乳酸链球菌素治疗奶牛临床型乳房炎的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管国内外学者对奶牛乳房炎进行了大量研究,但该病仍然是引起奶牛养殖业经济损失最为严重的疾病之一。目前,治疗奶牛乳房炎的常用方法是乳房内灌注抗生素。随着抗生素大量、广泛应用,乳房炎致病菌的耐药性越来越严重,临床治疗效果越来越不理想。用抗菌药物治疗奶牛乳房炎容易造成药物在牛奶中的残留,影响乳品质量,给奶牛养殖业和乳品加工业造成巨大的经济损失;同时,残留在牛奶及乳制品中的抗生素还对人类健康造成威胁。因此,研制无有害残留的非抗生素制剂成为奶牛乳房炎研究方面的一个热点。此外,除了细菌的耐药性之外,很少有学者从细菌和药物在乳房内的分布探讨影响药物疗效的因素。本论文首先对乳房炎主要致病菌和常用抗菌药物在牛奶中的分布进行研究,探讨影响抗菌药物疗效的因素;然后系统研究了Nisin Z对奶牛临床型乳房炎自然发病病例的治疗效果。
     1.乳房炎主要致病菌在牛奶中的分布研究
     为观察乳房炎主要致病菌在牛奶中的分布情况,首先对一次挤奶过程不同时段挤出牛奶的主要乳成份进行了分析。选取健康泌乳盛期荷斯坦奶牛4头,于挤奶前期、挤奶中期和挤奶末期无菌操作采集乳区牛奶进行乳成份分析。结果表明,随着挤奶过程的进行,乳脂肪含量显著升高(P<0.05),挤奶末期最高;乳蛋白、非脂乳固体和乳糖含量先升后降,挤奶末期最低,与挤奶前期和中期相比差异显著(P<0.05)。牛奶中添加一定量的乳房炎致病菌金黄色葡萄球菌或大肠杆菌,4℃静置8、12、24 h后分割成上、中、下三等份,采用平板菌落计数法测定各部分牛奶中的细菌数。结果发现,两种致病菌在牛奶中的菌落数从下部到上部呈现上升趋势,且上部牛奶中的菌落数显著高于中、下部(P<0.001),而中、下部之间差异不显著(P>0.05)。从本研究结果推测,乳房炎致病菌经乳头管侵入后可以随牛奶中的脂肪滴上浮,侵入乳腺的深层组织。
     2.常用抗菌药物在牛奶中的分布研究
     在牛奶中添加一定浓度的常用抗菌药物,4℃静置8、12、24h后分割成上中、下三等份,采用琼脂扩散法对不同部位牛奶中抗菌药物对指示菌的抑菌作用进行分析比较。结果显示:大部分抗菌药物在牛奶中的抑菌作用从牛奶上部到下部逐渐增强,其中青霉素、庆大霉素、盐酸林可霉素和氨苄西林钠4种极性较强的抗生素三部分之间变化明显;抗菌多肽Nisin Z在牛奶中呈现较好的分布趋势,上、中、下三部分牛奶中Nisin Z的抑菌作用基本一致,且上部牛奶的抑菌作用略高于中、下部,提示Nisin Z可分布于乳腺的深部组织,适于制成乳房内灌注制剂。
     3. Nisin Z对金黄色葡萄球菌的体外药敏试验
     从临床型乳房炎病乳中分离到的37株金黄色葡萄球菌,仅有6株(16.2%)对青霉素G敏感,22株(59.5%)完全耐药;6株(16.2%)对庆大霉素耐药;而所有菌株均对Nisin Z敏感。
     4. Nisin乳房灌注剂对奶牛临床型乳房炎的治疗效果观察
     92头临床型乳房炎自然发病病例(107个患病乳区)随机分为试验组(48头,51个乳区)和对照组(44头,56个乳区),试验组乳房内灌注含Nisin Z2,500,000IU的Nisin乳房灌注剂,对照组乳房内灌注含量为0.8g的庆大霉素注射液,用量均为2次/d。通过测定治疗前和停药后第1、2周患病乳区细菌学变化、体细胞数以及酸奶发酵情况,确定Nisin乳房灌注剂对奶牛临床型乳房炎的治疗效果。试验结果表明,两组的临床治愈率基本一致(90.2%和91.1%),但Nisin乳房灌注剂治疗组的微生物治愈率高于庆大霉素治疗组,分别为60.8%和44.6%,统计学比较差异不显著(P>0.05). Nisin乳房灌注剂治愈后第1、2周,分别有50.0%和47.8%的患病乳区SCC恢复到500,000个/mL以下,略高于庆大霉素治疗组的33.3%和37.3%。患病乳区的细菌学分析发现,主要致病菌为无乳链球菌和金黄色葡萄球菌,分别占总发病乳区的37.4%和15.9%;其次是凝固酶阴性葡萄球菌(CNS),占总发病乳区的9.3%。Nisin乳房灌注剂治疗后第2周,金黄色葡萄球菌感染乳区转阴率为54.5%(6对11),而庆大霉素治疗组仅为33.3%(2对6);无乳链球菌感染乳区,两组转阴率分别为83.3%(15对18)和50.0%(11对22)。Nisin乳房灌注剂治疗病例,在停药后12h用药乳区牛奶中NisinZ效价仅为4.5 IU/mL,远低于国家标准规定的乳制品中Nisin的最大添加量(0.5g/kg,约合500 IU/mL);用药乳区牛奶酸奶发酵过程受到轻度抑制,并持续到停药后36 h,非用药乳区混合牛奶在整个采样时间内发酵正常。庆大霉素治疗病例,用药乳区牛奶在停药后60h内发酵过程受到严重抑制,停药后72h发酵恢复正常,非用药乳区混合牛奶在停药后60h内酸奶发酵过程也受到不同程度的抑制。上述结果表明,Nisin乳房灌注剂对奶牛临床型乳房炎具有较好的治疗效果,仅在短时间内影响酸奶的发酵。
     5. ECLIPSE 50对Nisin乳房灌注剂治疗后牛奶中Nisin Z残留检测
     ECLIPSE 50是一种广泛用于检测牛奶中抗生素和抑制剂的试剂盒。为探讨ECLIPSE 50对牛奶中Nisin Z残留检测的可行性,在无抗奶中添加Nisin标准品,测定ECLIPSE 50对牛奶中Nisin的检测极限,并对Nisin乳房灌注剂治疗乳房炎病例牛奶中的Nisin Z残留进行了分析。试验结果表明:ECLIPSE 50对牛奶中Nisin的检测极限为5×10-4-5×10-3mg/mL,折合成Nisin效价为0.5-5IU/mL,即牛奶中允许Nisin的最大残留量为5 IU/mL。Nisin乳房灌注剂治疗后8h,灌注乳区牛奶ECLIPSE 50检测阳性,无抗奶稀释5,000倍后检测阴性;非用药乳区混合牛奶ECLIPSE 50阴性。本研究结果提示,ECLIPSE 50可用于牛奶中Nisin残留的检测。
     6. Nisin乳房灌注剂治疗临床型乳房炎后对奶牛泌乳性能的影响
     选取临床型乳房炎自然发病病例9头,乳房内灌注Nisin乳房灌注剂进行治疗,通过检测日产奶量以及停药后2、7、14、21d的主要乳成份指标,确定Nisin乳房灌注剂对临床型乳房炎病例泌乳性能的影响情况。结果显示,患病乳区乳腺组织得到一定程度的修复,日产奶量逐渐恢复,停药后第8d的日产奶量与发病前第6d相比,平均降幅2.5kg。治愈后患病乳区牛奶乳脂肪、乳蛋白、乳糖和非脂乳固体含量都呈现上升趋势,但与同期相比,略低于非用药乳区混合牛奶;其中,乳糖含量增加幅度较快,除停药后第2d的治疗乳区外,乳糖含量均在4.7%以上,提示奶牛乳房炎病例经Nisin乳房灌注剂治疗后,受损乳腺组织修复较快,乳腺上皮细胞合成乳成份的能力大幅度提高。
     综上所述,乳房炎主要致病菌和常用抗菌药物在牛奶中分别向上下两极移动,这种分布上的分离现象导致抗菌药物和致病菌不能充分接触可能是导致临床上乳房炎治疗失败的一个重要原因;而NisinZ在牛奶中具有较好的分布趋势,可研制成乳房内灌注制剂用于治疗奶牛乳房炎。Nisin Z体外可有效抑制奶牛乳房炎主要致病菌金黄色葡萄球菌的生长繁殖,即使对常规抗生素耐药菌株也有较好的抑菌效果。用Nisin乳房灌注剂治疗奶牛临床型乳房炎,微生物治愈率为60.8%,略高于常规抗生素治疗组(44.6%). Nisin乳房灌注剂治愈病例感染乳区体细胞数明显下降,牛奶中乳脂肪、蛋白质、乳糖和非脂乳固体含量呈现上升趋势,停药36h后乳区牛奶酸奶发酵正常。
Despite the fact that much research and effort has been dedicated to mastitis prevention and treatment for so many years, bovine mastitis is one of the most prevalent and costly diseases in dairy industries around the world. At present, intramammary administration of antimicrobial drugs is the main approach used for treatment of bovine mastitis. However, poor responses to antibiotic treatments have become very common in veterinary practice, because antimicrobial resistance of mastitis pathogens increased following so many kinds of antibiotics widely used. And the extensive use of antibiotics on dairy farm may cause antibiotic residues in milk which often brought great economic losses to dairy industry because of bad quality of milk products. Antibiotic residues in milk also have the potential threats to consumers'health. Therefore, it was necessary to develop a non-antibiotic preparation for the treatment of bovine mastitis, which was not harmful to public health. This study was designed to analyze the distribution of major mastitis-causing bacteria and common antimicrobial drugs in milk in vitro. And then therapeutic efficiency of nisin-based formulation in the treatment of clinical mastitis in lactating dairy cows was analyzed.
     1. Distribution of major mastitis-causing bacteria in milk
     To investigate the distribution of major mastitis-causing bacteria in milk, the variations in major constituents of milk during milking in healthy dairy cows were analyzed. Quarter milk samples were collected from 4 Hostein dairy cows during the first, middle and last period of milking and their major constituents were analyzed. Results indicated that milk fat concentration gradually increased during the progress of milking, and was significantly higher in the milk collected during the last period than those collected during other periods of milking (P<0.05). The concentration of milk protein, solids-not-fat and lactose had a rise trend at first, and then declined. There ware significant differences in the milk collected between the last period and other periods of milking (P<0.05). After adding a certain amount of Staphylococcus aureus or Escherichia coli in milk and standing for 8,12,24 h at 4℃, Sta. aureus and E. coli were found largely in upper portion of milk, and the colony forming units (CFU)/mL of both isolates were significantly higher than those in middle and lower portions (P<0.001). However, there was no difference between the middle and lower portions (P>0.05). It is suggested that bacteria getting entrance into teat canal may float up through attaching to fat globes and invade the deep mammary tissues.
     2. Distribution of common antimicrobial drugs in milk
     In order to analyzed the distribution of common antimicrobial drugs in mammary gland tissues after intramammary infusion, the distribution of common antibiotics and nisin Z in milk in vitro was investigated by measuring their inhibitory effect on indicator bacteria, after adding a certain concentration of common drugs and standing for 8,12,24 h at 4℃. The majority of all selected antimicrobial drugs were found to have higher inhibitory activities in lower portion of milk than in middle and upper portions. Four antibiotics including penicillin, gentamicin, lincomycin and ampicillin which had higher polarity had distinct differences among 3 parts. Nisin Z was distributed more evenly but a little higher concentration in the upper portion, suggesting that nisin Z have a good distribution in mammary tissues and be suitable to make an intramammary preparation.
