石墨填充橡胶材料的性能研究及纳米复合材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨是一种层状材料,具有优良的润滑性能,在剥离的状态下拥有非常高的形状系数,石墨片层是比强度最高的材料之一,而且拥有独特的功能特性,例如优异的导电性和导热性等。与碳纳米管相比,石墨的价格要低很多。本文考察了石墨粒径对丁腈橡胶性能的影响,然后采用乳液共混的方法成功制备了石墨/橡胶纳米复合材料,并对其性能作了系统的研究。
     在论文的第一部分中,选用了四种商品化的不同粒径的石墨粉,采用熔体共混法分别将其直接加入丁腈橡胶中,填充变量均为20、40、60份,主要研究了石墨粒径及分散对丁腈橡胶力学性能及摩擦磨损性能的影响。研究表明,直接的熔体共混法制备的石墨/丁腈橡胶复合材料中,膨胀石墨的疏松结构未能在双辊的强烈剪切力作用下分散为均匀的细小颗粒,而是有少量颗粒分散到较小的尺度,但大部分的分散相片层的直径仍然在100μm左右,厚度约几个微米。超细石墨粒径小,对橡胶力学性能的补强效果好。在相同的填充份数下,超细石墨填充的丁腈橡胶硫化胶是四种胶料中300%定伸应力和拉伸强度最高的,而且扯断永久变形小。增加石墨的用量可以提高丁腈橡胶硫化胶的摩擦学性能。在60 phr填充量下,大粒径分散的石墨(EG)填充的丁腈橡胶其摩擦系数相对要低,而小粒径分散的石墨(超细石墨)填充的丁腈橡胶则具有最小的磨损率。在应用石墨作为改性填料时,应使用小粒径石墨,可以在保持橡胶机械性能的同时提高其摩擦学性能。
     在论文的第二部分,为制备石墨/丁腈橡胶纳米复合材料,首先采用超声波粉碎处理膨胀石墨来制备石墨纳米薄片,然后对直接共混、通过低聚物液体丁腈橡胶预处理石墨、以丙酮作为溶剂进行溶液共混、采用不同表面活性剂进行乳液共混的方法进行了对比研究。结果表明,首次提出的乳液共混法(LCM法)可成功地制备石墨/丁腈橡胶纳米复合材料。电镜观察及XRD分析结果说明,采用十二烷基磺酸钠稳定纳米石墨水悬浮液,并与丁腈橡胶乳胶共混共沉制备的石墨/丁腈橡胶纳米复合材料中,石墨分散均匀,片层的聚集体尺寸更小,达到了纳米片层的尺度,而且同时存在橡胶大分子插层、表面活性剂插层以及未插层的多种石墨分散结构。通过力学性能、动态力学性能、功能性能的测试,发现石墨/丁腈橡胶纳米复合材料具有大幅提高的力学性能,在10 phr的石墨用量内,纳米复合材料的硬度、定伸应力及拉伸强度均随着石墨用量的增加而明显提高,断裂伸长率则有所下降;纳米石墨的加入对复合材料的动态储能模量有明显的增强效果,特别是在橡胶态下,纳米复合材料的动态模量比纯胶大幅度提高,而且随着石墨用量的增加,纳米复合材料的玻璃化转变温度明显向高温方向移动;复合材料的摩擦系数降低,磨损性能大大提高;复合材料还具有多样的功能特性,如优异的耐磨性能、优异的气体阻隔性能、一定的导电性能及导热性能等。
     论文的第三部分中,通过对石墨/丁腈橡胶及石墨/丁苯橡胶纳米复合材料硫化特征的研究,发现其特殊的自发硫化行为,即不需要其它的硫化剂就可以在一定的温度下硫化交联。自硫化需要活化能,对温度有一定的依赖性。平衡溶胀实验的结果、交联密度的测定、自硫化前后橡胶材料玻璃化转变温度的变化,则进一步证实了自硫化的存在。通过ESR分析以及对硫化曲线特征的总结,可以初步认为自硫化过程的机理为纳米石墨片层上的自由基引发交联,而其引发效率与石墨片层的分散密切相关。自硫化行为的最大特点是高度强化纳米复合材料的界面。
     本文的最后通过LCM方法制备了纳米石墨/羧基丁腈橡胶及纳米石墨/丙烯酸酯橡胶复合材料,并对其结构与性能作了初步的研究。扫描电镜观察发现石墨在这两种橡胶基体中的分散都很均匀,石墨片层的直径较大、而厚度则在纳米级范围。力学性能测试表明,与石墨/丁腈橡胶纳米复合材料相似,随着纳米石墨用量的增加(羧基丁腈橡胶中:0~20 phr;丙烯酸酯橡胶中:0~10 phr),复合材料的力学性能逐渐提高,其中以定伸应力的提高最为显著。
Graphite is a layered material possessing excellent lubrication property and high aspect ratio in an exfoliated state, and it is also one of the strongest materials per unit weight with unique functional properties, e.g. good electrical and thermal conductivities. In addition, graphite is very cheap compared to carbon nanotubes. In this paper, the influence of graphite particles size on the properties of NBR was firstly investigated, graphite/rubber nanocomposites were successfully fabricated through latex compounding technology, and the properties of graphite/rubber nanocomposites were systematically studied, mainly using NBR as matrix material.
