enzyme reactions at high pressure [J]. Journal of Molecular Catalysis B:Enzymatic,2006,39:124-127.
    [33]HeinzV, Buckow R, KnorrD. Catalytic activity of β-amylase from barley in different pressure/temperature domains [J]. Biotechnology Progress,2005,21:1632-1638.
    [34]Degraeve P, Rubens P, Lemay P, et al. In situ observation of pressure-induced increased thermo stability of twoB-galactosidases with FT-IR spectroscopy in the diamondanvil cell[J]. Enzyme and Microbial Technology,2002,31:673-684.
    [35]Buckow R, Heinz V, Knorr D. Effect of high hydrostatic pressure-temperature combinations on the activity of betaglucanase from barleymalt[J]. Journal of the institute of brewing,2005,111: 282-289.
    [36]Marie-Olive M N, Athes V, Combes D. Combined effects of pressure and temperature on enzyme stability[J]. High Pressure,2000,19:707-712.
    [37]Eisenmenger M J, Reyes-De-Corcuera J I. High hydrostatic pressure increased stability and activity of immobilized lipase in hexane[J]. Enzyme and Microbial Technology,2009,45: 118-J25.
    [38]Helder A L Pedro, Alfaia A J, Marques J, et al. Design of an immobilized enzyme system fornaringin hydrolysis at high-pressure[J].Enzyme and Microbial Technology,2007,40: 442-446.
    [39]Hsu K C. Evaluation of processing qualities of tomato juice induced by thermal and pressure processing[J].Food Science and Technology,2008,41:450-459.
    [40]Katsaros G I, Katapodis P, Taoukis P S. Modeling the effect of temperature and high hydrostatic pressure on the proteolytic activity of kiwi fruit juice[J]. Journal of Food Engineering,2009,94: 40-45.
    [41]Katsaros G I, Katapodis P, Taoukis P S. High hydrostatic pressure inactivation kinetics of the plant proteases ficin and papain[J]. Journal of Food Engineering,2009,91:42-48.
    [42]Buckow R, Truong BQ, Versteeg C. Bovine cathepsin D activity underhigh pressure[J]. Food Chemistry,2009:1-8.
    [43]Wang R, Zhou X, Chen Z X. High pressure inactivation of lipoxygenase in soy milk and crude soybean extract [J]. Food Chemistry,2008,106:603-611.
    [44]李汁生,曾庆孝,刘通讯.超高压处理对豆浆感官状态和流变特性的影响[J].食品与发酵工业,1998,24(6):12-18.
    [45]Renata Torrezan, Whye Pin Tham, Alan E. Bell, et al. Effects of High Pressure on Functional Properties of Soy Protein [J]. Food Chemistry,2007,104:140-147.
    [46]纵伟,陈怡平.超高压处理对花生分离蛋白溶解性影响[J].粮食与油脂,2007(10):16-17.
    [47]王苑,杨玉玲,周光宏等.高压预处理及加热方式对混合蛋白凝胶特性的影响[J].食品与发酵工业,2008,33(7):18-21.
    [48]Iesel Van der Plancken, Ann Van Loey, Marc E. Hendrickx. Combined Effect of High Pressure and Temperature on Selected Properties of Egg White Proteins[J]. Innovative Food Science and Emerging Technologies,2005,6,11-20.
    [49]Lee S H,Subirade M,Paquin P.Effects of ultra—high pressure homogenization on the emulsifying properties of whey protein isolates under various pH[J].Food Science and Biotechnology,2008, 17:324-329.
    [50]Lee S H,Lefevre T,Subirade M, et al.Effects of ultra—high pressure homogenization on the properties and structure of interfacial protein layer in whey protein—stabilized emulsion [J]. Food Chemistry,2009,113:191-195.
    [51]王章存,徐贤.超高压处理对蛋白质结构及功能性质影响[J].粮食与油脂,2007(11):10-12.
    [52]Bridgman. The Coagulation of Albumen by Pressrue[J]. J. Biol. Chem.,1914,19:511-512.
    [53]张宏康,李里特,辰巳英三.超高压对大豆分离蛋白凝胶的影响[J].中国农业大学学报,2001,6(2):87-91.
    [54]李汴生,阮征,曾庆孝,等.超高压处理对豆浆凝胶特性的影响食品与发酵工业[J].食品与发酵工业,1999,25(1):10-15.
    [55]Messens W, Van Camp J,Huyghebaert A.Use of high pressure to modify the functionality of food proteins[J].Trends in Food Science and Technology,1997(8):107-112.
    [56]刘延奇,郭好薇,周婧琦,等.小麦淀粉的超高压糊化研究[J].农产品加工,2007,7:21-31.
    [57]H. Eustina Oh, Yacine Hemar, Skelte G. Anema, et al. Effect of High-pressure Treatment on Normal Rice and Waxy Rice Starch-in-water Suspensions[J]. Carbohydrate Polymers,2008,73: 332-343.
    [58]张建新,杜双奎,段旭昌,等.超高压处理对太白葛根淀粉理化特性的影响[J].农业工程学报,2007,23(4):269-271.
