聚硅氧烷/聚丙烯酸甲酯互穿聚合物网络阻尼材料的制备与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文制备了聚二甲基硅氧烷与聚丙烯酸甲酯的序列半互穿聚合物网络,其中聚硅氧烷为交联结构,采用粘度分别为3300Pa·S和7000Pa·S两个品种,聚丙烯酸甲酯为线性聚合物。通过多种现代测试手段研究了IPN结构、反应机理、热分解动力学、阻尼性能和微观形态。
     红外光谱仪对聚硅氧烷和IPN固化前后的化学结构的分析表明,反应按照各自机理进行,丙烯酸甲酯与聚硅氧烷之间没有发生化学反应,说明反应具备IPN形成的基本条件。
     在热分解动力学研究中,通过在两种气氛中,分别以5、10、15和20℃/min四种升温速率条件下,采用TG-DTG联动测试,IPN材料在350℃开始热分解。热分解速率存在两个峰值,一个分解峰值在400℃~420℃之间,另一个在500℃~540℃之间,这与IPN结构中包含两组分相对应,同时发现当缓慢升温时,特别是在空气气氛中,两个分解峰减弱,热分解趋向于一个连续过程。发现在氮气气氛中的残留物重为3%,而在空气下为15%,这是因为聚硅氧烷在氮气中分解成环三硅氧烷挥发了,而在空气中形SiO_2。采用Doyle方程对第一个峰进行数学分析,发现其热分解过程满足一级反应方程式,在氮气气氛中的分解活化能小于在空气中的活化能,分别为147.405kJ.mol~(-1)和192.656kJ.mol~(-1),说明空气中的氧气参与了复杂的反应。
     高分子阻尼材料的有效阻尼功能区是在IPN材料的T_g区间内,而研究常温条件下的阻尼性能更具有重要应用价值,运用动态热机械分析(DMA)仪对IPN阻尼材料进行表征,在5℃~180℃内对其损耗因子(tanδ)进行研究,发现引发剂和交联剂的用量、聚硅氧烷的用量和分子量等参数对IPN阻尼性能的影响较大,存在一个合理配比值,当PMA与粘度为3300Pa·S的PDMS之比(质量比)为1.17:1、交联剂用量为1%时,tanδ最大值为0.735,大于0.3的温域差达到46℃。然后通过两种扫描电镜在微米层次对微观结
    
     武汉理工大学硕士学位论文
    构进行分析,发现聚硅氧烷呈连续相,聚丙烯酸酷以球状分布于连续相中,
    这是因为聚丙烯酸甲醋是线性聚合物,而且聚硅氧烷与聚丙烯酸酷的溶解度
    参数相差很大。
     另外,本论文还通过XPS电子能谱仪对工PN材料的表层和内层的化学元
    素C、51、O进行分析,发现表层与内层中的三种元素的含量并不相同,也
    没有规律可循,说明在形成IPN结构过程中,由于两相相容性不一致,它们
    的微运动趋向于两相分离,同时发现引发剂用量和反应速度对元素分布影响
    较大。
In this paper, Interpenetrating Polymer Networks (IPN) based on Polysiloxane (PDMS) and Poly(methyl acrylate) (PMA) were prepared by using MA monomer and two types of PDMS, which viscosities were 3300Pa S and 7000Pa S respectively. PDMS was crosslmked by tetraethyl orthosilicate. IPN s structure, the reaction mechanism, thermal decomposition kinetics, the damping properties and the morphology of PDMS/PMA IPN were investigated by a series of modern testing technology.
    The vulcanization reaction of the IPN and PDMS was determined by the Fourier transform infrared (FT-IR). The mechanism of the vulcanization did't change, no chemical reaction between the MA and the PDMS appeared.
    Therrnogravimetric analysis at heating rates 5,10,15 and 20 C/min was used to study the decomposition kinetics of the PDMS/PMA IPN in NI and in Air by using TG and DTG, and the upper limit of the temperature was 700 C. It was found that IPN began to decomposite at 350 C. The process of the thermal degradation was multiple steps, the curve of the rate of thermal decomposition had two peaks, one of which lied between 400 C~420 C and the other lied between 500 C~540 C, the result corresponded to the components of IPN. At the same time, especially in Air two peaks turned little and became a continuous process at low heating rate (5 C/min). The residue was 15% in Air compared to 3% in N2, because PDMS turned into SiO2 of solid state in Air, but DS of gas state in Na. The first peak was analyzed by the Doyle equation, it found that the apparent decomposition reaction order was 1.0 both of in N2 and in Air. The decomposition activation energy was lower in N2 than of in Air, which was 147.405 kJ-mol-1 and 192.656kJ.
    mol-1, respectively. It demonstrated that O2 took part in the complicated reaction.
    IPN materials constituted useful damping properties near their glass
    transition temperature (Tg), but damping property of IPN was more significant at
    
