多孔智能水凝胶的合成与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用一种新型的冰冻聚合法合成了具有多孔结构并能随环境变化迅速发生体积相转变的智能水凝胶,并提出了调节凝胶微观孔结构的新方法。
     在N-异丙基丙烯酰胺(NIPAAm)冰冻聚合的过程中加入十二烷基二甲基苄基溴化铵(DDBAB),它能与水溶性引发剂过硫酸铵(APS)原位反应生成一种不溶于水的引发剂十二烷基二甲基苄基过硫酸铵(DDBAPS),DDBAPS在水中以数百纳米的团聚体的形式存在,从而形成了一种独特的非均相引发体系,使制备而得的聚N-异丙基丙烯酰胺(PNIPA)水凝胶具有相互联通的大孔结构。这种水凝胶对温度变化能做出超快速的体积相转变。
     在DDBAB存在的条件下,用二氧六环与水的混合溶剂作为NIPAAm冰冻聚合的溶剂,研究了混合溶剂中不同二氧六环浓度对所得水凝胶宏观与微观形貌的影响,并深入分析了产生这些影响的原因。随着合成所用混合溶剂中二氧六环浓度的增加,原位反应生成的非均相引发剂DDBPAS团聚体尺寸减小,从而使所得非均相凝胶逐渐趋于均相,其微观形貌也由相互联通的多孔结构转变为不相联通的多孔结构。具有不相联通多孔结构的PNIPA水凝胶能用来进行乳液的快速浓缩。
     制备多孔PNIPA水凝胶时加入PVA,可阻止或减缓原位生成的DDBAPS团聚体的聚并。聚并的速率与团聚体的尺寸可以根据PVA用量的多少进行调控。通过对团聚体尺寸的控制,可以合成一系列具有不同尺寸孔结构的水凝胶。
     制备了一种新型的多孔性壳聚糖/PNIPA半互穿网络水凝胶,然后通过戊二醛桥键将辣根过氧化物酶(HRP)固定到这种半互穿网络水凝胶上,研究了固定化酶的稳定性,并用其催化了丙烯酰胺的聚合。此外,还提出了一种用热敏性载体固定化酶进行催化反应的新工艺。
     通过对具有多孔结构的聚丙烯酰胺(PAAm)水凝胶的碱性水解,合成了具有超快速pH响应性与高溶涨率的阴离子PAAm水凝胶。
In this study,A novel technique to synthesize macroporous hydrogels with ultra rapid environmental sensitive properties was proposed.Moreover,the porous structures of hydrogels were controlled by several methods.
     A novel freezing polymerization method of synthesizing macroporous poly(N-isopropylacrylamide)(PNIPA) hydrogels was proposed.Polymerization process was taken place in the presence of dodecyl dimethyl benzyl ammonium bromide(DDBAB).A hydrophobic initiator dodecyl dimethyl benzyl ammonium persulfate(DDBAPS) was proved to be produced in situ by the reaction of DDBAB and the water-soluble initiator ammonium persulfate(APS),and a heterogeneous initiation mechanism was proposed.The resulted poly(N-isopropylacrylamide) (PNIPA) hydrogels were macroporous with large swelling ratios and ultra rapid thermo responce rates.
     Mixed solvents which were composed of pure water and 1,4-dioxand at various concentrations were used instead of pure water during the novel freezing polymerization process.The aggregate size of the hydrophobic initiator DDBAPS became smaller when the concentration oF 1,4-dioxane increased.The effects of the mixed solvent on morphology,swelling ratio,and thermo response kinetics of the resulted hydrogels were investigated.Moreover,the resulted hydrogels were used for emulsified paraffin concentration.The different separation performance attributed to the different structure of gel matrix.
     Poly(vinyl alcohol)(PVA) was involved to control the pore size of the hydrogels. Morphology of the resulted hydrogels was studied by both optical microscope and scanning electron microscope(SEM).Moreover,the pore size and its distribution were examined by mercury intrusion porosimetry(MIP) examination.The results indicated that size of the pores decreased with the increase of the amount of added PVA.The mechanism was explained after dynamic light scattering(DLS) measurement of the size of hydrophobic initiator DDBAPS aggregates which were formed in situ in PVA aqueous solutions of various concentrations as the product of the reaction between DDBAB and APS.
     Thermosensitive hydrogel made up of chitosan/PNIPA semi-interpenetrating network(semi-IPN) was synthesized.Horseradish peroxidase(HRP) was then immobilized on this hydrogel that acted as an enzyme-carrier by glutaraldehyde bridge.Polymerization of acrylamide was initiated by a redox system and was catalyzed by the immobilized enzyme at room temperature.The attention was focused on the properties of the carrier-enzyme systems.The properties of the immobilized enzyme such as enzyme activity,storage stability,and thermo stability were also studied.The immobilized enzyme could be used repeatedly.The macroporous hydrogel would be a suitable enzyme carrier for practical applications in future. Moreover,a novel enzymatic-mediated process using PNIPA hydrogels was proposed.