     3. Inhibitory effects of nisin Z on Sta. aureus in vitro
     Of 37 Sta. aureus strains isolated from bovine clinical mastitis,83.8% were resistant to penicillin, and 16.2% to gentamicin (GM), but none to nisin Z.
     4. Efficacy of nisin-based formulation in treatment of clinical mastitis in lactating dairy cows
     A total of 92 cows with 107 naturally occurring clinical mastitic quarters were randomly assigned to nisin-based formulation (48 cows with 51 quarters) and GM (44 cows with 56 quarters) treated groups. In nisin-based formulation treated group, cows received an intramammary infusion of nisin Z at a dose of 2,500,000 IU, in the GM-treated group, intramammary infusion of GM was administrated at a dose of 0.8 g. The treatment was performed twice daily (administrating after morning and afternoon milkings) until the inflammatory signs disappeared and mammary secretion became visibly normal. The treatments were repeated 4.1±0.2 and 6.1±0.3 times in groups of nisin-based formulation and GM, respectively. Nisin-based formulation offered a clinical cure rate similar to GM (90.2% vs.91.1%) and no difference in a higher bacteriological cure rate than GM-treated group (60.8% vs.44.6%, respectively). Proportions of the quarters with milk somatic cell counts lower than 500,000 cell/mL were no differences in nisin-based formulation treated group (50.0% and 47.8%) compared with GM treated group (33.3% and 37.3%) 1 and 2 wk after treatment. Of the bacteria isolated from all the clinical mastitis cases, Streptococcus agalactiae (Str. agalactiae) and Sta. aureus were the predominant causative pathogens, being isolated from 37.4% and 15.9% of 107 cases, respectively. Coagulase-negative staphylococci seemed less important and accounted for 9.3% of all cases. Nisin-based formulation therapy eliminated 54.5% (6 of 11) of Sta. aureus intramammary infection (IMI), whereas GM eliminated 33.3% (2 of 6). For Str. agalactiae mastitis, 83.3% (15 of 18) and 50.0%(11 of 22) became bacteriologically negative in the cases treated by intramammary infusion of nisin-base formulation and GM, respectively. Nisin Z in milk (4.5±0.8 IU/mL) was detected only in the treated quarters at 12 h following intramammary infusion, which was much lower than the upper limit (0.5 g/kg, equivalent to 500 IU/mL) allowed as preservative in milk products by the China authority. Reduced fermentation with low acidity from nisin-based formulation treated cows with clinical mastitis was found in milk collected from the treated quarters until 36 h following the last intramammary infusion, whereas no inhibition was detected in fermentation of the milk from untreated quarters throughout the experiment. But for GM treated cows, the inhibited fermentation was found in milk collected from treated and untreated quarters until 72 h following the last intramammary infusion, with more inhibitory activity detected in the milk from the treated quarters. All data indicated that nisin-based formulation has a better therapeutic effect for bovine mastitis and reduced fermentation was found in a short time after treatment.
     5. ECLIPSE 50 test for the detection of nisin Z in milk after nisin-based formulation treatment
     ECLIPSE 50 is a test for the detection of inhibitors and antibiotics in milk. To analyze the feasibility of this kit for detecting nisin Z residue in milk, detection limit of this kit for standard nisin in milk was established. Then ECLIPSE 50 test was used to detect nisin Z in milk samples collected from nisin-based formulation treated cows. Results indicated that the detectable limit of ECLIPSE 50 test for nisin in cow's milk was 5×10-4-5×10-3 mg/mL (equal to 0.5-5 IU/mL). The maximum residue limit (MLR) of nisin in milk was 5 IU/mL. Milk samples collected from all the treated quarters were positive at 8 h after receiving an intramammary infusion of nisin-based formulation at a dose of 2,500,000 IU. After diluted 1:5000 with non-antibiotic milk, ECLIPSE 50 test became negative. For the milk collected from untreated quarters, ECLIPSE 50 test was negative throughout the experiment. Therefore, ECLIPSE 50 can be used for the detection of nisin Z in milk.
     6. Effect of nisin-based formulation treatment on lactating performance of clinical mastitic cows
     Nine dairy cows with clinical mastitis were selected and intramammary administrated 6 times with nisin-based formulation. Daily milk production and major milk constituents were analyzed to evaluate the effect of nisin-based formulation treatment on lactating performance. Daily milk productions of all the mastitic cases gradually recovered, but the milk production at 8 d after treatment decreased by an average of 2.5 kg compared with 6 d before infection. Milk fat, protein, lactose and solids-non-fat contents of milk collected from treated quarters increased after intramammary infusion of nisin-based formulation, but they were lower than those from untreated quarters (composite milk samples). The concentration of milk lactose was above 4.7% in all treated quarters except for 2 d after intramammary infusion, suggesting that mammary tissues damage may recover quickly and the synthesis of epithelia cells increase in large extent.
     In summary, major mastitis-causing bacteria and common antibacterial drugs may not contact each other sufficiently due to their contra-direct movements in mammary gland, resulting in poor responses of mastitic cases to antibacterial therapy. Nisin Z which was more efficient against Sta. aureus isolated from clinical mastitis in vitro was distributed more evenly in milk, suggesting that it be suitable to make an intramammary preparation. Nisin-based formulation had better therapeutic effects on bovine clinical mastitis in vivo with the bacteriological cure rate of 60.8% (Gentamicin 44.6%). Quarter milk SCC gradually declined and lactating performance including daily milk production and major constituents recovered more quickly after nisin-based formulation administrated. Small amounts of nisin Z residue and reduced fermentation were found in milk collected from treated quarters in short time after treatment. Nisin-based formulation will be widely used as a new medicine to treat bovine mastitis, as well as its safety in humans.
引文
Abee, T. Pore-forming bacteriocins of gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol. Lett.,1995,129(1):1-10.
    Abee, T., Rombouts, F. M., Hugenholtz, J., Guihard, G. and Letellier, L. Mode of action of nisin Z against Listeria monocytogenes Scott A grown at high and low temperatures. Appl. Environ. Microbiol.,1994,60(6):1962-1968.
    Allen, J. C. Milk synthesis and secretion rates in cows with milk composition changed by oxytocin. J. Dairy Sci.,1990,73(4):975-984.
    Alluwaimi, A. M. The cytokines of bovine mammary gland:prospects for diagnosis and therapy. Res. Vet. Sci.,2004,77(3):211-222.
    Almeida, R. A. and Oliver, S. P. Trafficking of Streptococcus uberis in bovine mammary epithelial cells. Microb. Pathog.,2006,41(2-3):80-89.
    Almeida, R. A., Calvinho, L. F. and Oliver, S. P. Influence of protein kinase inhibitors on Streptococcus uberis internalization into bovine mammary epithelial cells. Microb. Pathog., 2000,28(1):9-16.
    Almeida, R. A., Fang, W. and Oliver, S. P. Adherence and internalization of Streptococcus uberis to bovine mammary epithelial cells are mediated by host cell proteoglycans. FEMS Microbiol. Lett.,1999,177(2):313-317.
    Althaus, R. L., Torres, A., Montero, A., Balasch, S. and Molina, M. P. Detection limits of antimicrobials in ewe milk by delvotest photometric measurements. J. Dairy Sci.,2003, 86(2):457-463.
    Anadon, A. and Martinez-Larranaga, M. R. Residues of antimicrobial drugs and feed additives in animal products:regulatory aspects. Livest. Prod. Sci.,1999,59(2-3):183-198.
    Anaya-Lopez, J. L., Contreras-Guzman, O. C, Carabez-Trejo, A., Baizabal-Aguirre, V. M., Lopez-Meza, J. E., Valdez-Alarcon, J. J. and Ochoa-Zarzosa, A. Invasive potential of bacterial isolates associated with subclinical bovine mastitis. Res. Vet. Sci.,2006, 81(3):358-361.
    Andrew, S. M., Frobish, R. A., Paape, M. J. and Maturin, L. J. Evaluation of selected antibiotic residue screening tests for milk from individual cows and examination of factors that affect the probability of false-positive outcomes. J. Dairy Sci.,1997,80(11):3050-3057.
    Andrew, S. M., Moyes, K. M., Borm, A.A., Fox, L. K., Leslie, K. E., Hogan, J. S., Oliver, S. P., Schukken, Y. H., Owens, W. E. and Norman, C. Factors associated with the risk of antibiotic residues and intramammary pathogen presence in milk from heifers administered prepartum intramammary antibiotic therapy. Vet. Microbiol.,2009,134(1-2):150-156.
    Aranha, C. C., Gupta, S. M. and Reddy, K. V. R. Assessment of cervicovaginal cytokine levels following exposure to microbicide Nisin gel in rabbits. Cytokine,2008,43(1):63-70.
    Aranha, C., Gupta, S. and Reddy, K. V. R. Contraceptive efficacy of antimicrobial peptide Nisin: in vitro and in vivo studies. Contraception,2004,69(4):333-338.
    Atalla, H., Gyles, C., Jacob, C. L., Moisan, H., Malouin, F. and Mallard, B. Characterization of a Staphylococcus aureus small colony variant (SCV) associated with persistent bovine mastitis. Foodbrone Pathog. Dis.,2008,5(6):785-799.
    Autran, B., Carcelain, G., Combadiere, B. and Debre, P. Therapeutic vaccines for chronic infections. Science,2004,305(5681):205-208.
    Ayadi, M., Caja, G., Such, X., Rovai, M. and Albanell, E. Effect of different milking intervals on the composition of cisternal and alveolar milk in dairy cows. J. Dairy Res.,2004, 71:304-310.
    Badaoui Najjar, M., Kashtanov, D. and Chikindas, M. L. Epsilon-poly-L-lysine and nisin A act synergistically against Gram-positive food-borne pathogens Bacillus cereus and Listeria monocytogenes. Lett. Appl. Microbial.,2007,45(1):13-18.
    Bajwa, N. S., Bansal, B. K., Srivastava, A. K. and Ranjan, R. Pharmacokinetic profile of erythromycin after intramammary administration in lactating dairy cows with specific mastitis. Vet. Res. Commun.,2007,31(5):603-610.
    Bannerman, D. D. and Wall, R. J. A novel strategy for the prevention of Staphylococcus aureus-induced mastitis in dairy cows. Information Systems for Biotechnology (ISB) News Report. May 2005, Issue:1-4.
    Bansal, B. K., Hamann, J., Grabowski, N. T., and Singh, K. B. Variation in the composition of selected milk fraction samples from healthy and mastitic quarters, and its significance for mastitis diagnosis. J. Dairy Res.,2005,72(2):144-152.
    Bar, D., Tauer, L. W., Bennett, G., Gonzalez, R. N., Hertl, J. A., Schukken, Y. H., Schulte, H. F., Welcome, F. L. and Grohn, Y. T. The cost of generic clinical mastitis in dairy cows as estimated by using dynamic programming. J. Dairy Sci.,2008,91(6):2205-2214.
    Bartoloni, A., Mantella, A., Goldstein, B. P., Dei, R., Benedetti, M., Sbaragli, S. and Paradisi, F. In-vitro activity of nisin against clinical isolates of Clostridium difficile. J. Chemother.,2004, 16(2):119-121.
    Bauer, R. and Dicks, L. M. Mode of action of lipid Ⅱ-targeting lantibiotics. Int. J. Food Microbiol., 2005,101(2):201-216.
    Bengtsson, B., Unnerstad, H. E., Ekman, T., Artursson, K., Nilsson-Ost, M. and Waller, K. P. Antimicrobial susceptibility of udder pathogens from cases of acute clinical mastitis in dairy cows. Vet. Microbiol.,2008, doi:10.1016/j.vetmic.2008.10.024
    Berruga, M. I., Rodriguez, A., Rubio, R., Gallego, R. and Molina, A. Short communication: antibiotic residues in milk following the use of intravaginal sponges for estrus synchronization in dairy ewes. J. Dairy Sci.,2008,91(10):3917-3921.
