苹果黄蚜抗药性监测及抗性机理初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了山西省忻州、晋中、运城地区苹果黄蚜(Aphis citricola von der Goot)种群对常用杀虫剂的抗药性;并通过增效剂增效作用和生物化学离体酶系的研究,初步探索了苹果黄蚜的抗性机制;进行了常用杀虫剂对苹果黄蚜及其天敌七星瓢虫的选择性毒力研究及田间药效试验;并提出了苹果黄蚜抗性治理策略。
     1.采用点滴法测定了山西省三地区苹果黄蚜种群对常用杀虫剂的敏感性。以LD_(50)值为依据,忻州种群对杀虫剂的敏感性顺序依次为齐墩螨素>吡虫啉>高效氯氰菊酯>氯氟氢菊酯>溴氰菊酯>氟氯氢菊酯>甲氰菊酯>氯氰菊酯>氰戊菊酯>灭多威>氧化乐果>杀螟硫磷>马拉硫磷>水胺硫磷>敌敌畏。晋中种群对杀虫剂的敏感性顺序依次为高效氯氰菊酯>齐墩螨素>氯氟氢菊酯>吡虫啉>氟氯氢菊酯>甲氰菊酯>氯氰菊酯>溴氰菊酯>氰戊菊酯>灭多威>氧化乐果>马拉硫磷>敌敌畏>杀螟硫磷>水胺硫磷。运城种群对杀虫剂的敏感性顺序依次为齐墩螨素>高效氯氰菊酯>吡虫啉>灭多威>氯氟氢菊酯>氧化乐果>氟氯氢菊酯>溴氰菊酯>氯氰菊酯>敌敌畏>氰戊菊酯>杀螟硫磷>马拉硫磷>甲氰菊酯>水胺硫磷。忻州、运城苹果黄蚜种群均对齐墩螨素的敏感性最高,晋中苹果黄蚜种群则对高效氯氰菊酯的敏感性最高。
     2.山西省忻州、晋中、运城三地区苹果黄蚜种群对常用杀虫剂的抗性水平为:忻州苹果黄蚜种群对溴氰菊酯、氟氯氢菊酯和氰戊菊酯无明显抗性(2.03~2.63倍),对甲氰菊酯表现低水平抗性(6.76倍);晋中苹果黄蚜种群对氟氯氢菊酯、氰戊菊酯和甲氰菊酯均无明显抗性(2.65~4.50倍),对溴氰菊酯表现低水平抗性(6.21倍);运城苹果黄蚜种群对溴氰菊酯、氟氯氢菊酯和氰戊菊酯表现中水平抗性(28.10~41.85倍),对甲氰菊酯表现极高水平
    
    杭性(23 6.09倍).忻州、晋中苹果黄蚜种群对氧化乐果均无明显杭性(2.60,
    2.65倍)和对水胺硫磷均表现中水平杭性(n.%,1 6.28倍);运城苹果黄蚜
    种群对氧化乐果表现为低水平杭性(5.78倍),对水胺硫磷产生了高水平杭性
    (6 3.68嘟。三个种群对齐墩端素、咄虫琳、高效氛氛菊醋均仍属于敏感种群。
     3.增效剂增效作用研究表明,苹果黄蚜对氛戊菊醋和灭多威杭性的形成
    可能与体内微粒体多功能氧化酶为主体酶系;对氧化乐果抗性的形成可能以
    体内微粒体多功能氧化酶酶活性提高和表皮穿透能力降低为主;此外,戎酸
    醋酶、谷耽甘肤一S一转移酶活性提高和乙酞胆碱敏醋酶敏感度降低也与苹果黄
    蚜种群杭性的形成有关.增效研究还表明,氮酮能够直接提高齐墩端素对苹
    果黄蚜的表皮穿透力(其增效倍数达1 37.7倍),显著提高杀虫效果.生物化
    学离体酶系研究表明,忻州、晋中、运城三地区抗性苹果黄蚜种群体内数酶
    醋酶、乙酞胆碱醋酶、谷耽甘肤一S一转移酶及多功能氧化酶的酶活力水平均与
    杭性水平相一致,进一步表明,解毒酶系酶活力水平的提高是苹果黄蚜产生
    杭性的重要机制。结合增效研究,推测苹果黄蚜杭性机制以微粒体多功能氧
    化酶为主体酶系。
     4.常用杀虫剂对苹果黄蚜及其天敌七星瓢虫选择性毒力研究结果表明,
    毗虫琳对七星瓢虫和苹果黄蚜的选择性显著高于有机磷、菊醋类杀虫剂,也
    明显高于灭多威和齐墩端素,在供试的16种杀虫剂中对天敌七星瓢虫最为
    安全;有机磷和菊醋类杀虫剂中则分别以马拉硫磷和氟氛氢菊醋对七星瓢虫
    和苹果黄蚜的选择性最高.