     Porous polyacrylamide(PAAm) hydrogels were hydrolyzed under alkaline condition to form anionic PAAm hydrogels with super rapid pH sensitive properties as well as very high swelling ratios.
引文
1.Wichterle,O.,Lim,D.Hydrophilic gels in biologic use[J].Nature.1960,185:117-118.
    2.Qiu,Y.,Park,K.Environment-sensitive hydrogels for drug delivery[J].Adv.Drug Deliver.Rev.2001,53:321-339.
    3.Bailey,F.,Calland,R.Some properties of poly(ethylene oxide) in aqueous solution[J].J.Appl.Poly.Sci.1959,1:56-62.
    4.陈松炜.pH及电场敏感凝胶的合成与表征[硕士论文].杭州:浙江大学.2008.
    5.Osada,Y.,Okuzaki,H.,Hori,H.A polymer gel with electrically driven motility[J].Nature.1992,355:242-244.
    6.Lee,K.K.,Cussler,E.L.,Marchetti,M.,McHugh,M.A.Pressure-dependent phase transitions in hydrogels[J].Chem.Eng.Sci.1990,45:766-767.
    7.Zhong,X.,Wang,Y.X.,Wang,S.C.Pressure dependence of the volume phase-transition of temperature-sensitive gels[J].Chem.Eng.Sci.1996,51:3235-3239.
    8.Mamada,A.,Tanaka,T.,Kungwachakun,D.,Irie,M.Photobranes,induced phase transition of gels[J].Macromolecules 1990,23:1517-1519.
    9.Suzuki,A.,Tanaka,T.Phase transition in polymer gels[J].Nature.1990,346:345-347.
    10.Suzuki,A.,Ishii,T.,Maruyama,Y.Optical switching in polymer gels[J].J.Appl.Phys.1996,80:131-136.
    11.Miyata,T.,Asami,N.,Uragami,T.A reversibly antigen-responsive hydrogel[J],Nature.1999,399:766-769.
    12.Scarpa,J.S.,Mueller,D.D.,Klotz,I.M.Slow hydrogen-deuterium exchange in a non-alpha-helical polyamide[J].J.Am.Chem.Soc.1967,89:6024-6030.
    13.Schild,H.G.Poly(N-isopropylacrylamide)-experiment,theory and application[J].Prog.Polym.Sci.1992,17:163-249.
    14.Tanaka,T.Collapse of gels and the critical endpoint[J].Phys.Rev.Lett.1978,40:820-823.
    15.Tanaka,T.Gels[J].Sci.Am.1981,244:110-123.
    16.Hamidi,M.,Azadi,A.,Rafiei,P.Hydrogel nanoparticles in drug delivery[J].Adv.Drug Deliver.Rev.2008,60:1638-1649.
    17.Zhang,X.Z.,Xu,X.D.,Cheng,S.X.,Zhuo,R.X.Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels[J].Soft Matter.2008,4:385-391.
    18.Zhang,X.Z.,Zhuo,R.X.Novel synthesis of temperature-sensitive poly(N-isopropylacrylamide)hydrogel with fast deswelling rate[J].Eur.Polym.J.2000,36:643-645.
    19.Zhang,X.Z.,Zhuo,R.X.,Yang,Y.Y.Using mixed solvent to synthesize temperature sensitive poly(N-isopropylacrylamide) gel with rapid dynamics properties[J].Biomaterials 2002,23:1313-1318.
    20.Zhang,X.Z.,Zhang J.T.,Zhuo R.X,Chu,C.C.Synthesis and properties of thermosensitive,crown ether incorporated poly(N-isopropylacrylamide) hydrogel[J].Polymer,2002,43:4823-4827.
    21.Zhang,X.Z.,Chu C.C.Dynamics studies on thermoresponsive poly(N-isopropylacrylamide)hydrogel in tetrahydrofuran/water mixtures[J].Colloid Polym.Sci.2004,282:589-595.
    22.Zhang,X.Z.,Chu,C.C.Preparation of thermosensitive PNIPAAm hydrogels with superfast response[J].Chem.Commun.2004,3:350-351.
    23.Zhang,X.Z.,Yang,Y.Y.,Chung,T.S.Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels[J].Langmuir.2002,18:2538-2542.
    24.Kawasaki,H.,Sasaki,S.,Maeda,H.,Mihara,S.,Tokita,M.Komai,T.Saccharide-induced volume phase transition of poly(N-isopropylacrylamide) gels[J].J.Phys.Chem.1996,100:16282-16285.
    25.Cheng,S.X.,Zhang,J.T,Zhuo,R.X.Macroporous poly(N-isopropylacrylamide) hydrogels with fast response rates and improved protein release properties[J].J.Biomed.Mater.Res.A.2003,67A:96-103.
    26.Jun,C.,Haesun,P.,Kinam,P.Synthesis of superporous hydrogels:hydrogels with fast swelling and superabsorbent properties[J].J.Biomed.Mater.Res.A.1999,44:53-62.