    [59]Bao Wang, Dong Li, Li-Jun Wang, et al. Effect of High-pressure Homogenization on the Structure and Thermal Properties of Maize Starch[J]. Journal of Food Engineering,2008,87, 436-444.
    [60]Kubo T,Gerelt B,Han G D,et al.Changes in immunoelectron microscopic localization of cathepsin D in muscle induced by conditioning or high-pressure treatment[J].Meat Science,2002,61: 415-418.
    [61]Taylor R G,Goll D E, Ouali A.Enzyme localization during postmortem muscle tenderization. In A.Ouali D.I.,Demeyer & Smulders F.J.M.(Eds.).Expression tissue proteinase and regulation of protein degradation as related to meat quality,1995,347-358.Ecceamst.
    [62]Homma N,Ikeuchi Y,Suzuki A.Effects of high pressure treatment on the proteolytic-enzymes in meat[J].Meat Science,1994,38(2):219-228.
    [63]Iwasaki T,Noshiroya K,Saitoh N,et al. Studies of the effect of hydrostatic pressure pretreatment on thermal gelation of chicken myofibrils and pork meat patty[J].Food Chemistry,2006,95: 474-483.
    [64]Carballo J,Cofrades S,Fernandez-Martin F,et al.Pressure-assisted gelation of chemically modified poultry meat batters[J].Food Chemistry,2001,75:203-209.
    [65]Shimada, Kasai, Yamamoto, et al. Changes in Palatability of Foods by Hydrostatic Pressureing[J]. Nippon Shokuhin Kogyo Gakkaishi,1990,37:511-519.
    [66]Kasai, Hatae, Shimada, et al. Pressure Pretreatment of vegetables for Controlling the Hardness before Cooking[J]. J. Jpn. Soc. Food Sci. Technol.,1995,42:594-601.
    [67]胡友栋,励建荣,蒋跃明.超高压处理影响果蔬品质的研究进展[J].食品科学,2009,30(9):235-240
    [68]Eshtiaghi, Stute, Knorr. High-pressure and Freezing Pretreatment Effects on Drying, Rehydration, Texture and Color of Green Beans, Carrots and Potatoes[J]. J. Food Sci.,1994,59:1168-1170.
    [69]张峻松,张世涛,毛多斌,等.超高压处理对杏汁香气成分的影响[J].农业工程学报,2008,4(24):267-272.
    [70]Watanabe, Arai, Honma, et al. Improving the Cooking Properties of Aged Rice Grains by Pressurization and Enzymatic Treatment[J]. Agric. Biol. Chem.,1991,55:2725-2731.
    [71]励建荣,傅月华,顾振宇,等.高压催陈黄酒的研究[J].食品与发酵工业,1999,25(3):20-24.
    [72]苏秀榕,李太武,丁明进.扇贝营养成分的研究[J].海洋科学,1997(2):10-11.
    [73]张洁.牡蛎制品的研发及其生物活性评价[D].青岛:中国海洋大学,2009.
    [74]方志民,杨莲芬,金大勇.海产品加工废水蛋白质回收的研究[J].浙江工业大学学报,2008,36(2):133-135.
    [75]SPILIMBERGO S,ELVASSORE N,BERTUCCO A.Microbial inactivation by high-pressure [J]. Journal of Supercritical Fluids,2002,22:55-63.
    [76]杨徽.基于超高压技术的虾脱壳工艺与品质检测研究[D].杭州:浙江大学,2011.
    [77]王越男,得力格尔桑,钱宏光.超高压杀菌处理对乳中蛋白质的影响[J].食品科学,2004(3):46.
    [78]张宏康,李里特,辰巳英三.超高压生成豆腐凝胶的扫描电镜观察[J].电子显微学报,2001,20(4):445-447.
    [79]Centers for disease control and prevation. outbreak of E.coli O157:H7 infections associated with drinking unpasteurized commercial apple juice[J]. British Columbia, California, Colorada, and Washington, Morb Mortal Wkly Rep,1999,45:975-983.
    [80]董晓伟,姜国良,李立德,等.牡蛎综合利用的研究进展[J].海洋科学,2004,28:62-64.
    [81]贾吉明.高级海洋天然药物----牡蛎[J].山东医药工业,1994,13(1):42-46.
    [82]曾庆祝,曾庆孝.海洋贝类(牡蛎、扇贝、文蛤等)功能性食品的开发利用[J].氨基酸和生物资源,2002,24(3):31-34.
    [83]廖玉麟.中国动物志(第1卷)[M].北京:科学出版社,1997:61.
    [84]沈辉,陈静,李华,等.国内外海参养殖技术研究概况[J].河北渔业,2007(6):3-5.
    [85]常亚青,丁军,宋坚,等.海参、海胆生物学研究与养殖[M].北京:高等教育出版社,1999:26-69.
    [86]J.P.P.M.Smelt.,Kobayashi,S.Comparison of pressure Ressistances of spores of Six Bacillus Strains with their Heat Resistances in appl[J].Enviro.Microbiro.2003,(62):7-15
    [87]邱伟芬,江汉湖.食品超高压杀菌技术及其研究进展[J].食品科学,2001,22(5):81-84.