    Berry, E. A., Hogeveen, H. and Hillerton, J. E. Decision tree analysis to evaluate dry cow strategies under UK conditions. J. Dairy Res.,2004,71(4):409-418.
    Blackburn, P., Brooks, C., McConnell, W. and Ball, H. J. Isolation of Mycoplasma bovis from cattle in Northern Ireland from 1999 to 2005. Vet. Rec.,2007,161(13):452-453.
    Blackburn, P., Projan, S. J. and Goldberg, E. B. US Patent 5334582-Pharmaceutical bacteriocin combinations and methods for using the same. United States Patent No:5,304,540. Applied Microbiology, Inc.,1994, New York, USA.
    Blowey, R. and Edmondson, P. Mastitis-Causes, Epidemiology and Control, In:Mastitis Control in Dairy Herds. Ipswich Farming Press,1995, p27.
    Booth, J. M. Progress in control of mastitis. In:Proceeding of the 3rd International Mastitis Seminar, May 28-June 1,1995, Tel Aviv, Israel. Int. Dairy Fed., Brussels, Belgium.
    Bower, C. K., Parker, J. E., Higgins, A. Z., Oest, M. E., Wilson, J. T., Valentine, B. A., Bothwell, M. K. and McGuire, J. Protein antimicrobial barriers to bacterial adhesion:in vitro and in vivo evaluation of nisin-treated implantable materials. Colloids Surf. B:Biointerfaces,2002, 25(1):81-90.
    Bradley, A. J. Bovine mastitis:an evolving disease. Vet. J.,2002,164(2):116-128.
    Bradley, A. J., Leach, K. A., Breen, J. E., Green, L. E. and Green, M. J. Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet. Rec.,2007, 160(8):253-257.
    Branen, J. K. and Davidson, P. M. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int. J. Food Microniol.,2004, 90(1):63-74.
    Breukink, E. and de Kruijff, B. Lipid II as a target for antibiotics. Nat. Rev. Drug Discov.,2006, 5(4):321-332.
    Breukink, E., van Kraaij, C., Demel, R. A., Siezen, R. J., Kuipers, O. P. and de Kruijff, B. The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry,1997,36(23):6968-6976.
    Breukink, E., Wiedemann, I., van Kraaij, C., Kuipers, O. P., Sahl, H. and de Kruijff, B. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotics. Science,1999, 286(5448):2361-2364.
    Broadbent, J. R., Chou, Y. C., Gillies, K. and Kondo, J. K. Nisin inhibits several gram-positive, mastitis-causing pathogens. J. Dairy Sci.,1989,72(12):3342-3345.
    Brotz, H., Josten, M., Wiedemann, I., Schneider, U., Gotz, F., Bierbaum, G. and Sahl, H. G. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol. Microbiol.,1998,30(2):317-327.
    Buchman, G. W, Banerjee, S. And Hansen, J. N. Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J. Biol. Chem.,1988, 263(31):16260-16266.
    Burvenich, C., Van Merris, V., Mehrzad, J., Diez-Fraile, A. and Duchateau, L. Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res.,2003,34(5):521-564.
    Callaway, T. R., Carneiro De Melo, A. M. and Russell, J. B. The effect of nisin and monensin on ruminal fermentations in vitro. Curr. Microbiol,1997,35(2):90-96.
    Cao-Hoang, L., Marechal, P. A., Le-Thanh, M. and Gervais, P. Synergistic action of rapid chilling and nisin on the inactivation of Escherichia coli. Appl. Microniol. Biotechnol,2008, 79(1):105-109.
    Capuco, A. V., Mein, G. A., Nickerson, S. C., Jack, L. J. W., Wood, D. L., Bright, S. A., Aschenbrenner, R. A., Miller, R. H. and Bitman, J. Influence of pulsationless milking on teat canal keratin and mastitis. J. Dairy Sci.,1994,77(l):64-74.
    Carlsson, A., Bjorck, L. and Persson, K. Lactoferrin and lysozyme in milk during acute mastitis and their inhibitory effect in Delvotest P. J. Dairy Sci.,1989,72(12):3166-3175.
    Carr, F. J., Chill, D. and Maida, N. The lactic acid bacteria:a literature survey. Crit. Rev. Microbiol.,2002,28(4):281-370.
    Castillo, V., Such, X., Caja, G., Salama, A. A. K., Albanell, E. and Casals, R. Changes in alveolar and cisternal compartments induced by milking interval in the udder of dairy ewes. J. Dairy Sic.,2008,91(9):3403-3411.
    Chandler, R. L. and Reid, I. M. Ultrastructural and associated observations on clinical cases of mastitis in cattle. J. Comp. Pathol.,1973,83(2):233-241.
    Cinquina, A. L., Longo, F., Anastasi, G., Giannetti, L. and Cozzani, R. Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycling in bovine milk and muscle. J. Chromatography A.,2003,987(1-2):227-233.
    Claypool, L., Hainemann, B., Voris, L. and Stumbo, C. R. Residence time of nisin in the oral cavity following consumption of chocolate milk containing nisin. J. Dairy Sci.,1966, 49(3):314-316.
    Cleveland, J., Montville, T. J., Nes, I. F. and Chikindas, M. L. Bacteriocins:safe, natural antimicrobials for food preservation. Int. J. Food Microbiol.,2001,71(1):1-20.
    Coleman, M. A. Oral administration of chicken yolk immunoglobulins to lower somatic cell count in the milk of lactating ruminants. US Patent 5,585,098 1996.
    Craig, W. A. and Suh, B. Protein binding and the antimicrobial effects:methods for the determination of protein binding. Page 367-402 in Antibiotics in laboratory medicine,4th ed., 1996, The Williams & Wilkins Co., Baltimore, Md.
    Crawshaw, W. M., MacDonald, N. R. and Duncan, G. Outbreak of Candida rugosa mastitis in a dairy herd after intramammary antibiotic treatment. Vet. Rec.,2005,156(25):812-813.
    D'Aimmo, M. R., Modesto, M. and Biavati, B. Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products. Int. J. Food Microbiol.,2007,115(1):35-42.
    Daley, M. J., Furda, G., Dougherty, R., Coyle, P. A., Williams, T. J. and Johnston, P. Potentiation of antibiotic therapy for bovine mastitis by recombinant bovine interleukin-2. J. Dairy Sci., 1992,75(12):3330-3338.
    Datta, S., Janes, M. E., Xue, Q. G., Losso, J. and La Peyre, J. F. Control of Listeria monocytogenes and Salmonella anatum on the surface of smoked salmon coated with calcium alginate coating containing oyster lysozyme and nisin. J. Food Sci.,2008, 73(2):M67-71.
    de Kruijff, B., van Dam, V. and Breukink, E. Lipid Ⅱ:a central component in bacterial cell wall synthesis and a target for antibiotics. Prostaglandins Leukot. Essent. Fatty Acids,2008, 79(3-5):117-121.
    De Kwaadsteniet, M., Doeschate, K. T. and Dicks, L. M. Nisin F in the treatment of respiratory tract infections caused by Staphylococcus aureus. Lett. Appl. Microbiol.,2009,48(l):65-70.
    De Liguoro, M., Longo, F., Brambilla, G., Cinquina, A., Bocca, A. and Lucisano, A. Distribution of the anthelmintic drug albendazole and its major metabolites in ovine milk and milk products after a single oral dose. J. Dairy Res.,1996,63(4):533-542.
    de Pablo, M. A., Gaforio, J. J., Gallego, A. M., Ortega, E., Galvez, A. M., Alvarez de Cienfuegos Lopez, G. Evaluation of immunomodulatory effects of nisin-containing diets on mice. FEMS Immunol. Med. Microbiol.,1999,24(1):35-42.
    De Ruyck, H. and De Ridder, H. Determination of tetracycline antibiotics in cow's milk by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom.,2007, 21(9):1511-1520.
    De Vliegher, S., Laevens, H., Devriese, L. A., Opsomer, G., Leroy, J. L., Barkema, H. W. and de Kruif, A. Prepartum teat apex colonization with Staphylococcus chromogenes in dairy heifers is associated with low somatic cell count in early lactation. Vet. Microbiol.,2003, 92(3):245-252.
    de Vos, W. M., Mulders, J. W., Siezen, R. J., Hugenholtz, J. and Kuipers, O. P. Properties of nisin Z and distribution of its gene, nisZ in Lactococcos lactis. Appl. Environ. Microbiol.,1993, 59(1):213-218.
    Deegan, L. H., Cotter, P. D., Hill, C. and Ross, P. Bacteriocins:Biological tools for bio-preservation and shelf-life extension. Int. Dairy J.,2006,16(9):1058-1071.
    Deivanayagam, C. C., Wann, E. R., Chen, W., Carson, M., Rajashankar, K. R., Hook, M. and Narayana, S. V. A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus:crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A. EMBO J.,2002,21(24):6660-6672.
    Dellaglio, F., Stadhouders, J. and Hup, G. Distribution of bacteria between the bottom, middle, and cream layers of creamed raw milk. Neth. Milk Dairy J.,1969,23:140-145.
    Delves-Broughton, J. Nisin and its application as a food preservative. Int. J. Dairy Technol.,1990, 43(3):73-76.
    Delves-Broughton, J., Blackburn, P., Evans, R. J. and Hugenholtz, J. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek,1996,69(2):193-202.
    Dewdney, J. M., Maes, L., Raynaud, J. P., Blanc, F., Scheid, J. P., Jackson, T., Lens, S. and Verschueren, C. Risk assessment of antibiotic residue of beta-lactams and macrolides in food-products with regard to their immuno-allergic potential. Food Chem. Toxicol,1991, 29(7):477-483.
    Diarra, M. S., Petitclerc, D. and Lacasse, P. Effect of lactoferrin in combination with penicillin on the morphology and the physiology of Staphylococcus aureus isolated from bovine mastitis. J. Dairy Sci.,2002,85(5):1141-1149.
    Eberhart, R. J., Harmon, R. J., Jasper, D. E., Natzke, R. P., Nickerson, S. C., Reneau, J. K., Row, E. H., Smith, K. L. and Spencer, S. B. Current Concepts of Bovine Mastitis.3rd ed.,1987, Natl. Mastitis Counc., Inc., Arlington, VA.
    Ehinger, A. M. and Kietzmann, M. Tissue distribution of benzylpenicillin after intramammary administration in the isolated perfused bovine udder. J. Vet. Pharmacol. Ther.,2000a, 23(5):303-310.
    Ehinger, A. M., Kietzmann, M. Tissue distribution of oxacillin and ampicillin in the isolated perfused bovine udder. J. Vet. Med. A Physiol. Pathol. Clin. Med.,2000b,47(3):157-168.
    Ehinger, A. M., Schmidt, H., Kietzmann, M. Tissue distribution of cefquinome after intramammary and "systemic" administration in the isolated perfused bovine udder. Vet. J., 2006,172(1):147-153.
    Emanuelson, U., Danell, B. and Philipsson, J. Genetic parameters for clinical mastitis, somatic cell counts, and milk production by multiple-trait restricted maximum likelihood.1988, J. Dairy Sci.,71(2):467-476.
    Erskine, R. J., Bartlett, P. C., Tavernier, S. R., Fowler, L. H., Walker, R. D., Seguin, J. H. and Shuster, D. Recombinant bovine interleukin-2 and dry cow therapy:efficacy to cure and prevent intramammary infections, safety, and effect on gestation. J. Dairy Sci.,1998, 81(1):107-115.
    Erskine, R. J., Wangner, S. and DeGraves, F. J. Mastitis therapy and pharmacology. Vet. Clin. North Am. Food Anim. Pract.,2003,19(1):109-138.
    Ettayebi, K., El Yamani, J. and Rossi-Hassani, B. Synergistic effects of nisin and thymol on antimicrobial activities in Listeria monocytogenes and Bacillus subtilis. FEMS Microbiol.