    27.Behravesh,E.;Jo,S.;Zygourakis,K.;Mikos,A.G.Synthesis of in situ cross-linkable macroporous biodegradable poly(propylene fumarate-co-ethylene glycol) hydrogels[J].Biomacromolecules 2002,3,374-381.
    28.Takeoka,Y.,Watanabe,M.Polymer gels that memorize structures of mesoscopically sized templates,dynamic and optical nature of periodic ordered mesoporous chemical gels[J].Langmuir,2002,18:5977-5980.
    29.Takeoka,Y.,Watanabe,M.Tuning structural color changes of porous thermosensitive gels through quantitative adjustment of the cross-linker in pre-gel solutions[J].Langmuir,2003,19:9104-9106.
    30.Serizawa,T.,Wakita,K.,Kaneko,T.,Akashi,M.Thermoresponsive properties of porous poly(N-isopropylacrylamide) hydrogels prepared in the presence of nanosized silica particles and subsequent acid treatment[J].J.Polym.Sci.A.Polym.Chem.2002,40:4228-4235.
    31.Kaneko,T.,Asoh,T.,Akashi,M.Ultrarapid molecular release from poly(N-isopropylacrylamide)hydrogels perforated using silica nanoparticle networks[J].Macromol.Chem.Phys.2005,206:566-574.
    32.陈兆伟,陈明清,刘晓亚,杨成.pH快速响应PNIPAAm-co-PAAc水凝胶的制备及溶胀动力学.应用化学.2004,21:884-889.
    33.刘晓华,王晓工,刘德山.快速响应的温敏性聚(N-异丙基丙烯酰胺)水凝胶Ⅰ.以CaCO_3为成孔剂制备方法、表征及动力学研究.高分子学报.2002,3:354-357.
    34.刘晓华,王晓工,刘德山.快速响应的温敏性聚(N-异丙基丙烯酰胺)水凝胶Ⅱ.热力学 行为及水的状态研究.高分子学报.2002,3:358-362.
    35.Zhang,X.Z.,Zhuo,R.X.Preparation of fast responsive,thermally sensitive poly(N-isopropylacrylamide)gel[J].Eur.Polym.J.2000,36:2301-2303.
    36.Zhang,X.Z.,Yang,Y.Y.,Chung,T.S.,Ma,K.X.Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels[J].Langmuir,2001,17:6094-6099.
    37.张建涛,黄世文,汪璐玲,卓仁禧.快速响应大孔聚(N-异丙基丙烯酰胺-co-丙烯酸)水凝胶的合成及表征.高等学校化学学报.2004,25:2370-2374.
    38.Lee,W.F.Chiu,R.J.Thermoreversible hydrogels.ⅩⅧ.synthesis,swelling characteristics,and diffusion behaviors of porous,ionic,thermosensitive hydrogels[J].J.Appl.Polym.Sci.2003,90:2214-2223.
    39.Tokuyama,H.,Kanehara,A.Novel synthesis of macroporous poly(N-isopropylacrylamide)hydrogels using oil-in-water emulsions[J].Langmuir 2007,23:11246-11251.
    40.Oxley,H.R.,Corkhill,P.H.,Fitton,J.H.;Tighe,B.J.Macroporous hydrogels for biomedical applications:methodology and morphology[J].Biomaterials 1993,14,1064-1072
    41.Kima,J.H.,Lee,S.B.,Kim,S.J.,Lee,Y.M.Polymer 2002,43,7549-7558.
    42.Kaneko,Y.,Sakai,K.,Yoshida,R.,Kikuchi,A.,Sakurai,Y.,Okano,T.Temperature responsive swelling-deswelling kinetics of poly(N-isopropylacrylamide) grafted hydrogels.5th,Kagoshima,Japan,1995:303-304.
    43.Kaneko,Y.,Sakai,K.,Kikuchi,A.,Sakurai,Y.,Okano,T.Fast swelling/deswelling kinetics of comb-type grafted poly(N-isopropylacrylamide) hydrogels.Macromol.Symp.1996,109:41-53.
    44.Kaneko,Y,,Sakaim K,,Kikuchim A,,Yoshida,R.,Sakurai,Y.,Okano,T.Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly(N-isopropylacrylamide)hydrogels[J].Macromolecules,1995,28:7717-23.
    45.Yoshida,R.,Uchida,K.,Kaneko,Y.,Kikuchi,A.,Sakurai,Y.,Okano,T.Comb-type grafted hydrogels with rapid de-swelling response to temperature changes[J].Nature,1995,374:240-242.
    46.Annaka,M.,Matsuura,T.,Kasai,M.Preparation of comb-type N-isopropylacrylamide hydrogel beads and their application for size-selective separation media[J].Biomacromolecules,2003,4:395-403
    47.Matsuura,T.,Sugiyama,M.,Annaka,M.Microscopic implication of rapid shrinking of comb-type grafted poly(N-isopropylacrylamide) hydrogels[J].Polymer,2003,44:4405-4409.
    48.Yoshinari,E.,Furukawa,H.,Horie,K.Fluorescence study on the mechanism of rapid shrinking of grafted poly(N-isopropylacrylamide) gels and semi-IPN gels[J].Polymer,2005,46:7741-7748.
    49.Annaka,M.,Matsuura,T.,Yoshimoto,E.Study on the rapid deswelling mechanism of comb-type N-isopropylacrylamide gels[J]. Colloid. Surface. B. 2004, 38:201-207.
    