    [88]苏世彦.超高压杀菌技术在果汁饮料生产中的应用[J].软饮料工业,1996,45(3):7-8
    [89]黄绍华,胡晓波,王震宙.山药中多酚氧化酶的活性测定及其护色研究[J].食品与发酵工业,2005,31(6):27-29.
    [90]郁志芳,陆兆新,李妍等.鲜切芦蒿过氧化物酶特性的研究[J].食品科学,2005,26(9):29-33
    [91]朱蓓薇,韩冰.海参自溶酶的分离纯化和部分性质研究[J].食品与发酵工业,2004,30(4):132-137.
    [92]曾庆梅,潘见,谢慧明,杨毅,黄训端.超高压处理对多酚氧化酶活性的影响[J].高压物理学报,2004,18(2):144-148.
    [93]付聿成,王妮娅等.金帅苹果多酚氧化酶提取及部分酶学特性研究[J].食品工业科技,2006,27(02):59-62.
    [94]宁正祥,赵谋明.食品生物化学[M].广州:华南理工大学出版社,1995.298-301.
    [95]夏远景,刘志军,李宁,陈淑花,邓记松,刘学武,李志义.超高压处理对海参自溶酶活性影响的研究[J].高压物理学报,2009,23(5):377-383
    [96]王琼波,陈琦,冯金丹.嘎拉苹果多酚氧化酶性质及其抑制方法研究,河南农业科学[J],2011,40(6):118-121.
    [97]Hernandes A, Cano M P. High pressure and tempreture effects on enzyme inactivation in tomato puree[J]. J Agric Food Chem,1998,46(2):226-270.
    [98]罗桂民.酶工程[M].北京:化学工业出版社,2003.25-25.
    [99]张莉,陈乃富.多酚氧化酶的酶学性质及其应用研究[J].安徽农学通报,2006,12(12):29-30.
    [100]韩冰,朱蓓薇.阴离子交换柱(DEAE-52)层析纯化海参自溶酶[J].大连轻工业学院学报,2004,23(2):118-121.
    [101]戴志远.鱼类自溶作用[J].浙江水产学院学报,1999,9(1):51-56.
    [102]中华人民共和国国家标准,食品中蛋白质的测定方法,GB/T14771-93,1993.
    [103]纵伟,陈怡平.超高压对花生分离蛋白乳化性的影响[J].中国油脂,2008,33(3):26-28.
    [104]Hongkang Zhang, Lite Li, Eizo Tatsumi, et. Influence of high pressure on conformational changes of soybean glycinin[J]. Innovative Food Science and Emerging Technologies,2003, 4:269-275.
    [105]余瑞元,袁明秀,陈丽蓉,等.生物化学实验原理和方法[M].北京:北京大学出版社,2005:262-266.
    [106]Ellman, G. L.. Tissue sulfhydryl groups[J]. Archives of Biochemistry and Biophysics,1959: 82:70.
    [107]薛路舟.超高压处理对生物大分子的影响研究[D].大连:大连理工大学,2010.
    [108]李汴生.超高压处理蛋白质和多糖胶体特性的变化及其机理研究[D].广州:华南理工大学,1997.
    [109]Gekko,K.et al, Compressibility-structure relationship of globular protein[J]. Biochemistry,1986, 25:6563-6567.
    [110]王镜岩,朱圣庚,徐长法.生物化学[M],第三版,上册.北京:高等教育出版社,2002.
    [111]叶怀义,杨素玲,叶暾昊.高压对淀粉糊化特性的影响[J].中国粮油学报,2002,15(1):10-13.
    [112]陈培基,李来好,李刘东等.水产品中挥发性盐基氮测定方法的改良[J].中国水产科学,2006,13(1):146-150.
    [113]刘福岭,戴行钧.食品物理与化学分析方法[M].北京:轻工业出版社,1987:508-512.
    [114]王秉栋.动物性食品卫生理化检验手册[M].上海:上海科学技术出版社,1989:290-292.
    [115]姜健,杨玲宝,邰阳.海参资源及其生物活性物质的研究[J].生物技术通讯,2004,15(5):537-540.
    [116]JM道格拉斯.化工过程的概念设计.北京:化学工业出版社,1994.
    [117]高璃珑,王允祥,江汉湖.食品基质对超高压杀灭枯草芽孢杆菌影响的研究[J].食品科学,2004,25(6):43-49.
    [118]高瑀珑,王允祥,武宁等.响应面法优化超高压杀灭食品中枯草芽孢杆菌工艺[J].食品科学,2004,25(3):101-106.
    [119]高瑀珑,武宁,江汉湖.外界因子对超高压杀灭枯草芽孢杆菌效果的影响[J].食品科学,2003,24(8):44-46.
    [120]银建中.基于人工神经网络的超临界流体萃取模拟方法研究[D].大连:大连理工大学,2002.
    [121]薄纯智.超高压食品处理效果的实验与模拟研究[D].大连:大连理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700