    
    
    room temperature than at the glass transition temperature. Using the dynamic mechanical analyzer(DMA), PDMS/PMA IPN was investigated at temperature of 5 - 180 C. The initiator, the component ratio, the type of PDMS and the filler effected the damping properties. The result showed that the damping ability varied with the parameter and there was an optimal value. The excellent damping material in the papers was IPN, where tan man was 0.735, and the damping functional temperature ranged with tan 8 >0.3 was 46 C. The micro-morphology and structure of PDMS/PMA IPN were characterized by two kinds of SEM. It showed that PDMS was a continuous phase, where the PMA like micro-ball dispersed. The reason was that PMA was linear polymer and that the incompatibility of PDMS and PMA leaded microphase separation.
    Additional, XPS analyzed the three kinds of elements in surface and interior of IPN, the results indicated that the content of the elements C, Si and 0 were misdistribution and different in surface as well as in interior of IPN. The reason was the poor compatibility of PDMS and PMA, and found that amount of initiator and the reaction rate effected the distribution.
引文
[1] 戴德沛编.阻尼减振降噪技术.西安:西安交通大学出版社,1986
    [2] 何曼君,陈维孝,董西侠编.高分子物理.上海:复旦大学出版社(修订版),1990.347~350
    [3] 华耀和.聚氨酯工业,1994,(4):44~47
    [4] L.H.斯珀林.互穿聚合物网络和有关材料.北京:科学出版社,1987
    [5] 张留成,刘玉龙.互穿网络聚合物.北京:烃加工出版社,1990.7
    [6] J.J.P. Staudinger. U.S. Pat. 1951, 2: 539
    [7] J.R. Millar. Chem. Soc., 1960, 23 (6): 1311
    [8] 刘瑞英,王静嫒,韩庆国等.聚丙烯酸酯/聚苯乙烯乳胶互穿聚合物网络阻尼性能的研究[J].高分子学报,1997,(2):213~216
    [9] 曾威,李树才.胶乳型互穿聚合物网络阻尼材料[J].高分子通报,2001,(1):68~72
    [10] Li Shucai, Qiu Qingwei , Jarvelap.Studies on Damping Properties of P(MMA-AN)/P(EA-nBA) LIPN [J]. Appl Polym Sci, 2000, 76:722
    [11] HU R, DIMONIEVL, EL-AASSER, et al. J Polym Sci Part B: Polym Phys, 1997, 35: 1501
    [12] Pei Weijiang, Li Shu-cai. J Appl Polym Sci, 1995, 58: 967
    [13] Yu X Q, Gao G, Wang J Y, et al. Damping materials based on polyurethane/polyacrylate IPN: dynamic mechanical spedtroscopy, mechanical properties and multi phase morphology [J], Polym Int, 1999, 48:805~810
    [14] 张明珠,李树才,卢秀萍.涂料工业.1999,(3):1~3
    [15] 于同隐,何曼君,卜海山.高聚物的粘弹性.上海:上海科学技术出版社.1986
    [16] 章基剀编.有机硅材料.北京:中国物资出版社,1999
    [17] 沈德言编.红外光谱在高分子研究中的应用.北京:科学出版社,1982
    [18] 薛奇,高分子结构中的光谱方法.北京:高等教育出版社.1995
    [19] Bischoff R, Cray S. E, Progress in Polymer Science, 1999, 24:185~219
    [20] Thomas D. A, Sperling L. H, J. Appl. Polymer. Sci. 1987, 34:409
    [21] Foster, J.N, Sperling L. H, Tomas, D.A.J. Appl. Polym. Sci, 1987, 33:2637
    [22] Windmaier J. M, Sperling L. H, J. Appl. Polym. Sci. 1984, 29: 2969
    [23] M.C.O. Chang, D. A, Thomas, and Sperling L. H, J of Polymer Science Part B, Polymer Physics, 1988, 21:1627~1640
    