    50. Kaneko, Y., Nakamura, S., Sakai, K. Pulsatile drug release regulation using fast swelling-deswelling changes of novel thermo-responsive polymer gel containing polyethylene glycol graft chains[J]. Kagaku Kogaku Ronbunshu, 1998,24:200-204.
    
    51. Kaneko, Y., Nakamura, S., Sakai, K. Deswelling mechanism for comb-type grafted poly(N-isopropylacrylamide) hydrogels with rapid temperature responses[J]. Polymer Gels and Networks, 1999, 6:333-345.
    
    52. Kaneko, Y., Nakamura, S., Sakai, K., Aoyagi, T., Kikuchi, A., Sakurai, Y., Okano, T.Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules, 1998,31:6099-6105.
    
    53. Isuelt L,Kenneth A. Effect of a Polymeric additive on the pore-size distribution and shrinking process of a hydrogel network[J]. Macromol. Chem. Phys.,2003,204:443-450.
    
    54. Shapiro, L., Cohen, S. Novel alginate sponges for cell culture and transplantation[J].Biomaterials 1997, 18:583-590.
    
    55. Kato, N., Takahashi, F. Acceleration of deswelling of poly(N-isopropylacrylamide) hydrogel by the treatment of a freeze-dry and hydration process[J]. Bul. Chem. Soc. Jpn. 1997,70:1289-1295.
    
    56. Kato, N.,Hasegawa, H., Takahashi, F. Studies of gel structure and thermal deswelling on poly(N-isopropylacrylamide) gel treated by freeze-drying[J]. Bul. Chem. Soc. Jpn., 2000,73:1089-1095.
    
    57. Lozinsky, V.I. Cryogels on the basis of natural and synthetic polymers: preparation,properties and applications[J]. Russ. Chem. Rev. 2002, 71:489-511.
    
    58. Zhang, X.Z, Zhuo, R.X. Preparation of fast responsive, temperature-sensitive poly(N-isopropylacrylamide) hydrogel[J]. Macromol. Chem. Phys. 1999, 200:2602-2605.
    
    59. Zhang, X.Z., Chu, C.C. Synthesis of temperature sensitive PNlPAAm cryogels in organic solvent with improved properties[J]. J. Mater. Chem. 2003, 13, 2457-2464.
    
    60. Ozmen, M.M., Okay, O. Superfast responsive ionic hydrogels with controllable pore size[J].Polymer. 2005, 46:8119-8127.
    
    61. Dinu, M.V., Ozmen, M.M., Dragan, E.S., Okay, O. Freezing as a path to build macroporous structures: Superfast responsive polyacrylamide hydrogels[J]. Polymer. 2007, 48:195-204.
    
    62. Ozmen, M.M., Dragan, E.S., Okay, O. Formation of macroporous poly(acrylamide) hydrogels in DMSO/water mixture: Transition from cryogelation to phase separation copolymerization[J]. React. Funct. Polym. 2008, 68:1467-1475.
    
    63. Xue, W., Hamley, I.W., Huglin, M.B. Rapid swelling and deswelling of thermoreversible hydrophobically modified poly(N-isopropylacrylamide) hydrogels prepared by freezing polymerization[J]. Polymer. 2002, 43:5181-5186
    64. Xue, W.,Champ, S., Huglin, M.B. Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic)[J]. Eur.Polym. J. 2004, 40:703-712.
    