    Lett.,2000,183(1):191-195.
    Fang, W. and Pyorala, S. Mastitis-causing Escherichia coli: serum sensitivity and susceptibility to selected antibacterials in milk. J. Dairy Sci.,1996,79(1):76-82.
    Fang, W. and Vikerpuur, M. Potency of antibacterial drugs in milk as analysed by β-glucuronidase-based fluorometry. J. Vet. Pharmacol. Then,1995,18(6):422-428.
    FDA, GRAS notice of Nisin Re:GRAS notice No.GRN 000065 20 April,2001.
    Federal Register. Nisin preparation:affirmation of GRAS status as a direct human food ingredient. Fed. Regist.,1988,53:11247-11251.
    Ferguson, J. D., Azzaro, G., Gambina, M. and Licitra, G. Prevalence of mastitis pathogens in Ragusa, Sicily, from 2000 to 2006. J. Dairy Sci.,2007,90(12):5798-5813.
    Fernandes Oliveira, C. A., Fernandes, A. M., Cunha Neto, O. C., Laranja Fonseca, L. F., Telles Silva, E. O. and Balian, S. C. Composition and sensory evaluation of whole yogurt produced from milk with different somatic cell counts. Aust. J. Dairy Tech.,2002,57(3):192-196.
    Fernandez, L., Delgado, S., Herrero, H., Maldonado, A. and Rodriguez, J. M. The bacteriocin nisin, an effective agent for the treatment of staphylococcal mastitis during lactation. J. Hum. Lact.,2008,24(3):311-316.
    Forge, A. and Schacht, J. Aminoglycoside antibiotics. Audiol. Neurootol.,2000,5(l):3-22.
    Fox, L. K., Kirk, J. H. and Britten, A. Mycoplasma mastitis:a review of transmission and control. J. Vet. Med.B Infect. Dis. Vet. Public Health,2005,52(4):153-160.
    Furusawa, N. Rapid liquid chromatographic determination of residual penicillin G in milk. Fresenius J. Anal. Chem.,2000,368(6):624-626.
    Galvez, A., Abriouel, H., Lopez, R. L. and Ben Omar, N. Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol.,2007,120(1-2):51-70.
    Garcera, M. J., Elferink, M. G., Driessen, A. J. and Konings, W. N. In vitro pore-forming activity of the lantibiotic nisin. Role of protonmotive force and lipid composition. Eur. J. Biochem., 1993,212(2):417-422.
    Garde, S., Avila, M., Medina, M. and Nunez, M. Fast induction of nisin resistance in Streptococcus thermophilus INIA 463 during growth in milk. Int. J. Food Microbiol.,2004, 96(2):165-172.
    GB/T 4798.10-2003.食品卫生微生物学检验.金黄色葡萄球菌检验[S].北京:中国标准出版社,2003.
    GB/T 5009.95-2003.蜂蜜中四环素族抗生素残留量的测定[S].北京:中国标准出版社,2003.
    Gehring, R. and Smith, G. W. An overview of factors affecting the disposition of intramammary preparations used to treat bovine mastitis. J. Vet. Pharmacol. Therap.,2006,29:237-241.
    Gill, J. J., Pacan, J. C., Carson, M. E., Leslie, k. E., Griffiths, M. W. and Sabour, P. M. Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrob. Agents Chemother.,2006, 50(9):2912-2918.
    Gill, R., Howard, W. H., Leslie, K. E. and Lissemore, K. Economics of mastitis control. J. Dairy Sci.,1990,73(11):3340-3348.
    Gillespie, B. E., Moorehead, H., Lunn, P., Dowlen, H. H., Johnson, D. L., Lamar, K.C., Lewis, M. J., Ivey, S. J., Hallberg, J. W., Chester, S. T. and Oliver, S. P. Efficacy of extended pirlimycin hydrochloride therapy for treatment of environmental Streptococcus spp and Staphylococcus aureus intramammary infections in lactating dairy cows. Vet. Ther.,2002,3(4):373-380.
    Giraudo, J. A., Calzolari, A., Rampone, H., Rampone, A., Giraudo, A. T., Bogni, C., Larriestra, A. and Nagel, R. Field trials of a vaccine against bovine mastitis.1. Evaluation in heifers. J. Dairy Sci.,1997,80(5):845-853.
    Griffin, T. K., Morant, S. V. and Dodd, F. H.1987. Bovine mastitis. Definition and guidelines for diagnosis. Bulletin of the International Dairy Federation (IDF) No.211,2-24.
    Grohn, Y. T., Wilson, D. J., Gonzalez, R. N., Herlt, J. A., Schulte, H., Bennett, G. and Schukken, Y. H. Effect of pathogen-specific clinical mastitis on milk yield in dairy cows. J. Dairy Sci., 2004,87(10):3358-3374.
    Gross, E. and Morell, J. L. The structure of nisin. J. Am. Chem. Soc.,1971,93(18):4634-4635.
    Gruet, P., Maincent, P., Berthelot, X. and Kaltsatos, V. Bovine mastitis and intramammary drug delivery:review and perspectives. Adv. Drug Deliv. Rev.,2001,50(3):245-259.
    Grunwald, L. and Petz, M. Food processing effects on residues:penicillins in milk and yoghurt. Anal. Chim. Acta,2003,483(1-2):73-79.
    Gupta, S. M., Aranha, C. C. and Reddy, K. V. R. Evaluation of developmental toxicity of microbicide Nisin in rats. Food Chem. Toxicol,2008,46(2):598-603.
    Gut, I. M., Prouty, A. M., Ballard, J. D., van der Donk, W. A. and Blanke, S. R. Inhibition of Bacillus anthracis spore outgrowth by nisin. Antimicrob. Agents Chemother.,2008, 52(12):4281-4288.
    Hagiwara, S., Kawai, K., Anri, A. and Nagahata H. Lactoferrin concentrations in milk from normal and subclinical mastitic cows. J. Vet Med. Sci.,2003,65(3):319-323.
    Harmon, R. J. Physiology of mastitis and factors affecting somatic cell counts. J. Dairy Sci.,1994, 77(7):2103-2112.
    Hasper, H. E., de Kruijff, B. and Breukink, E. Assembly and stability of nisin-lipid Ⅱ pores. Biochemistry,2004,43(36):11567-11575.
    Hebert, A., Sayasith, K., Senechal, S., Dubreuil, P. and Lagace, J. Demonstration of intracellular Staphylococcus aureus in bovine mastitis alveolar cells and macrophages isolated from naturally infected cow milk. FEMS Microbiol. Lett.,2000,193(1):57-62.
    Hensen, S. M., Pavicic, M. J., Lohuis, J. A. and Poutrel, B. Use of bovine primary mammary epithelial cells for the comparison of adherence and invasion ability of Staphylococcus aureus strains. J. Dairy Sci.,2000,83(3):418-429.
    Heringstad, B., Klemetsdal, G. and Ruane, J. Selection for mastitis resistance in dairy cattle:a review with focus on the situation in the Nordic countries. Livest. Prod. Sci.,2000, 64(2-3):95-106.
    Hermo, M. P., Nemutlu, E., Kir, S., Barron, D. and Barbosa, J. Improved determination of quinolones in milk at their MRL levels using LC-UV, LC-FD, LC-MS and LC-MS/MS and validation in line with regulation 2002/657/EC. Anal. Chim. Acta.,2008,613(1):98-107.
    Hillerton, J. E. and Berry, E. A. Treating mastitis in the cow-a tradition or an archaism. J. Appl. Microbiol.,2005,98(6):1250-1255.
    Hillerton, J. E., Halley, B. I., Neaves, P. and Rose, M. D. Detection of antimicrobial substances in individual cow and quarter milk samples using Delvotest microbial inhibitor tests. J. Dairy Sci.,1999,82(4):704-711.
    Hogan, J. and Smith, K. L. Coliform mastitis. Vet. Res.,2003,34(5):507-519.
    Hsu, S. T., Breukink, E., de Kruijff, B., Kaptein, R., Bonvin, A. M. and van Nuland, N. A. Mapping the targeted membrane pore formation mechanism by solution NMR:the nisin Z
    and lipid II interaction in SDS micelles. Biochemistry,2002,41(24):7670-7676.
    Hu, S. H. and Du, A. F. Treatment of bovine mastitis with houttuynin sodium bisulphate. J. Vet. Med. Ser.B,1997,44(6):365-370.
    Hu, S. H. Treatment of bovine mastitis with medicinal herbs and acupuncture. Proceeding of the 3rd International Congress on Yak,4-9 September 2000, Lhasa, Tibet, China.
    Hu, S. H., Cai, W. M. and Du, A. F. Mastitis causing bacteria in dairy cows in Hangzhou and their sensitivity to some antibiotics. Page 84 in Proc.ⅩⅩⅤ Congr. World Vet. Assoc.,3-9 September 1995, Yokohama, Japan.
    Hu, S., Concha, C., Johannisson, A., Meglia, G. and Waller, K. P. Effect of subcutaneous injection of ginseng on cows with subclinical Staphylococcus aureus mastitis. J. Vet. Med. B Infect. Dis. Vet. Public health,2001,48(7):519-528.
    Hulse, E. C. and Lancaster, J. E. The treatment with nisin of chronic bovine mastitis caused by Str. uberis and staphylococci. Vet. Rec.,1951,63(29):477-480.
    Imperiale, F., Lifschitz, A., Sallovitz, J., Virkel, G. and Lanusse, C. Comparative depletion of ivermectin and moxidectin milk residues in dairy sheep after oral and subcutaneous administration. J. Dairy Res.,2004, Nov; 71(4):427-433.
    Izadpanah, A. and Gallo, R. L. Antimicrobial peptides. J. Am. Acad. Dermatol.,2005, 52(3):381-390.
    Jaglan, P. S., Yein, F. S., Hornish, R. E., Cox, B. L., Arnold, T. S., Roof, R. D. and Gilbertson, T. J. Depletion of intramuscularly injected ceftiofur from the milk of dairy cattle. J. Dairy Sci., 1992,75(7):1870-1876.
    Jarvis, B. and Mahoney, R. R. Inactivation of nisin by alpha-chymotrypsin. J. Dairy Sci.,1969, 52(9):1448-1449.
    Jones, G. M. On-farm tests for drug residues in milk. Milk Quality & Milking Management, Department of Dairy Science, Virginia Tech. Publication Number 404-401,1999. http://www.ext.vt.edu/pubs/dairy/404-401/404-401.pdf
    Juncioni de Arauz, L., Jozala, A. F., Mazzola, P. G. and Vessoni Penna, T. C. Nisin biotechnological production and application:a review. Trends Food Sci. Tech.,2009, doi: 10.1016/j.tifs.2009.01.056
    Kai, K., Komine, Y., Komine, K., Asai, K., Kuroishi, T., Kozutsumi, T., Itagaki, M., Ohta, M. and Kumagai, K. Effects of bovine lactoferrin by the intramammary infusion in cows with staphylococcal mastitis during the early non-lactating period. J. Vet. Med. Sci.,2002, 64(10):873-878.
    Kang, J. H., Jin, J. H. and Kondo, F. False-positive outcome and drug residue in milk samples over withdrawal times. J. Dairy Sci.,2005,88(3):908-913.
    Karakas Sen, A., Narbad, A., Horn, N., Dodd, H. M., Parr, A. J., Colquhoun, I. and Gasson, M. J. Post-translational modification of nisin. The involvement of NisB in the dehydration process. Eur. J. Biochem.,1999,261(2):524-532.
    Kauf, A. C. W., Rosenbusch, R. F., Paape, M. J. and Bannerman, D. D. Innate immune response to intramammary mycoplasma bovis infection. J. Dairy Sci.,2007,90(7):3336-3348.