    
    [24] 苗传威,夏宇正,石淑先,焦书科.乳液共混法制备丙烯酸酯系阻尼材料.北京化工大学学报,2002,29(5):42~48
    [25] 郑诗建,王聚渊,马恩第.丙烯酸酯橡胶和聚氯乙烯共混体系阻尼特征的研究.特种橡胶制品,2000,21(2):8~10
    [26] 徐晓南,姚树人,张宝真.动态力学粘弹性频率诺对离聚体乳胶IPN阻尼机制的研究.高分子材料科学与工程,1991,7(4):109~112
    [27] 周春林,张中权,江明.离聚物及其共混体系的研究-2.配位络合和质子转移对共混体系的增容作用.高分子学报,1995,3:257~263
    [28] M. Hara, X. Ma, J.A. Sawer. Macromolecules, 1995, 28:3953
    [29] Fabre, Bruno, Simonet, Jacque, J. Electroanalytical Chemisty, 1997; 434: 225~234
    [30] Jong Wan Lee, T. H. Kim, S. H. Kim, C. Y. Yoon, J. S. Lee, J. G. Han, J. Materials anAtoms, 1997; 121:474~479
    [31] R. Balkova, J. Zemek, V. Cech, J. Vanek, R. Prikryl, J. Surface and Coatings Technology, 2003; 174-175:1159~1163
    [32] Stéphanie Roualdes, René Berjoan,Jean Durand, J. Separation and Purification Technology, 2001; 25:391~397
    [33] 柯以侃,董慧茹主编.分析化学手册(第三手册:光谱分析).北京:化学工业出版社,1998
    [34] J F 拉贝克主编,吴世康,漆宗能译.高分子科学实验方法.北京:科学出版社,1987
    [35] W Klopffer. Introduction to Polymer Spectroscopy, Berlin: Springer-Verlag, 1984
    [36] 钟春发.聚氨酯/聚硅氧烷IPN阻尼弹性体研究[博士学位论文].四川:中国工程物理研究院化工材料研究所,2001
    [37] 布里格斯.D著,曹立礼,邓宗武译.聚合物表面分析-X射线光电子谱(XPS)和静态次级离子质谱(SSIMS).北京:化学工业出版社,2001
    [38] 高家武主编.高分子近代测试技术.北京:北京航空航天大学出版社,1994
    [39] 薛奇编著.高分子结构研究中的光谱方法.北京:高等教育出版社,1995
    [40] 吴人杰等著.高聚物的表面与界面.北京:科学出版社,1998
    [41] 戴杰,高学敏等.紫外光可同化丙烯酸改性聚氨酯(PUA)的ESCA及SEM研究.高分子学报,1991(5):609~614
    [42] 杜作栋等.四苯(基)苯基聚硅烷、乙烯基聚硅烷以及二者共聚物的XPS研究.高分子学报,1989(1):42~45
    