     5.用几种单剂和混剂对苹果黄蚜进行了田间药效试验,结果表明单剂丁
    硫克百威、毗虫琳、阿佛菌素(或称齐墩端素)和混剂辛灭乳油对苹果黄蚜
    均具有良好防效,持效期长,使用安全,可在生产实践中替代敏感性降低或
    已产生杭性的药剂防治苹果黄蚜.
     6.在抗性监测的基础上,作者提出了苹果黄蚜杭性治理策略,主要包括:
    加强虫情测报,提供科学依据;替代使用新型杀虫剂;杀虫剂使用策略;化
    学防治与天敌控制相结合;化学防治与农业防治相结合。
The resistance of the field populations of the green apple aphid (Aphis citricola von der goot) from Xinzhou, Jinzhong, Yuncheng regions of Shanxi Province to insecticides was tested. Based on the studies of the effect of synergists and biochemical studies, omethoate-resistant, fenvalerate-resistant and methomyl-resistant mechanism was discussed. The selective toxicity studies of insecticides to the ladybird beetle (Coccinella septempunctala) and aphids and test to control of the field aphids with several insecticides were also carried out. In addition, resistance management for the green apple aphid was suggested.
    The susceptibility of the green apple aphid from three regions to insecticides was tested with topical application recommended by FAO. Based on LD50 values, the result showed that the order of susceptibility of Xinzhou strain to commonly used insecticides was avermectin > imidacloprid > beta-cypermethrin > lambdacyhalothrin > deltamethrin > cyfluthrin > fenpropathrin > cypermethrin > fenvalerate > methomyl > omethoate > fenitrothion > malathion > isocabophos > dichlorvos; that of Jinzhong strain was beta-cypermethrin > avermectin > lambdacyhalothrin > imidacloprid > cyfluthrin > fenpropathrin > cypermethrin
    > deltamethrin > fenvalerate > methomyl > omethoate > malathion > dichlorvos > fenitrothion > isocabophos; and that of Yuncheng strain was avermectin > beta-cypermethrin
    > imidacloprid > methomyl > lambdacyhalothrin > omethoate > cyfluthrin > deltamethrin > cypermethrin > dichlorvos > fenvalerate > fenitrothion > malathion > fenpropathrin > isocabophos. The susceptibility of the Xinzhou and Yuncheng strains to avermectin was the highest and of the Jinzhong strain to beta-cypermethrin was the highest.
    The results indicated that the adult females of Xinzhou strain had developed low level of resistance to fenpropathrin (6.76-fold) and moderate level of resistance to isocabophos (11.96-fold); and Jinzhong strain had developed low level of resistance to deltamethrin (6.21-fold) and also moderate level of resistance to isocabophos (16.28-fold). However the aphid population of Yuncheng strain had developed low level of resistance to omethoate (5.78-fold); moderate levels of resistance to deltamethrin, cyfluthrin and fenvalerate (28.10-~ 41.85-fold) and high level of resistance to isocabophos (63.68-fold) and fenpropathrin
    
    
    
    (236.09-fold). Three green apple aphid strains are all still susceptible to avermectin, imidacloprid and beta-cypennethrin.