    Kawai, K., Hagiwara, S., Anri, A. and Nagahata, H. Lactoferrin concentration in milk of bovine clinical mastitis. Vet. Res. Commun.,1999,23(7):391-398.
    Keefe, P. Streptococcus aglactiae mastitis:a review. Can. Vet. J.,1997,38(7):429-437.
    Kitchen, B. J. Review of the progress of dairy science:bovine mastitis:milk compositional changes and related diagnostic tests. J. Dairy Sci.,1981,48(1):167-188.
    Krukowski, H., Tietze, M., Majewski, T. and Rozanski, P. Survey of yeast mastitis in dairy herds of small-type farms in the Lublin region, Poland. Mycopathologia,2001,150(1):5-7.
    Kutila, T., Pyorala, S., Saloniemi, H. and Kaartinen, L. Antibacterial effect of bovine lactoferrin against udder pathogens. Acta. Vet. Scand.,2003,44(1-2):35-42.
    Kutila, T., Suojala, L., Lehtolainen, T., Saloniemi, H., Kaartinen, L., Tahti, M., Seppala, K. and Pyorala, S. Efficacy of bovine lactoferrin in the treatment of cows with experimentally induced Escherichia coli mastitis. J. Vet. Pharmacol. Ther,2004,27(4):197-202.
    Kuwano, K., Tanaka, N., Shimizu, T., Nagatoshi, K., Nou, S. and Sonomoto, K. Dual antibacterial mechanisms of nisin Z against Gram-positive and Gram-negative bacteria. Int. Antimicrob. Agents,2005,26(5):396-402.
    Lacasse, P., Lauzon, K., Diarra, M. S. and Petitclerc, D. Utilization of lactoferrin to fight antibiotic-resistant mammary gland pathogens. J. Anim. Sci.,2008,86(13 Suppl):66-71.
    Laridi, R., Kheadr, E. E., Benech, R. O., Vuillemard, J. C., Lacroix, C. and Fliss, I. Liposome encapsulated nisin Z:optimization, stability and release during milk fermentation. Int. Dairy J.,2003,13(4):325-336.
    Le Lay, C., Akerey, B., Fliss, I., Subirade, M. and Rouabhia, M. Nisin Z inhibits the growth of Candida albicans and its transition from blastospore to hyphal form. J. Appl. Microbiol., 2008,105(5):1630-1639.
    Ledbetter, M. L. and Lubin, M. Control of protein synthesis in human fibroblasts by intracellular potassium. Exp. Cell Res.,1977,105(2):223-236.
    Lee, E. N., Sunwoo, H. H., Menninen, K. and Sim, J. S. In vitro studies of chicken egg yolk antibody (IgY) against Salmonella enteritidis and Salmonella typhimurium. Poult. Sci.,2002a, 81(5):632-641.
    Lee, S. S., Mantovani, H. C. and Russell, J. B. The binding and degradation of nisin by mixed ruminal bacteria. FEMS Microbiol. Ecol.,2002b,42(3):339-345.
    Lee, S. Y. and Jin, H. H. Inhibitory activity of natural antimicrobial compounds alone or in combination with nisin against Enterobacter sakazakii. Lett. Appl. Miceobiol.,2008, 47(4):315-321.
    Leitner, G., Krifucks, O., Glickman, A., Vaadia, Y., Friedman, S., Ezra, E., Saran, A. and Trainin, Z. MASTIVAC I:Staphylococcus aureus vaccine-prevention of new udder infection and therapeutic effect on cows chronically infected with S. aureus under field conditions. Israel J. Vet. Med.,2004,59(4):68-72.
    Leitner, G., Lubashevsky, E. and Trainin, Z. Staphylococcus aureus vaccine against mastitis in dairy cows, composition and evaluation of its immunogenicity in a mouse model. Vet. Immunol. Immunopathol.,2003,93(3-4):159-167.
    Leonard, F. C. and Markey, B. K. Meticillin-resistant Staphylococcus aureus in animals:a review. Vet. J.,2008,175(1):27-36.
    Litterio, N. J., Calvinho, L. F., Flores, M. M., Tarabla, H. D. and Boggio, J. C. Microbiological screening test validation for detection of tylosin excretion in milk of cows with low and high somatic cell counts. J. Vet. Med. A Physiol. Pathol. Clin. Med.,2007,54(l):30-35.
    Liu, W. and Hansen, J. N. Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Appl. Environ. Microbiol.,1990,56(8):2551-2558.
    Louhi, M., Inkinen, K., Myllys, V. and Sandholm, M. Relevance of sensitivity testing (MIC) of S.
    aureus to predict the antibacterial action in milk. J. Vet. Med. Ser. B,1992,39(4):253-262.
    Louhi-Lehtio, M., Sandholm, M., Myllys, V. and Honkanen-Buzalski, T. Antimicrobial susceptibility of bovine-mastitis pathogens tested directly in milk from infected quarters. J. Vet. Med. Ser. B,1994,41(2):101-112.
    Lu, Y., Hu, Y. L., Kong, X. F. and Wang, D. Y. Selection of component drug in activating blood flow and removing blood stasis of Chinese herbal medicinal formula for dairy cow mastitis by hemorheological method. J. Ethnopharmacol,2008,116(2):313-317.
    Lubelski, J., Rink, R., Khusainov, R., Moll, G. N. and Kuipers, O. P. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol. Life Sci., 2008,65(3):455-476.
    Luby, C. D. and Middleton, J. R. Efficacy of vaccination and antibiotic therapy against Staphylococcus aureus mastitis in dairy cattle. Vet. Rec.,2005,157(3):89-90.
    Lund, T., Miglior, F., Dekkers, J. C. M. and Burnside, E. B. Genetic relationships between clinical mastitis, somatic cell count, and udder conformation in Danish Holsteins. Livest. Prod. Sci., 1994,39(3):243-251.
    Luttinen, A., and Juga, J. Genetic relationship between milk yield, somatic cell count, mastitis, milkability and leakage in Finnish dairy cattle. Pages 78-83 in INTERBULL Bull. no.15. 1997, Int. Bull Eval. Serv., Uppsala, Sweden.
    Ma, Y. and Barbano, D. M. Gravity seperation of raw bovine milk:fat globule size distribution and fat content of milk fractions. J. Dairy Sci.,2000,83(8):1719-1727.
    Malinowski, E., Lassa, H., Kllossowska, A., Smulski, S., Markiewicz, H. and Kaczmarowski, M. Etiological agents of dairy cows' mastitis in western part of Poland. Pol. J. Vet. Sci.,2006, 9(3):191-194.
    McDonald, J. S. Radiographic method for anatomic study of the teat canal:changes between milking periods. Am. J. Vet. Res.,1975,36(8):1241-1242.
    McEvoy, J. D., Mayne, C. S., Higgins, H. C. and Kennedy, D. G. Transfer of chlortetracycline from contaminated feedingstuff to cows' milk. Vet. Rec,2000,146(4):102-106.
    Medan, D., Wang, L., Yang, X., Dokka, S., Castranova, V. and Rojanasakul, Y. Induction of neutrophil apoptosis and secondary necrosis during endotoxin-induced pulmonary inflammation in mice. J. Cell. Physiol.,2002,191(3):320-326.
    Meglia, G. E., Johannisson, A., Petersson, L. and Waller, K. P. Changes in some blood micronutrients, leukocytes and neutrophil expression of adhesion molecules in periparturient dairy cows. Acta. Vet. Scand.,2001,42(1):139-150.
    Mehrzad, J., Desrosiers, C., Lauzon, K., Robitaille, G., Zhao, X. and Lacasse, P. Proteases involved in mammary tissue damage during endotoxin-induced mastitis in dairy cows. J. Dairy Sci.,2005,88(1):211-222.
    Middleton, J. R., Hebert, V. R., Fox, L. K., Tomaszewska, E. and Lakritz, J. Elimination kinetics of chlorhexidine in milk following intramammary infusion to stop lactation in mastitic mammary gland quarters of cows. J. Am. Vet. Med. Assoc.,2003,222(12):1746-1749.
    Millette, M., Smoragiewicz, W. and Lacroix, M. Antimicrobial potential of immobilized Lactococcus lactis subsp. lactis ATCC 11454 against selected bacteria. J. Food Prot.,2004, 67(6):1184-1189.
    Mohsenzadeh, M. and Bahrainipour, A. The detection limits of antimicrobial agents in cow's milk by a simple Yoghurt Culture Test. Pak. J. Biol. Sci.,2008,11(18):2282-2285.
    Montville, T. J. and Chen, Y. Mechanistic action of pediocin and nisin:recent progress and unresolved questions. Appl. Microbiol. Biotechnol.,1998,50(5):511-519.
    Montville, T. J., De Siano, T., Nock, A., Padhi, S. and Wade, D. Inhibition of Bacillus anthracis and potential surrogate bacilli growth from spore inocula by nisin and other antimicrobial peptides. J. Food Prot.,2006,69(10):2529-2533.
    Moroni, P., Pisoni, G., Antonini, M., Villa, R., Boettcher, P. and Carli, S. Short communication: antimicrobial drug susceptibility of Staphylococcus aureus from subclinical bovine mastitis in Italy. J. Dairy Sci.,2006,89(8):2973-2976.
    Mulders, J. W., Borrigter, I. J., Rollema, H. S., Siezen, R. J. and de Vos, W. M. Identification and characterization of the lantbiotic nisin Z, a natural nisin variant. Eur. J. Biochem.,1991, 201(3):581-584.
    Murdock, C. A., Cleveland, J., Matthews, K. R. and Chikindas, M. L. The synergistic effect of nisin and lactoferrin on the inhibition of Listeria monocytogenes and Escherichia coli O157:H7. Lett. Appl. Microbiol.,2007,44(3):255-261.
    Mwangi, S. M., Stabel, J. Lee, E., Kehrli, M. E. Taylor, M. J. Expression and characterization of recombinant soluble form of bovine tumor necrosis factor receptor type I. Vet. Immunol. Immunopathol.,2000,77(3-4):233-241.
    Naim, F., Zareifard, M. R., Zhu, S., Huizing, R. H., Grabowski, S. and Marcotte, M. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles:from kinetics to process validation. Food Microbiol.,2008, 25(7):936-941.
    National Mastitis Council. Microbiological Procedures for Use in Diagnosis of Bovine Mastitis[S]. 1999, National Mastitis Council, Inc.
    Nicholas, R., Avling, R. and McAuliffe, L. Mycoplasma mastitis. Vet. Rec.,2007,160(11):382.
    Nickerson, S. C., Owens, W. E. and Watts, J. L. Effects of recombinant granulocyte colony-stimulating factor on Staphylococcus aureus mastitis in lactating dairy cows. J. Dairy Sci.,1989,72(12):3286-3294.
    Olde Riekerink, R. G., Barkema, H. W. and Stryhn, H. The effect of season on somatic cell count and the incidence of clinical mastitis. J. Dairy Sci.,2007,90(4):1705-1715.
    Olde Riekerink, R. G., Barkema, H. W., Kelton, D. F. and Scholl, D. T. Incidence rate of clinical mastitis on Canadian dairy farms. J. Dairy Sci.,2008,91(4):1366-1377.
    Oliveira, R. V., De Pietro, A. C. and Cass, Q. B. Quantification of cephalexin as residue levels in bovine milk by high-performance liquid chromatography with on-line sample cleanup. Talanta.,2007,71(3):1233-1238.
    Ontsouka, C. E., Bruckmaier, R. M., and Blum, J. W. Fractionized milk composition during removal of colostrum and mature milk. J. Dairy Sci.,2003,86(6):2005-2011.
    Owens, W. E., Ray, C. H., Watts, J. L.and Yancey, R. J. Comparison of success of antibiotic therapy during lactation and results of antimicrobial susceptibility tests for bovine mastitis. J. Dairy Sci.,1997,80(2):313-317.