    65. Plieva, F.M., Karlsson, M. Aguilar, M.R., et al. Pore structure in supermacroporous polyacrylamide based cryogels[J]. Soft Matter. 2005, 1:303-309.
    
    66. Plieva, F.M., Xiao, H.T., Galaev, I.Y., et al. Macroporous elastic polyacrylamide gels prepared at subzero temperatures: control of porous structure[J]. J. Mater. Chem. 2006,16:4065-4073.
    
    67. Plieva, F.M, Ekstrom, P. Galaev, I.Y, et al. Monolithic cryogels with open porous structure and unique double-continuous macroporous networks[J]. Soft Matter. 2008, 4:2418-2428.
    
    68. Perez, P., Plieva, F.M., Gallardo, A., et al. Bioresorbable and nonresorbable macroporous thermosensitive hydrogels prepared by cryopolymerization. role of the cross-linking agent[J].Biomacromolecules 2008, 9:66-74.
    
    69. Kirsebom, H., Rata, G., Topgaard, D., et al. In situ H-1 NMR studies of free radical cryopolymerization[J]. Poymer. 2008, 49:3855-3858.
    
    70. Savina, I.N., Cnudde, V., Hollander, S., et al. Cryogels from poly(2-hydroxyethyl methacrylate): macroporous, interconnected materials with potential as cell scaffolds[J]. Soft Matter. 2007, 3:1176-1184.
    
    71. Plieva, F.M., Galaev, I.Y., Noppe, W., et al. Cryogel applications in microbiology[J]. Trends Microbiol.2008, 16:543-551.
    
    72. Kumar, A., Srivastava, A., Galaev, I.Y., et al. Smart polymers: Physical forms and bioengineering applications[J]. Prog. Polym. Sci. 2007, 32:1205-1237.
    
    73. Lozinsky, V.I., Galaev, I.Y, Plieva, F.M, et al. Polymeric cryogels as promising materials of biotechnological interest[J]. Trends Microbiol. 2003, 21:445-451.
    
    74. Lozinsky, V.I, Plieva, F.M, Galaev, I.Y, et al. The potential of polymeric cryogels in bioseparation[J]. Bioseparation. 2001, 10:163-188.
    
    75. Bereli, N., Andac, M., Baydemir, G., et al. Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels[J]. J. Chromatogr. A. 2008, 1190:18-26.
    
    76. Galaev, I.Y, Mattiasson, B. 'Smart' polymers and what they could do in biotechnology and medicine[J]. Trends Biotechnol. 1999, 17:335-340.
    
    77. Kayaman, N., Kazan, D., Erarslan, A., Okay, O., Baysal, B.M. Structure and protein separation efficiency of poly (AMsopropylacrylamide) gels: Effect of synthesis conditions[J].J. Appl. Polym. Sci. 1998, 67:805-814.
    
    78. Champ, S., Xue, W., Huglin M.B. Concentrating aqueous dispersions of staphylococcus epidermidis bacteria by swelling of thermosensitive poly[(N-isopropylacrylamide)-co-(acrylic acid)] hydrogels[J]. Macromol. Chem. Phys. 2000, 201:2505-2509.
    