    Studies on the effect of synergists on the toxicity of commonly used insecticides to resistant aphids and biochemical studies indicated that mixed function oxidase (MFO) system may be the major enzyme systems involved in the detoxification of omethoate, fenvalerate and methomyl. Reduced penetration of insecticides also contributed to the omethoate-resistance. In addition, the resistance of the green apple aphid may be related to the increased activities of the enzyme systems including carboxylesterase (CarE) and glutathion-s- transferase (GST) and possibly acetylcholinesterase (AChE) insensitivity. Therefore, the activities of detoxification enzyme systems were important mechanism of the green apple aphid resistance to insecticides.
    The selective toxicity of insecticides to the ladybird beetle and aphid indicated that among the commonly used insecticides imidacloprid was most safe to predator the larvae of the ladybird beetle whereas organophosphates and pyrethroids were less safe. And maiathrin and cyfluthrin had more high selectivity than other organophosphates and pyrethroids. Therefore avermectin was highly toxic to predator though the green apple aphid was most susceptible to it.
    The results of test to control the field aphids with several insecticides showed that carbosulfan, imidacloprid, avermectins and phoxim+methomyl all had high efficacy. So we suggest that these insecticides can be treated as alternatives for the insecticides that had caused less susceptibility and resistance in the green apple aphids.
    Based on the resistance moni
引文
1. [美] R.T.劳什和B.E.塔巴什尼可主编.芮昌辉,赵勇,孟香清等译.害虫的抗药性[M].北京:化学工业出版社,1995
    2. 北京农业大学等主编.果树昆虫学.第二版.北京:北京农业出版社,1995
    3. 陈巧云,姜家良,林国芳等.淡色库蚊对敌百虫抗性的研究——水解酶同敌百虫抗性的关系[J].昆虫学报 1980,23(4):350~357
    4. 陈之浩,程罗根.小菜蛾抗药性研究的现状及展望[J].昆虫知识 2000,37(2):103~106
    5. 冯国蕾,张桂林,龚坤元等.增效磷对杀虫剂的增效作用及其防治棉蚜效果[J].昆虫知识 1985,22(4):167~172
    6. 高聪芬,张兴,冯俊涛.杀虫剂增效作用研究进展[J].西北农业大学学报 1996,24(1):88~92
    7. 高希武,王荣京,郑炳宗.四种蚜虫AChe的活性及其对抑制剂的敏感度[J].昆虫知识 1990,27(4):217~218
    8. 高希武,郑炳宗,曹本钧.北京地区桃蚜抗药性研究初报[J].农药 1991,30(2):37~39
    9. 高希武,郑炳宗,曹本钧.桃蚜对有机磷和氨基甲酸酯抗性机制研究[J].植物保护学报 1992,19(4):365~371
    10.高希武,郑炳宗.北京地区蚜虫乙酰胆碱酯酶(ACHE)的研究 Ⅰ.四种蚜虫AChE的动力学及其对氧化乐果和抗蚜威的敏感性研究[J].北京农业大学学报 1990,16(1):85~89
    11.高希武,郑炳宗.生物化学法监测瓜-棉蚜田间种群的抗药性[J].植物保护学报 1990,17(4):373~377