    Paape, M. J., Bannerman, D. D., Zhao, X. and Lee, J. W. The bovine neutrophil:structure and function in blood and milk. Vet. Res.,2003,34(5):597-627.
    Paape, M., Mehrzad, J., Zhao, X., Detilleux, J. and Burvenich, C. Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes. J. Mammary Gland Biol. Neoplasia, 2002,7(2):109-121.
    Park, Y. K., Koo, H. C., Kim, S. H., Hwang, S. Y., Jung, W. K., Kim, J. M., Shin, S., Kim, R. T. and Park, Y. H. The analysis of milk components and pathogenic bacteria isolated from bovine raw milk in Korea. J. Dairy Sci.,2007,90(12):5405-5414.
    Pasteurized Milk Ordinance (PMO).1995. The Food and Drug Administration of the US Dep. of Health and Human Serv., Washington, DC.
    Patel, D., Almeida, R. A., Dunlap, J. R. and Oliver, S. P. Bovine lactoferrin serves as a molecular bridge for internalization of Streptococcus uberis into bovine mammary epithelial cells. Vet. Microbiol.,2009, doi:10.1016/j.vetmic.2009.01.013.
    Pathanibul, P., Taylor, T. M., Davidson, P. M. and Harte, F. Inactivation of Escherichia coli and Listeria innocua in apple and carrot juices using high pressure homogenization and nisin. Int, J. Food Microbiol.,2009,129(3):316-320.
    Penney, L., Smith, A., Coates, B. and Wijewickreme, A. Determination of chloramphenicol residues in milk, eggs, and tissues by liquid chromatography/mass spectrometry. J. AOAC Int.,2005,88(2):645-653.
    Periago, P. M. and Moezelaar, R. Combined effect of nisin and carvacrol at different pH and temperature levels on the viability of different strains of Bacillus cereus. Int. J. Food Microbiol.,2001,68(1-2):141-148.
    Petinaki, E., Guerin-Faublee, V., Pichereau, V., Villers, C., Achard, A., Malbruny, B. and Leclercq, R. Lincomycin resistance gene lnu(D) in Streptococcus uberis. Antimicrob. Agents Chemother,2008,52(2):626-630.
    Petitclerc, D., Lauzon, K., Cochu, A., Ster, C., Diarra, M. S. and Lacasse, P. Efficacy of a lactoferrin-penicillin combination to treat{beta}-lactam-resistant Staphylococcus aureus mastitis. J. Dairy Sci.,2007,90(6):2778-2787.
    Pillai, S. R., Kunze, E., Sordillo, L. M. and Jayarao, B. M. Application of differential inflammatory cell count as a tool to monitor udder health. J. Dairy Sci.,2001,84(6): 1413-1420.
    Pitkala, A., Haveri, M., Pyorala, S., Myllys, V. and Honkanen-Buzalshi, T. Bovine mastitis in Finland 2001-prevalence, distribution of bacteria, and antimicrobial resistance. J. Dairy Sci., 2004,87(8):2433-2441.
    Pitkala, A., Koort, J. and Bjorkroth, J. Identification and antimicrobial resistance of Streptococcus uberis and Streptococcus parauberis isolated from bovine milk samples. J. Dairy Sci.,2008, 91(10):4075-4081.
    Poutrel, B., de Cremoux, R., Ducelliez, M. and Verneau, D. Control of intramammary infection in goats:impact on somatic cell counts. J. Anim. Sci.,1997,72(2):566-570.
    Puertollano, M. A., Gaforio, J. J., Galvez, A., de Pablo, M. A. and Alvarez de Cienfuegos, G. Analysis of pro-inflammatory cytokine production in mouse spleen cells in response to the lantibiotic nisin. Int. J. Antimicrob. Agents,2003,21(6):601-603.
    Pyorala, S. and Taponen, S. Coagulase-negative staphylococci-Emerging mastitis pathogens. Vet. Microbiol.,2009,134(1-2):3-8.
    Pyorala, S. Antimicrobial treatment of mastitis-Choice of the route of administration and efficacy. Pages 20-29 in Proc. Br. Mast. Conf.,2002, IAH and MDC, Brockworth, UK.
    Pyorala, S. Indicators of inflammation in the diagnosis of mastitis. Vet. Res.,2003,34(5):565-578.
    QB 2394-2007.中华人民共和国轻工行业标准[S].食品添加剂.乳酸链球菌素.
    Quirga, G. H., Nickerson, S. C. and Adkinson, R. W. Histologic response of the heifer mammary gland to intramammary infusion of interleukin-2 or interferon-gamma. J. Dairy Sci.,1993, 76(10):2913-2924.
    Rajala-Schultz, P. J., Grohn, Y. T., McCulloch, C. E. and Guard C. L. Effects of clinical mastitis on milk yield in dairy cows. J. Dairy Sci.,1999,82(6):1213-1220.
    Rajala-Schultz, P. J., Torres, A. H., Degraves, F. J., Gebreyes, W. A. and Patchanee, P. Antimicrobial resistance and genotypic characterization of coagulase-negative staphylococci over the dry period. Vet. Microbiol.,2009,134(1-2):55-64.
    Ramirez, A., Gutierrez, R., Diaz, G., Gonzalez, C., Perez, N., Vega, S. and Noa, M. High-performance thin-layer chromatography-bioautography for multiple antibiotic residues in cow's milk. J. Chromatogr. B Analyt. Technol. Biomed. life Sci.,2003,784(2):315-322.
    Rana, M., Chatterjee, S., Kochhar, S. and Pereira, B. M. J. Antimicrobial peptides:a new dawn for regulating fertility and reproductive tract infection. J. Endocrinol. Repord.,2006, 10(2):88-95.
    Ranjan, R., Swarup, D., Patra, R. C. and Nandi, D. Bovine protothecal mastitis:a review. Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources,2006, 1(107):1-7.
    Reddy, K. V. R., Aranha, C., Gupta, S. M. and Yedery, R. D. Evaluation of antimicrobial peptide nisin as a safe vaginal contraceptive agent in rabbits:in vitro and in vivo studies. Reproduction,2004a,128(1):117-126.
    Reddy, K. V. R., Yedery, R. D. and Aranha, C. Antimicrobial peptides:premises and promises. Int. J. Antimicrob. Agents,2004b,24(6):536-547.
    Riollet, C., Rainard, P. and Poutrel, B. Cells and cytokines in inflammatory secretions of bovine mammary gland. Adv. Exp. Med. Biol.,2000a,480:247-258.
    Riollet, C., Rainard, P. and Poutrel, B. Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus. Clin. Diagn. Lab. Immunol.,2000b,7(2):161-167.
    Roberson, J. R., Warnick, L. D. and Moore, G. M. Mild to moderate clinical mastitis:efficacy of intramammary amoxicillin, frequent milk-out, a combined intramammary amoxicillin, and frequent milk-out treatment versus no treatment. J. Dairy Sci.,2004,87(3):583-592.
    Ruegg, P. L. Investigation of mastitis problems on farm. Vet. Clin. North Am. Food Anim. Pract., 2003,19(1):47-73.
    Ruegg, P. L. The quest for the perfect test:Phenotypic versus genotypic identification of coagulase-negative staphylococci associated with bovine mastitis. Vet. Microbiol.,2009, 134(1-2):15-19.
    Rupp, R. and Boichard, D. Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci.,1999, 82(10):2198-2204.
    Ryan, M. P., Flynn, J., Hill, C., Ross, R. P., and Meaney, W. J. The natural food grade inhibitor, lacticin 3147, reduced the incidence of mastitis after experimental challenge with Streptococcus dysgalactiae in nonlactating dairy cows. J. Dairy Sci.,1999, 82(12):2625-2631.
    Ryan, M. P., Meaney, W. J., Ross, R. P. and Hill, C. Evaluation of lacticin 3147 and a teat seal containing this bacteriocin for inhibition of mastitis pathogens. Appl. Environ. Microbiol., 1998,64(6):2287-2290.
    Saito, M., Kozutsumi, D., Kawasaki, M., Kanbashi, M., Nakamura, R., Sato, Y. and Endo, M. Multiresidue method for pesticides and veterinary drugs in bovine milk using GC/MS and LC/MS/MS. Shokuhin Eiseigaku Zasshi,2008,49(3):228-238.
    Salyers, A. and Shoemaker, N. B. Reservoirs of antibiotic resistance genes. Anim. Biotechnol., 2006,17(2):137-146.
    Sanford, C. J., Keefe, G. P., Dohoo, I. R. and Leslie, K. E. Assessment of antimicrobial transfer from treated to untreated mammary gland quarters by use of high-pressure liquid chromatography for detection of cloxacillin in milk samples from nonlactating dairy cows. Am. J. Vet. Res.,2006,67(7):1140-1144.
    Sar, C., Santoso, B., Mwenya, B., Gamo, Y., Kobayashi, T., Morikawa, R., Kimura, K., Mizukoshi, H. and Takahashi, J. Manipulation of rumen methanogenesis by the combination of nitrate with β,1-4galacto-oligosaccharides or nisin in sheep. Ani. Feed Sci. Tech.,2004, 115(1-2):129-142.
    Sarikaya, H., Schlamberger, G, Meyer H. H. D., and Bruckmaier, R. M. Leukocyte population and mRNA expression of inflammatory factors in quarter milk fractions at different somatic cell score levels in dairy cows. J. Dairy Sci.,2006,89(7):2479-2486.
    Sarikaya, H., Werner-Misof, C., Atzkern, M., and Bruckmaier R. M. Distribution of leucocyte populations, and milk composition, in milk fractions of healthy quarters in dairy cows. J. of Dairy Res.,2005,72(4):486-492.
    Schukken, Y. H., Wilson, D. J., Welcome, F., Garrison-Tikofsky, L. and Gonzalez, R. N. Monitoring udder health and milk quality using somatic cell counts. Vet. Res.,2003, 34(2):579-596.
    Sears, P. M., Peele, J., Lassauzet, M. and Blackburn, P. Use of antimicrobial proteins in the treatment of bovine mastitis. Pages 17-18 in Proc.3rd Int. Mastitis Sem.,1995, Tel Aviv, Israel. A. Saran and S. Soback ed. Int. Dairy Fed., Brussels, Belgium.
    Sears, P. M., Smith, B. S., Stewart, W. K., Gonzalez, R. N., Rubino, S. D., Gusik, S. A., Kulisek, E. S., Projan, S. J. and Blackburn, P. Evaluation of a nisin-based germicidal formulation on teat skin of live cows. J. Dairy Sci.,1992,75(11):3185-3190.
    Sela, S., Hammer-Muntz, O., Krifucks, O., Pinto, R., Weisblit L. and Leitner, G. Phenotypic and genotypic characterization of Pseudomonas aeruginosa strains isolated from mastitis outbreaks in dairy herds. J. Dairy Res.,2007,74(4):425-429.
    Settanni, L. and Corsetti, A. Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol.,2008,121(2):123-138.
    Severina, E., Severin, A. and Tomasz, A. Antibacterial efficacy of nisin against multidrug-resistant Gram-positive pathogens. J. Antimicrob. Chemother.,1998, 41(3):341-347.
    Singh, B., Falahee, M. B. and Adams, M. R. Synergistic inhibition of Listeria monocuytogenes by nisin and garlic extract. Food Microbiol.,2001,18(2):133-139.
    Smith, G. W., Lyman, R. L. and Anderson, K. L. Efficacy of vaccination and antimicrobial treatment to eliminate chronic intramammary Staphylococcus aureus infections in dairy cattle. J. Am. Vet. Med. Assoc.,2006,228(3):422-425.
    Solomakos, N., Govaris, A., Koidis, P. and Botsoglou, N. The antimicrobial effect of thyme essential oil, nisin, and their combination against Listeria monocytogenes in minced beef during refrigerated storage. Food Microbiol.,2008a,25(1):120-127.