    79. Champ, S., Xue, W., Huglin M.B. A novel semi-automated apparatus to concentrate aqueous polymer solutions with a thermosensitive hydrogel[J]. Polymer. 2001, 42:6439-6445.
    80.Zhuang,Y.F.,Wang,G.W.,Yang,H.,Zhu,Z.Q.,Fu,J.W.,Song,W.Q.Zhao,H.D.Radiation polymerization and concentration separation of P(NIPA-co-AMPS) hydrogels.Polym.Int.2005,54:617-621.
    81.黄健,黄志明,包永忠,单国荣,翁志学。表面强化交联聚(N-异丙基丙烯酰胺)水凝胶的温敏和浓缩分离性能.化工学报.2006,57:948-952.
    82.Tokuyama,H.,Kanazawa,R.,Sakohara,S.Equilibrium and kinetics for temperature swing adsorption of a target metal on molecular imprinted thermosensitive gel adsorbents[J].Sep.Purif.Technol.2005,44:152-159.
    83.Kanazawa,R.,Mori,K.,Tokuyama,H.,Sakohara,S.Preparation of thermosensitive microgel adsorbent for quick adsorption of heavy metal ions by a temperature change[J].J.Chem.Eng.Jpn.2004,37:804-807.
    84.Tokuyama,H.,Fujioka,M.,Sakohara,S.Development and performance of a novel molecular imprinted thermosensitive gel with a cross-linked chelating group for the temperature swing adsorption of a target metal[J].J.Chem.Eng.Jpn.2005,38:633-640.
    85.Tokuyama,H.,Yanagawa,K.,Sakohara,S.Temperature swing adsorption of heavy metals on novel phosphate-type adsorbents using thermosensitive gels and/or polymers[J].Sep.Purif.Technol.2006,50:8-14.
    86.Tokuyama,H.,Iwama,T.Temperature-swing solid-phase extraction of heavy metals on a poly(N-isopropylacrylamide) hydrogel[J].Langmuir.2007,23:13104-13108.
    87.Kobayashia,J.,Kikuchib,A.,Sakaia,K.,Okano.T.Aqueous chromatography utilizing hydrophobicity-modified anionic temperature-responsive hydrogel for stationary phases[J].J.Chromatogr.A.2002,958:109-119.
    88.Arvidssona,P.,Plievab,F.M.,Lozinskyb,V.I.,Galaeva,I.Y.,Mattiassona B.Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent[J].J.Chromatogr,A.2003,986:275-290.
    89.Tumturk,H.,Karaca,N.,Demirel,G.,Sahin,F.Preparation and application of poly(N,N-dimethylacrylamide-co-acrylamide) and poly(N-isopropylacrylamide-co-acrylamide)/κ-Carrageenan hydrogels for immobilization of lipase[J].Int.J.Biol.Macromol.2007,40:281-285.
    90.Hamerska-Dudra,A.,Bryjak,J.,Trochimczuk,A.W.Novel method of enzymes stabilization on crosslinked thermosensitive carriers[J].Enzyme.Microb.Tech.2006,38:921-925.
    91.Hamerska-Dudra,A.,Bryjak,J.,Trochimczuk,A.W.Immobilization of glucoamylase and trypsin on crosslinked thermosensitive carriers[J].Enzyme.Microb.Tech.2007,41:197-204.
    92.Tatsuma,T.Takada,K.,Matsui,H.,Oyama,N.A redox gel.electrochemically controllable phase transition and thermally controllable electrochemistry[J].Macromolecules.1994,27:6687-6689.
    93. Lee, W.F., Huang, C.T. Immobilization of trypsin by thermo-responsive hydrogel for the affinity separation of trypsin inhibitor[J]. Desalination. 2008, 234:195-203.
    
    94. 姜玲海,冯怡,沈岚,徐德生.温敏凝胶释药模式及机制研究进展.中国中药杂志. 2008,33:105-107.
    
    95. Bae, Y.H., Okano, T., Kim, S.W. On-off thermocontrol of solute transport. 1. Temperature dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water[J]. Pharmacol. Res. 1991, 8:531-537.
    
    96. Bae, Y.H., Okano, T., Kim, S.W. On-off thermocontrol of solute transport. 2. Solute release from thermosensitive hydrogels[J]. Pharmacol. Res. 1991, 8:624-628.
    
    97. Afrassiabi, A.L., Hoffman, A.S., Cadwell, L.A. Effect of temperature on the release rate of biomolecules from thermally reversible hydrogels[J]. J. Membrane Sci. 1987, 33:191-200.
    
    98. Gutowska, A., Bae, Y.H., Feijen, J., Kim, S.W. Heparin release from thermosensitive hydrogels[J]. J. Control. Release. 1992, 22:95-104.
    
    99. Hsiue, G.H., Hsu, S.H., Yang, C.C. Lee. S.H., Yang, I.K. Preparation of controlled release ophthalmic drops, for glaucoma therapy using thermosensitive poly-N-isopropylacrylamide [J]. Biomaterials. 2002, 23:457-462.
    