    
    [43] 高南,于志刚.聚氨酯/聚甲基丙烯酸甲酯离子聚合体型互穿聚合物网络生成动力学.高分子学报,1993,(5):529~535
    [44] 黄永民,窦东友等.乙醇在聚氨酯/乙烯基酯树脂互穿网络中的吸收动力学及传递分析.高校化学工程学报,2002,16(3)247~251
    [45] 韩怀芬,单海峰.PS/PBA胶乳型互穿网络聚合物反应表观动力学的研究.浙江工业大学学报,1998,26(1):67~72
    [46] 韩怀芬,张诚.PS/PBA/P(BA-AA)胶乳型互穿网络聚合物的合成及其反应过程表观动力学的研究.高分子材料科学与工程,1997,13(6):50~55
    [47] 刘轶群,高同斋,陈福泰.凝胶顺序对增塑PU/PGMA同步互穿网络力学性能的影响.高分子材料科学与工程,2002,16(5):129~132
    [48] 万勇军,顾宜,谢美丽.聚氨酯/乙烯基酯树脂顺序互穿聚合物网络形成反应动力学的研究.四川大学学报(工程科学版),2001,33(1):69~72
    [49] F.J. Hua, C.P. Hu. J. EuroeanPolymer. 1999, 35: 103~112
    [50] 丁学文,黄云波.芳基乙炔聚合物热分解动力学研究.功能高分子学报,2000,13(3):274~278
    [51] 陈文怡:端胺基聚氨酯/环氧树脂胶粘剂的吲化过程与热性能研究[硕士论文].武汉:武汉理工大学,2003
    [52] 胡慧萍,陈德本,钟家永.聚硅烷的热分解动力学研究.高分子材料科学与工程,1994,(3):82~86
    [53] 余钢.桐油改性酚醛树脂的耐热性研究.高分子材料科学与工程,1994,(2):87~92
    [54] 李利,赵宝昌,李锦峰等.含有六硝基芪的黑索今/乙基纤维素/硝化棉含能复合材料热分解性能的研究.弹道学报,1996,8(3):1~5
    [55] 陈延明,曹振林,张志英等.PHB/PET/HQ-TPA液晶共聚芳酯热分解动力学研究.高分子材料科学与工程,1996,12(5):132~135
    [56] 冯亚凯,孙经武,朱银邦.聚(1-氧代-2-苯基丙撑)的热分解动力学研究.高分子材料科学与工程,1996,12(6):68~74
    [57] 冯仰婕,史永强,何东明等.固体热分解动力学的热分析法研究.高分子材料科学与工程,1997,13(2):30~34
    [58] 张连来.聚芳醚腈矾(PENS)的热分解动力学.高分子材料科学与工程,1997,13 (1):98~102
    [59] Cai Xian Wang Yexin, Kong Zhou, Siren Hong. Journal of Fudan University (Natural Science), 1998, 37 (5)
    
    
    [60] Wang Zhengzhou, Wang Ying, Edwin Metcalfe. Journal of China University of Science and Technology, 1998, 28 (5)
    [61] 黄俐研,金熹高.聚亚苯基苯并二噻唑与聚亚苯基苯并二恶唑的热分解.高分子学报,1999,(3):338~345
    [62] 刘俊峰.聚氨酯改性有机硅热分解反应动力学的研究.高分子材料科学与工程,2000,16(2):152~154
    [63] 陈平,田景利.聚乙烯热分解反应动力学处理方法比较.抚顺石油学院学报,2000,20(2):9~12
    [64] H. ARIASWA, T.B. BRILL, J. COMBUSTION AND FLAME, 1998, 112(4): 533~544
    [65] J. Yang, R. MIRANDA, C. Roy, J. Polymer Degradation and Stability, 2001, 73 (3): 455~461
    [66] 冯春祥,宋永才,谭自烈等.元素有机化合物及其聚合物.长沙:国防科技大学.1999
    [67] W.B.加尔莫诺夫,秦怀德等译.合成橡胶.北京:化学出版社,1988.368~374
    [68] 高家武.高分子材料近代测试方法.北京:北京航空航天大学出版社,1994.76
    [69] 晨光化工研究院有机硅编写组.有机硅单体及聚合物.北京:化学工业出版社,1986.233~237
    [70] Nishizki H, Yoshida K, Wang J H. comparative study of various methods for thermogravimetric analysis of polystyrene degradation[J]. Appl Polym Sci. 1980.25:2869~2877
    [71] Ozawa Y. A new method of analyzing thermogravimetric data[J]. Bull chem. Soc Japan, 1965, 38:1881~1886

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700