    Solomakos, N., Govaris, A., Koidis, P. and Botsoglou, N. The antimicrobial effect of thyme essential oil, nisin and their combination against Escherichia coli O157:H7 in minced beef during refrigerated storage. Meat Sci.,2008b,80(2):159-166.
    Spanamberg, A., Wunder Jr, E. A., Brayer Pereira, D. I., Argenta, J., Cavallini Sanches, E. M., Valentae, P. and Ferreiro, L. Diversity of yeast from bovine mastitis in Southern Brazil. Rev. Iberoam. Microl.,2008,25(3):145-156.
    Stadelman, W. J. The incredibly fuctional egg. Poult. Sci.,1999,78(6):807-811.
    Steeneveld, W., Hogeveen, H., Barkema, H. W., van den Broek, J. and Huirne, R. B. M. The influence of cow factors on the incidence of clinical mastitis in dairy cows. J. Dairy Sci., 2008,91(4):1391-1402.
    Strasser, A., Dietrivh, R., Usleber, E. and Martlbauer, E. Immunochemical rapid test for multiresidue analysis of antimicrobial drugs in milk using monoclonal antibodies and hapten-glucose oxidase conjugates. Analytica Chimica Acta,2003,495(1-2):11-19.
    Suhren, G. and Heeschen, W. Detection of inhibitors in milok by microbial tests. A review. Nahrung.,1996,40(1):1-7.
    Sun, H. C., Xue, F. M., Qian, K., Fang, H. X., Qiu, H. L., Zhang, X. Y. and Yin, Z. H. Intramammary expression and therapeutic effect of a human lysozyme-expressing vector for treating bovine mastitis. J. Zhejiang Univ. Sci. B,2006,7(4):324-330.
    Sutra, L. and Poutrel, B. Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus. J. Med. Microbiol.,1994,40(2):79-89.
    Sweeney, R. W., Fennell, M. A., Smith, C. M. and Bardalaye, P. C. Systemic absorption of gentamicin following intramammary administration to cows with mastitis [correction of mastititis]. J. Vet. Pharmacol. Ther.,1996,19(2):155-157.
    Takahashi, H., Komatsu, T., Hodate, K., Horino, R. and Yokomizo, Y. Effect of intramammary injection of RbIL-8 on milk levels of somatic cell count, chemiluminescence activity and shedding patterns of total bacteria and Staph. aureus in Holstein cows with naturally infected subclinical mastitis. J. Vet. Med. B Infect. Dis. Vet. Public Health,2005,52(1):32-37.
    Talbot, B. G. and Lacasse, P. Progress in the development of mastitis vaccines. Livest. Prod. Sci., 2005,98(1-2):101-113.
    Tamilselvam, B., Almeida, R. A., Dunla, J. R. and Oliver, S. P. Streptococcus uberis internalizes and persists in bovine mammary epithelial cells. Microb. Pathog.,2006,40(6):279-285.
    Tan, X., Huang, Y. J., Jiang, Y. W. and Hu, S. H. Persistence of oxytetracycline residues in milk after the intrauterine treatment of lactating cows for endometritis. Vet. Rec.,2007, 161(17):585-586.
    Taponen, S. and Pyorala, S. Coagulase-negative staphylococci as cause of bovine mastitis-Not so different from Staphylococcus aureus? Vet. Microbiol.,2009,134(1-2):29-36.
    Taponen, S., Bjorkroth, J. and Pyorala, S. Coagulase-negative staphylococci isolated from bovine extramammary sites and intramammary infections in a single dairy herd. J. Dairy Res.,2008, 75(4):422-429.
    Taponen, S., Simojoki, H., Haveri, M., Larsen, H. D. and Pyorala, S. Clinical characteristics and persistence of bovine mastitis caused by different species of coagulase-negative staphylococci identified with API or AFLP. Vet. Microbiol.,2006,115(1-3):199-207.
    Taylor, J. I., Hirsch, A. and Mattick, A. T. R. The treatment of bovine streptococcal and staphylococcal mastitis with nisin. Vet. Rec.,1949,61:197-198.
    Tedeschi, G., Taverna, F., Negri, A., Piccinini, R., Nonnis, S., Ronchi, S. and Zecconi, A. Serological proteome analysis of Staphylococcus aureus isolated from sub-clinical mastitis. Vet. Microbio.,2009,134(3-4):388-391.
    Tenhagen, B. A., Edinger, D., Baumqartner, B., Kalbe, P., Klunder, G. and Heuwieser, W. Efficacy of a herd-specific vaccine against Staphylococcus aureus to prevent post-partum mastitis in dairy heifers. J. Vet. Med. A Physiol. Pathol. Clin. Med.,2001,48(10):601-607.
    Tenhagen, B. A., Koster, G., Wallmann, J. and Heuwieser, W. Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J. Dairy Sci.,2006,89(7):2542-2551.
    Thomas, L. V., Ingram, R. E., Bevis, H. E., Davies, E. A., Milne, C. F. and Delves-Broughton, J. Effective use of nisin to control Bacillus and Clostridium spoilage of a pasteurized mashed potato product. J. Food Prot.,2002,65(10).1580-1585.
    Timms, L. L. and Schultz, L. H. Mastitis therapy for cows elevated somatic cell counts or clinical mastitis. J. Dairy Sci.,1984,67(2):367-371.
    Tsuda, H., Sekine, K., Ushida, Y., Kuhara, T., Takasuka, N., Iigo, M.,Han, B. S. and Moore, N. A. Milk and dairy product s in cancer prevention:focus on bovine lactoferrin. Mutat. Res.,2000, 462(2-3):227-233.
    Turnipseed, S. B., Andersen, W. C., Karbiwnyk, C. M., Madson, M. R. and Miller, K. E. Multi-class, multi-residue liquid chromatography/tandem mass spectrometry screening and confirmation methods for drug residues in milk. Rapid Commun. Mass Spectrom.,2008, 22(10):1467-1480.
    Twomey, D. P., Wheelock, A. I., Flynn, J., Meaney, W. J., Hill, C. and Ross, R. P. Protection against Staphylococcus aureus mastitis in dairy cows using a bismuth-based teat seal containing the bacteriocin, lacticin 3147. J. Dairy Sci.,2000,83(9):1981-1988.
    USDA-APHIS. Mycoplasma in bulk tank milk on U.S. dairies. May 2003. http://www.cvmbs.colostate.edu/ilm/proinfo/cdn/2003/mycoplasmaJu103.pdf
    Valenta, C., Bernkop-Schnurch, A. and Rigler, H. P. The antistaphylococcal effect of nisin in a suitable vehicle:a potential therapy for atopic dermatitis in man. J. Pharm. Pharmacol.,1996, 48(9):988-991.
    van den Bogaard, A. E. and Stobberingh, E. E. Antibiotic usage in animals:impact on bacterial resistance and public health. Drugs,1999,58(4):589-607.
    van den Bogaard, A. E. and Stobberingh, E. E. Epidemiology of resistance to antibiotics. Links between animals and humans. Int. J. Antimicrob. Agents,2000,14(4):327-335.
    van den Bogaard, A. E. Human health aspects of antibiotic use in food animals:a review. Tijdschr. Diergeneeskd.,2001,126(18):590-595.
    Van den Hooven, H. W., Doeland, C. C., van den Kamp, M., Konings, R. N., Hilbers, C. W. and van den Ven, F. J. Three-dimensional structure of the lantibiotic nisin in the presence of membrane-mimetic micelles of dodecylphosphocholine and of sodium dodecylsulphate. Eur. J. Biochem.,1996a,235(1-2):382-393.
    Van den Hooven, H. W., Spronk, C. A., van de Kamp, M., Konings, R. N., Hilbers, C. W., and van de Ven, F. J. Surface location and orientation of the lantibiotic nisin bound to membrane-mimicking micelles of dodecylphosphocholine and of sodium dodecylsulphate. Eur. J. Biochem.,1996b,235(1-2):394-403.
    van Heusden, H. E., de Kruijff, B. and Breukink, E. Lipid Ⅱ induces a transmembrane orientation of the pore-forming peptide lantibiotic nisin. Biochemistry,2002,41 (40):12171-12178.
    van Kraaij, C., de Vos, W. M., Siezen, R. J. and Kuipers,O. P. Lantibiotics:biosynthesis, mode of action and application. Nat. Prod. Rep.,1999,16(5):575-587.
    Van Schaik, G., Lotem, M. and Schukken, Y. H. Trends in somatic cell counts, bacterial counts, and antibiotic residue violations in New York State during 1999-2000. J. Dairy Sci.,2002, 85(4):782-789.
    Vangroenweghe, F., Dosogne, H. and Burvenich, C. Composition and milk cell characteristics in quarter milk fractions of dairy cows with low cell count. Vet. J.,2002,164:254-260.
    Vessoni Penna, T. C, Jozala, A. F., Gentille, T. R., Pessoa, J. A. and Cholewa, O. Detection of nisin expression by Lactococcus lactis using two susceptible bacteria to associate the effects of nisin with EDTA.Appl. Biochem. Biotechnol.,2006,129(1):334-346.
    Villamil, A., Figueras, A. and Novoa, B. Immunomodulatory effects of nisin in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol.,2003,14(2):157-169.
    Vintov, J., Aarestrup, F. M., Zinn, C.E. and Olsen, J. E. Association between phage types and antimicrobial resistance among bovine Staphylococcus aureus from 10 countries. Vet. Microbiol.,2003,95(1-2):133-147.
    Vivar-Quintana, A. M., Beneitez De La Mano, E. and Revilla, I. Relationship between somatic cell counts and the properties of yoghurt made from ewes' milk. Int. Dairy J.,2006, 16(3):262-267.
    Walstra, P. Physical chemistry of milk fat globules.1995, Pages 131-178 in Advanced Dairy Chemistry-2:Lipids.2nd ed.1995. P. F. Fox, ed. Chapman & Hall, London, United Kingdom.
    Watanabe, A., Yagi, Y., Shiono, H. and Yokomizo, Y. Effect of intramammary infusion of tumour necrosis factor-alpha on milk protein composition and induction of acute-phase protein in the lactating cow. J. Vet. Med. B Infect. Dis. Vet. Public Health,2000,47(9):653-662.
    Watanabe, A., Yagi, Y, Shiono, H., Yokomizo, Y. and Inumaru, S. Effects of intramammary infusions of interleukin-8 on milk protein composition and induction of acute-phase protein in cows during mammary involution. Can. J. Vet. Res.,2008,72(3):291-296.
    Watts, J. L. and Salmon, S. A. Activity of selected antimicrobial agents against strains of Staphylococcus aureus isolated from bovine intramammary infections that produce beta-lactamase. J. Dairy Sci.,1997,80(4):788-791.
    Watts, J. L. Etiological agents of bovine mastitis. Vet. Microbiol.,1988,16(1):41-66.
    Wedlock, D. N., Denis, M., Lacy-Hulbert, J. and Buddle, B. M. Interleukin-lbeta infusion in bovine mammary glands prior to challenge with Streptococcus uberis reduces bacterial growth but causes sterile mastitis. Vet. Res. Commun,2008,32(6):439-447.
    Wedlock, D. N., Doolin, E. E., Parlane, N. A., Lacy-Hulbert, S. J., Woolford, M. W. and Buddle, B. M. Effects of yeast expressed recombinant interleukin-2 and interferon-gamma on physiological changes in bovine mammary glands and on bactericidal activity of neutrophils. J. Dairy Res.,2000,67(2):189-197.
    Wiedemann, I., Breukink, E., van Kraaij, C., Kuipers, O. P., Bierbaum, G., de Kruijff, B. and Sahl, H. G. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem., 2001,276(3):1772-1779.
    Wilson, D. J., Gonzalez, R. N., Hertl, J. A., Schulte, H. F., Bennett, G., J., Schukken, Y. H. and
    Grohn, Y. T. Effect of clinical mastitis on the lactation curve:a mixed model estimation using daily milk weights. J. Dairy Sci.,2004,87(7):2073-2084.