    100.Zhang, X.Z., Zhuo, R.X., Cui, J.Z. A novel thermo-responsive drug delivery system with positive controlled release[J]. Int. J. Pharm. 2002, 235:43-51.
    101.Zhang, X.Z., Wu, D.Q., Chu, C.C. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels[J]. Biomaterials. 2004, 25:3793-3805.
    102.Zhang, X.Z., Wu, D.Q., Chu, C.C. Synthesis and characterization of partially biodegradable,temperature and pH sensitive Dex-MA/PNIPAAm hydrogels[J]. Biomaterials. 2004,25:4719-4730.
    103.Lee, W.F., Chiu, R.J. Investigation of charge effects on drug release behavior for ionic thermosensitive hydrogles[J]. Mater. Sci. Eng. C. 2002, 20: 161-166.
    104.Cammas, S., Suzuki, K., Sone, C., Sakurai, Y. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers[J]. J. Control. Release. 1997,48:157- 164.
    105.Eddington, D.T., Beebe, D.J. Flow control with hydrogels[J]. Adv. Drug Deliver. Rev. 2004,56:199-210.
    106.Hu, Z.B., Lu, X.H., Gao, J., Wang, C.J. Polymer gel nanoparticle networks[J]. Adv. Mater.2000, 12:1173-1176.
    107.Yamaguchi, T., Ito, T., Sato, T., et al. Development of a fast response molecular recognition ion gating membrane[J]. J. Am. Chem. Soc. 1999, 121:4078-4079.
    108.Luo, Q., Senol, M., Yogesh, B., et al. Monolithic valves for microfluidic chips based on thermoresponsive polymer gels[J]. Electrophoresis. 2003, 24:3694-3702.
    109.Liu, F., Liu, F.H., Zhuo, R.X., et al. Development of a polymer-enzyme immunoassay method and its application^]. Biotechnol. Appl. Bioc. 1995, 21:257-264.
    110.Zhu, Q.Z., Yang, H.H., Li, D.H., et al. A novel mimetic enzymatic fluorescence immunoassay for hepatitis B surface antigen by using a thermal phase separating polymer[J].Analyst. 2000, 125:2260-2263.
    111.Tokuhiro, T., Amiya, T., Mamada, A., Tanaka, T. NMR study of poly (N-isopropylacrylamide) gels near phase transition[J]. Macromolecules. 1991, 24:2936-2943.
    112.Yan, H., Fujiwara, H., Sasaki, K., Tsujii, K. Rapid swelling/collapsing behavior of thermoresponsive poly(N-isopropyl acrylamide) gel containing poly(methacryloyloxydecyl phosphate) surfactant[J]. Angew. Chem. Int. Edit. 2005,44:1951-1954.
    113.Zhang, J.T., Bhat, R., Jandt, K.D. Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties[J]. Acta Biomater. 2009, 5,488-497.
    114.Haraguchi, K., Takehisa, T., Fan, S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay[J].Macromolecules. 2002, 35:10162-10171.
    115.Haraguchi, K., Takehisa, T. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/deswelling properties[J]. Adv.Mater. 2002, 14:1120-1124.
    116.Haraguchi, K., Li, H.J. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels[J]. Angew. Chem. Int. Ed. 2005, 44:6500-6504.
    117.Panda, A., Manohar, S.B., Sabharwal, S., Bhardwaj, Y.K., Majali, A.B. Synthesis and swelling characteristics of poly (N-isopropylacrylamide) temperature sensitive hydrogels crosslinked by electron beam irradiation[J]. Radiat. Phys. Chem. 2000, 58:101-110.
    118.Kitada, T. Kinetics of the volume phase transition in poly(N-isopropylacrylamide) gels prepared under high pressure. J Polym. Sci. A Polym. Chem. 2001, 39:2315-2325.
    119.Kato, N., Oohira, Y., Sakai, Y., Takahashi, F. Acceleration of deswelling for poly(N-isopropylacrylamide) gel prepared on the hydrophobic surface of the matrix[J].Colloid. Surface. A. 2001, 189:189-195.
    120.Tokuyama, H., Ishihara, N., Sakohara, S. Effects of synthesis-solvent on swelling and elastic properties of poly(N-isopropylacrylamide) hydrogels[J]. Eur. Polym. J. 2007, 43:4975-4982.
    121.Freitas, R.F.S., Cussler, E.L. Temperature sensitive gels as extraction solvents[J]. Chem. Eng.Sci. 1987,42:97-103.
    122.Butler, R., Hopkinson, I., Cooper, A.I. Synthesis of Porous Emulsion-Templated Polymers Using High Internal Phase CO_2-in-Water Emulsions[J]. J. Am. Chem. Soc. 2003, 125:14473-14481.
    123.Ferreira, L., Figueiredo, M. M., Gil, M.H., Ramos, M.A. Structural analysis of dextran-based hydrogels obtained chemoenzymatically[J]. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2006, 77:55-64.
    124.Kobayashi, S. Enzymatic polymerization: A new method of polymer synthesis[J]. J. Polym.Sci. A Polym. Chem.1999, 37:3041-3056.
    