    12.高希武.改进的Ellman法测定有机磷酸酯和氨基甲酸酯杀虫剂抑制AChE的能力[J].农药 1988,27(1):56~57
    13.高希武.害虫对杀虫剂抗性监测技术研究进展[J].农药 1989,28(4):1~5
    14.高希武.昆虫胆碱酯酶测定方法综述[J].昆虫知识 1991,28(4):253~255
    15.龚坤元,张桂林,翟桂荣.棉蚜对1059的抗性测定[J].昆虫学报1964,13(1):1~9
    16.洪波,陈安良,冯俊涛等.我国棉蚜抗药性研究现状[J].西北农业学报 2000,9(1):118~122
    17.贾涛,李葆来,张俊杰等.我国棉铃虫研究现状与进展[J].西北农业学报 2000,9(3):122~125
    
    
    18.姜家良,陈巧云,侯能俊等.不同敌百虫抗性淡色库蚊幼虫中谷胱甘肽和谷胱甘肽转移酶的比较[J].昆虫学报 1984,27(3):248~253
    19.冷欣夫,邱星辉.我国昆虫毒理学五十年来的研究进展[J].昆虫知识2000,37(1):24~28
    20.刘慧平.山西麦长管蚜抗药性研究[J].山西农业大学学报1998,18(2):180~182
    21.慕立义,王开运,姜家良等.棉蚜(Aphis gossypii Glover)对氰戊菊酯、氧乐果及其混剂抗药性的研究[J].中国农业科学1988,21(6):18~26
    22.慕立义,王开运.几类增效剂在抗药性棉蚜中对杀虫剂增效作用研究[J].农药1989,28(6):1~4
    23.邱立红,李学锋,王成菊等.抗溴氰菊酯家蝇在不同用药方式下的敏感性变化及其机制[J].昆虫学报1999,42(3):248~256
    24.邱立红,张文吉.微粒体多功能氧化酶系与棉铃虫对氰戊菊酯抗药性的关系[J].昆虫学报2001,44(4):447~453
    25.邱星辉,冷欣夫.棉铃虫幼虫中肠微粒体P450差光谱与O-脱甲基酶的酶学特征及其可诱导性[J].昆虫学报1999,42(4):347~352
    26.茹李军,魏岑.农药混剂对害虫抗药性发展影响的探讨[J].中国农业科学1997,30(2):65~69
    27.沈慧敏.苹果黄蚜抗甲氰菊酯种群对13种杀虫剂的交互抗性研究[J].农药1998,37(2):20~22
    28.孙洪武,韩召军,王荫长.棉铃虫对久效磷抗性的毒理学机制[J].植物保护学报2000,27(4):343~348
    29.孙耘芹,冯国蕾,袁家硅等.棉蚜对有机磷杀虫剂抗性的生化机理[J].昆虫学报1987,30(1):13~18
    30.谭福杰.农业害虫抗药性测定方法[J].南京农业大学学报1987,4(增刊):107~122
    31.谭维嘉,王荷,曹煜.棉蚜对溴氰菊酯不敏感性与水解酶的变化初探[J].植物保护学报1988,15(2):135~139
    32.唐振华,吴世雄.昆虫抗药性的遗传与进化[M].上海:上海科学技术文献出版社2000,2
    33.唐振华,周成理,吴世昌等.上海地区小菜蛾的抗药性及增效剂的作用[J].植物保护学报1992,19(2):179~184
    34.唐振华,庄佩君,韩启发等.上海地区菜缢管蚜对有机磷的抗药性及其生化检测[J].植物保护学报 1988,15(1):63~66
    35.唐振华.昆虫抗药性及其治理[M].北京:农业出版社.1993,10
    36.唐振华.我国昆虫抗药性研究的现状及展望[J].昆虫知识2000,37(2):97~103
    
    
    37.唐振华.细胞P-450在昆虫适应性和抗药性中的作用[J].昆虫知识1990,27:175~178
    38.王建军,韩召军,王荫长.新烟碱类杀虫剂毒理学研究进展[J].植物保护学报2001,28(2):178~182
    39.王金信,孔祥波,刘峰等.山东省苹果黄蚜抗性水平监测及研究[J]山东农业大学学报1998,29(2):224~230
    40.王金信,张雪梅,刘峰等.我国北方部分地区苹果黄蚜的抗药性[J].华东昆虫学报1998,7(1):97~100
    41.王靖,袁家硅,孙耘芹等.小菜蛾抗性个体不敏感乙酰胆碱酯酶的鉴定[J].昆虫学报1997,40(2):128~133
    42.王开运,慕立义,刘峰等.棉铃虫对氰戊菊酯等杀虫剂抗性的选育及其生化机理[J].昆虫学报1997,40(1):23~30
    43.魏岑,黄绍宁等.麦长管蚜的抗药性研究[J].昆虫学报1988,31(2):148~156
    44.吴文君.植物化学保护技术导论[M].西安:陕西科学技术出版社.1988
    45.吴益东,沈晋良,谭福杰等.棉铃虫对氰戊菊酯抗性机理研究[J].南京农业大学学报1995,18(2)63~68
    46.闫艳春,乔传令,钱传范.小菜蛾抗药性研究进展[J].昆虫知识1997,34(5):310~313
    47.姚洪渭,叶恭银,程家安.同翅目害虫抗药性研究进展[J].浙江农业学报2002,14(2):63~70
    48.于淦军,谭福杰,尤子平.增效磷对昆虫体内还原型谷胱甘肽及谷胱甘肽转移酶的影响[J].南京农业大学学报1990,13(4):39~44