    Wirawan, R. E., Klesse, N. A., Jack, R. W. and Tagg, J. R. Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Appl. Environ. Microbiol.,2006, 72(2):1148-1156.
    Wolfova, M., Stipkova, M. and Wolf, J. Incidence and economics of clinical mastitis in five Holstein herds in the Czech Republic. Prev. Vet. Med.,2006,77(1-2):48-64.
    Wu, J. Q., Hu, S. H. and Cao, L. T. Therapeutic effect of nisin Z on subclinical mastitis in lactating cows. Antimicrob. Agents Chemother.,2007,51(9):3131-3135.
    Yamaki, M., Berruga, M. I., Althaus, R. L., Molina, M. P. and Molina, A. Screening of antibiotic residues in ewes' milk destined to cheese by a commercial microbiological inhibition assay. Food Addit. Contam.,2006,23(7):660-667.
    Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature,2002,415(6870):389-395.
    Zecconi, A., Hamann, J., Bronzo, V., Moroni, P., Giovannini, G. and Piccinini, R. Relationship between teat tissue immune defences and intramammary infections. Adv. Exp. Med. Biol., 2000,480:287-293.
    Zecconi, A., Piccinini, R., Fiorina, S., Cabrini, L., Dapra, V. and Amadori, M. Evaluation of interleukin-2 treatment for prevention of intramammary infections in cows after calving. Comp. Immunol. Microbiol. Infect. Dis.,2008, doi:10.1016/j.cimid.2008.05.001.
    Zendo, T., Fukao, M., Ueda, K., Higuchi, T., Nakayama, J. and Sonomoto, K. Identification of the lantibiotic nisin Q, a new natural nisin variant produced by Lactococcus lactis 61-14 isolated from a river in Japan. Biosci. Biotechnol. Biochem.,2003,67(7):1616-1619.
    Zhang, W. C., Dekkers, J. C, Banos, G., and Burnside, E. B. Adjustment factors and genetic evaluation for somatic cell score and relationships with other traits of Canadian Holsteins. J. Dairy Sci.,1994,77(2):659-665.
    Zhao, X. and Lacasse, P. Mammary tissue damage during bovine mastitis:causes and control. J. Anim. Sci.,2008,86(13 Suppl.):57-65.
    Zhen, Y. H., Jin, L. J., Guo, J., Li, X. Y., Li, Z., Fang, R. and Xu, Y. P. Characterization of specific egg yolk immunoglobulin (IgY) against mastitis-causing Staphylococcus aureus. J. Appl. Microbiol.,2008a,105(5):1529-1535.
    Zhen, Y. H., Jin, L. J., Guo, J., Li, X. Y, Lu, Y. N., Chen, J. and Xu, Y. P. Characterization of specific egg yolk immunoglobulin (IgY) against mastitis-causing Escherichia coli. Vet. Microbiol.,2008b,130(1-2):126-133.
    Zhen, Y H., Jin, L. J., Li, X. Y, Guo, J., Li, Z., Zhang, B. J., Fang, R. and Xu, Y. P. Efficacy of specific egg yolk immunoglobulin (IgY) to bovine mastitis caused by Staphylococcus aureus. Vet. Microbiol.,2009,133(4):317-322.
    Ziv, G. Drug selection and use in mastitis:systemic vs local therapy. J. Am. Vet. Med. Assoc.,1980, 176(10):1109-1115.
    Zwald, A. G., Ruegg, P. L., Kaneene, J. B., Warnick, L. D., Wells, S. J., Fossler, C. and Halbert, L. W. Management practices and reported antimicrobial usage on conventional and organic dairy farms. J. Dairy Sci.,2004,87(1):191-201.
    卜仕金,陈杖榴,冯淇辉.奶牛乳房炎的抗菌药物防治[J].兽药与饲料添加剂,1999,4(3):14-16.
    陈葵,朱家文,纪利俊,武斌.红霉素溶析结晶过程的介稳特性[J].高校化学工程学报,2006, 20(5):847-851.
    陈秀珠,那淑敏,还连栋.乳链菌肽在乳制品防腐保鲜中应用的研究[J].中国乳品工业,1999,27(2):3-5.
    丁洁,陈晓蔚,曾理,贾力敏,江晓,王炜.南京市牛奶中抗生素残留的现状分析[J].中国公共卫生,2004,20(6):692-692.
    杜爱芳,蔡渭明,胡松华.合成鱼腥草素对奶牛乳房炎致病菌的抑制作用[J].中国兽医科技,1997a,27(3):37-38.
    杜爱芳,胡松华,蔡渭明,徐来根.合成鱼腥草素治疗奶牛临床型乳房炎的研究[J].浙江农业学报,1997b,9(3):165-168.
    杜爱芳,胡松华.合成鱼腥草素对单核-巨噬细胞吞噬功能的影响[J].中兽医医药杂志,1998,17(3):7-9.
    付秀华,王恬.维生素E与硒对奶牛乳房炎的影响[J].中国奶牛,2002,4:41-42.
    高庆田.中药制剂治疗奶牛临床型乳房炎的“三早”方案[J].中国乳业,2001,1:33-34.
    葛志荣.《主要贸易国家和地区食品中农兽药残留限量标准》[M].北京:中国标准出版社,2006年.
    黄琴,马国霞,周绪霞,李卫芬.乳链菌肽的抑菌机制[J].中国食品学报,2007,7(2):128-133.
    黄耀凌,刘智宏,叶妮,郭筱华.ELISA法检测牛奶中链霉素残留量[J].中国乳品工业,2007,35(2):54-56.
    黄怡君,姜也文,胡松华.TTC法检测牛奶中的抗菌药物[J].中国奶牛,2006,9:40-42.
    黄怡君,姜也文,胡松华.抗菌药物治疗奶牛子宫内膜炎后牛奶中药物残留及其对酸奶发酵的影响[J].中国奶牛,2007,5:4-7.
    黄瑛,尹晓敏,李丽好,赵华芬,韩利方,杨华,赵德明.奶牛临床型乳房炎病原菌的分离与鉴定[J].中国畜牧兽医,2007,34(12):74-76.
    柯连安,胡国平,叶嗣颖.Nisin对幽门螺杆菌生物学作用的实验研究[J].中国微生态学杂志,2003,15(2):96-97,104.
    李洪忠,蔡生胜.鲜牛奶中抗生素残留的检测[J].中国牛业科学,2008,34(2):26-27.
    李建平,曹立亭,胡松华.某奶牛场奶牛主要疾病与用药情况调查[J].中国兽医杂志,2008,44(4):43-43.
    李俊锁,邱月明,王超著.兽药残留分析[M].上海:上海科学技术出版社,2002.2.
    刘纹芳,李成,李磊,严世强.复合溶菌酶制剂对奶牛乳房炎病原菌的抑菌试验[J].中国乳业,2006,6:33-35.
    刘月淑,王红娅,于明哲,雷静,王玲.709份纯牛奶中抗生素残留量的调查分析[J].宁夏医学杂志,2007,29(5):470-471.
    马种,齐长明,王亨.20种中药对奶牛乳房炎病原菌抑菌效果比较[J].中国兽医杂志,2008,44(8):55-57.
    马晓艳,马亚珍,苏贵成.新疆家蚕抗菌肽(Cecropin-XJ)对奶牛乳房炎病原的体外抑菌效果观察[J].新疆畜牧业,2008,2:22-25.
    马艳丽.Nisin-中药复合高效环保型饵料添加剂的研究[D].天津:河北工业大学,2005.
    苗玉涛,刘建辉,郭树森.奶牛乳房炎的测试调查与分析[J].河北畜牧兽医,2001,17(3):31-31.
    母安雄,胡松华,杜爱芳.六味地黄汤对奶牛多形核白细胞杀菌功能的影响[J].中兽医学杂志,2000,4:1-4.
    聂荣庆,吴东风,胡国柱,张进,杨华英,文珠.特异性IgY抗体对中性粒细胞吞噬功能的影响[J].中国兽医杂志,2004,40(12):23-25.
    潘虎,刘纯传,张礼华,张志常,郁杰,袁永隆,李宏胜,侯亦昭,杨玉英,李新圃.我国部分地区奶牛乳房炎的病因及发病情况调查[J].中国、兽医科技,1996,26(2):16-17.
    齐长明主编.奶牛疾病学[M].北京:中国农业科学技术出版社,2006,p438.
    孙怀昌,于锋,苏建华,吴春华,张泉,李国才.人溶菌酶基因治疗奶牛乳房炎的初步研究[J].畜牧兽医学报,2004,35(2):227-232.
    汤建中.复合溶菌酶治疗奶牛乳房炎、子宫内膜炎效果好[J].科技园地,2004,1:30.
    王春璈主编.奶牛临床疾病学[M].北京:中国农业科学技术出版社,2007.1.
    王芳,胡松华.体细胞含量与牛奶质量的关系[J].中国奶牛,2005,4:51-52.
    王芳,曹立亭,胡松华.Nisin对奶牛乳房炎主要致病菌的体外抗菌作用研究.中国兽药杂志,2006,40(10):12-16.
    王芳.乳酸链球菌素Nisin的部分理化特性及其对奶牛乳房炎主要致病菌的体外抑菌作用研究[D].浙江杭州:浙江大学,2006.
    王桂琴,吴聪明,宋丽华,陈霞,沈建忠.奶牛乳房炎大肠杆菌的血清型及耐药性调查研究[J].中国兽医杂志,2006,42(12):19-20.
    王新,张秀英.9种中药抗炎作用的实验观察[J].中国兽医杂志,2007,43(1):35-36.
    吴永宁,邵兵,沈建忠主编.兽药残留检测与监控技术[M].北京:化学工业出版社,2007.5.
    伍义行,黄利权.奶牛乳房炎防治的免疫学和药理学机制[J].中国兽医杂志,2003,39(3):40-44.
    武波波,李文献,李梅芝,王少武,刘燕,李红.ECLIPSE50试剂盒法与TTC法检测乳中抗生素残留的比较[J].中国乳品工业,2008,36(5):52-54.
    谢锋.乳酸链球菌肽治疗奶牛无乳链球菌性隐性乳房炎后主要乳成份的变化及其在牛奶中残留的研究[D].浙江杭州:浙江大学,2008.
    许金俊.奶牛γ-干扰素基因的表达及其在乳房炎防治中的初步应用[D].江苏扬州:扬州大学,2004.
    许明贞,马林,方培生,芩峰,李锦光.广州市牛奶中抗生素残留的现状分析[J].广东卫生防疫,1998,24(2):61-63.
    雁杰,陈君.抗奶牛乳房炎病原菌复合卵黄抗体及其制备和应用.中国知识产权局.公开号:CN1438247.2003.
    叶兴乾,刘东红,陈健初.牛奶抗生素残留快速检测技术进展及应用现状[J].农业工程学报,2005,21(4):181-185.
    岳春旺,杜仕军,孙茂红,李玉文,李明浩.中草药治疗奶牛乳房炎的观察[J].中国奶牛,2001,6:38-39.
    臧丽,李英俊,张乃生,王兴龙,周虚.奶牛乳腺的防御机制与乳腺病理学[J].动物医学进展,2006,27(11):33-37.
    张园.新疆北疆部分地区奶牛乳房炎病原真菌的调查[D].新疆石河子:石河子大学,2008.
    赵兴绪主编.兽医产科学(第三版)[M].北京:中国农业出版社,2002,p453-468.
    周绪正,张继瑜,李剑勇,李金善,李宏胜,蒲万霞,魏小娟,牛建荣,徐忠赞,张占峰,杨辉,杨明成,康明海,田建明.“乳源康”对奶牛乳房炎的疗效研究[J].动物医学进展,2007,28(2):44-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700