    125.Barman, T.E., editor. Enzyme handbook[M]. vol 1. New York: Springer, 1985.
    126.Saunders, B.C., Holmes-Siedle, A.G., Stark, B.P., editors. Peroxidase. London: Buttersworth,1994.
    127.Derango, A.R., Chiang, L.C., Dowbenko, R., Lasch, J.G. Enzyme-mediated polymerization of acrylic monomers[J]. Biotechnol. Tech. 1992, 6:523.
    128.Emery, O., Lalot, T., Brigodiot, M., Marechal, E. Free-radical polymerization of acrylamide by horseradish peroxidase-mediated initiation[J]. J. Polym. Sci. A Polym. Chem. 1997,35:3331-3333.
    129.Teixeira, D., Lalot, T., Brigodiot, M., Marecha,l E. O-diketones as key compounds in free-radical polymerization by enzyme-mediated initiation[J]. Macromolecules 1999,32:70-72.
    130.LaIot, T., Brigodiot, M., Marechal, E. A kinetic approach to acrylamide radical polymerization by horseradish peroxidase-mediated initiation[J]. Polym. Int. 1999,48:288-292.
    131.Durand, A., Lalot, T., Brigodiot, M., Marecha,l E. Enzyme-mediated initiation of acrylamide polymerization: reaction mechanism[J]. Polymer 2000, 41:8183-8192.
    132.Durand, A., Lalot, T., Brigodiot, M., Marecha,l E. Enzyme-mediated radical initiation of acrylamide polymerization: main characteristics of molecular weight control[J]. Polymer 2001,5515-5521.
    133.Uyama, H., Lohavisavapanich, O., Ikeda, R., Kobayashi, S. Chemoselective polymerization of a phenol derivative having a methacryl group by peroxidase catalyst[J]. Macromolecules 1998,31:554-556.
    134.Ikeda, R., Tanaka, H., Uyama, C, Kobayashi, S. Laccase-catalyzed polymerization of acrylamide[J]. Macromol. Rapid. Commun. 1998, 19:423-425.
    135.Kalra, B., Gross, R.A. In-vitro enzyme catalyzed vinyl polymerization[J]. Polym. Prepr. 2000,41:1935-1936.
    136.Singh, A., Kaplan, D.L. Enzyme-based vinyl polymerization[J]. J. Polym. Environ. 2002,10:85-91.
    137.Zhang, J., Ye, P., Chen, S., Wang, W. Removal of pentachlorophenol by immobilized horseradish peroxidase[J]. Int. Biodeterior. Biodegrad. 2007, 4:307-314.
    138.Dalai, S., Gupta, M.N. Treatment of phenolic wastewater by horseradish peroxidase immobilized by bioaffinity layering[J]. Chemosphere 2007, 67:741-747.
    139.Sakuragawa, A., Taniai, T., Okutani, T. Fluorometric determination of microamounts of hydrogen peroxide with an immobilized enzyme prepared by coupling horseradish peroxidase to chitosan beads[J].Anal.Chim.Acta.1998,371:191-200.
    140.Jin,Z.,Su,Y.,Duan,Y.A novel method for polyaniline synthesis with the immobilized horseradish peroxidase enzyme[J].Synth.Met.2001,122:237-242.
    141.Wang,G.,Xu,J.J.,Chen,H.Y.,Lu,Z.H.Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix[J].Biosens.Bioelectron,2003,18:335-343.
    142.Chen,J.,Tang,J.H.,Yan,F.,Ju,H.X.A gold nanoparticles/sol-gel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay[J].Biomaterials 2006,27:2313-2321.
    143.Xu,Q.,Mao,C.,Liu,N.N.,Zhu,J.J.,Shen,J.Immobilization of horseradish peroxidase on-carboxymethylated chitosan/sol-gel matrix[J].React.Funct.Polym.2006,66:863-870
    144.P(u|¨)tter,J.Method of Enzymatic Analysis[M].Academic Press:New York,1974,vol 2.
    145.李剑,陈捷.丙烯酰胺/丙烯酸水凝胶的pH敏感性研究.化学工程师[J].2003,5:12-13.
    146.Emileh,A.,Vasheghani-Farahani,E.Swelling behavior,mechanical properties and network parameters of pH- and temperature-sensitive hydrogels of poly((2-dimethyl amino) ethyl methacrylate-co-butyl methacrylate)[J].Eur.Polym.J.2007,43:1986-1995.
    147.Baipai,S.K.Swelling-deswelling behavior of poly(acrylamide-co-maleic acid) hydrogels[J].J.Appl.Polym.Sci.2001,80:2782-2789.
    148.Ilavsky,M.,Hrouz,J.,Stejskal,J.,Bouchal K.Phase transition in swollen gels.6.Effect of aging on the extent of hydrolysis of aqueous polyacrylamide solutions and on the collapse of gels[J].Macromolecules,1984,17:2868-2874.
    149.方道斌,郭睿威,哈润华[M].丙烯酰胺聚合物.北京:化学工业出版社,2006,第1版.
    150.Zurimendia,J.A.,Guerreroa S.J.,Leonb V.The determination of the degree of hydrolysis in poly(acrylamides):simple methods using C13 n.m.r.,and elementary analysis[J].Polymer 1984,25:1314-1316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700