    49.张国洲.害虫抗药性及其治理[J].安徽农业科学2002,30(4):512~514
    50.张友军,张文吉,韩熹莱等.棉铃虫抗药性的生理生化机制研究[J].昆虫学报1997,40(3):247~252
    51.张泽博.昆虫抗药性的生物测定统计法[J].植物保护,1982,(1):35~36
    52.张宗炳.杀虫剂的毒力测定[M].北京:科学技术出版社.1985
    53.赵善欢.昆虫毒理学[M].北京:农业出版社,1993
    54.赵善欢主编.植物化学保护[M].北京:中国农业出版社,1999
    55.郑炳宗,高希武,王政国等.北京及河北省北部瓜-棉蚜对拟除虫菊酯抗药性的研究初报[J].植物保护学报 1988,15(1):55~61
    56.郑炳宗,高希武,王政国等.瓜-棉蚜对有机磷及氨基甲酸酯杀虫剂抗性机制研究[J].植物保护学报1989,16(2):131~138
    57.朱福兴,王金信,刘峰等.常用杀虫剂对苹果黄蚜、龟蚊瓢虫的毒力及其选择性测定[J].
    
    植物保护学报1998,25(1):93~94
    58.朱福兴,王金信,刘峰等.瓢虫对杀虫剂的敏感性研究[J].昆虫学报1998,41(4):359~364
    59. Brader L. In: Pesticide Management and Insecticide Resistance, Watson, D. L and A. W. A. Brown eds [M]. Academic Press. 1977, 353~376
    60. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye bingding. Anal. Biochem. 1976,72:248~254
    61. Finny, D.J. Probit analysis.3rd ed. Cambridge University Press, 1971.333pp.
    62. Georghiu G.P., and C.E. Jaylor. Factors influencing the evolution of resistance in Pesticide Resistance: Strategies and Tactics for Management. Washington D C: National Academy Press, 1986, 157~168
    63. Gorun, V. et al. Modified Ellman procedure for assay of cholinesterase in crude enzymatic preparations. Analytical Biochemistry. 1978, 86:324~326
    64. Hansen, L.G. and E. Hodgson. Biochemical characteristics of insect microsomes: N- and O-demethylation. Biochem.Phamacol. 1971,20:1569~1678
    65. Melander A.L. Can insects become resistance to spray? J. Econ. Entomol.1914, 7:167
    66. Oppenoorth F.J., et al. Glutathione-S-transferase and hydrolytic activity in a tetrachlorvinphos-resistant strain of housefly and their influence on resistance. Pestic. Biochem. Physiol. 1979, 11: 176~188
    67. Scott, J.G., Lee S.S.T., Shono T. Biochemical changes in the cytochrome P450 monooxygenases of seven insecticide-resistance housefly (Musca domestica L.) strains. Pestic. Biochem. Physiol. 1990,36:127~134
    68. Van Asperen K. A study of housefly esterases by means of a sensitive eolorimetric method. J. Insect. Physiol. 1962,8:401~416
    69. Wilkinson, C. F. Role of mixed-function oxidases in insecticide resistance in Pest Resistance to Pesticides, eds. Georghiou, G.P., and T. Saito. New York: Plenum Press. 1984, 175~206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700