     Firstly, four graphite powder fillers with different form and size were mixed through melt compounding with NBR at 20, 40 and 60phr of the filler loadings, and the obtained compounds were characterized by SEM, tensile test, friction and wear test. Through the SEM observation, it was found that the expanded graphite could not be broken down to small particles uniformly when blended with rubber on the twin-roller. In the tensile test, the graphite with the smallest size possessed the best reinforcement ability as expected. The tribological properties of the rubber were improved when adding more graphite. The largest graphite particles imparted the lowest friction coefficient of the composites among four fillers, but the sub-micrometer graphite provided the best wear property to NBR.
     Secondly, a facile latex approach has been adopted to finely incorporate graphite nanosheets into rubber matrix and achieve high performance elastomeric nanocomposites with both excellent mechanical properties and versatile functional properties. Scanning electron microscope, transmission electron microscope and X-ray diffraction experiments show that the nanostructures of the obtained nanocomposites are higher extent of exfoliation and intercalation of graphite in the NBR matrix. Mechanical and dynamic mechanical tests demonstrate that The NBR nanocomposites possess greatly increased modulus and strength, and desirable strong interface. Moreover, The NBR nanocomposites possess greatly improved wear resistance, better gas barrier property, and good electrical/thermal conductivity. These versatile functional properties make NBR/EG nanocomposites a new class of promising advanced materials.
     The unexpected self-crosslinking of graphite/elastomeric nanocomposites was discovered and proved through oscillating disc rheometer and equilibrium swelling experiment. Investigated by various polymer types, X-ray photoelectron spectroscopy, electron spin resonance and Fourier transform infrared spectroscopy, a radical initiation mechanism was put forward to explain the self crosslinking reaction.
     In the final part, graphite/xNBR and graphite/ACM composites were prepared via LCM and their structure and the mechanical properties were studied.
引文
[1]黄兴,林原.新世纪密封技术面临的问题及其发展趋势[J].润滑与密封,2002,1:76-78.
    [2]Marek G.On friction reduction in rubber lip seals for rotating shafts[J].Sealing Technology,1997,40:8-11.
    [3]马怀琳.汽车油封技术及发展动向[J].汽车技术,1994,11:1-5.
    [4]张建斌,郦华兴,姜敏.提高旋转轴油封性能的方法[J].橡胶工业,2001,48(9):548-551.
    [5]张庆虎.汽车用橡胶油封的性能及材料选择[J].世界橡胶工业,2002,29(01):27-36.
    [6]林孔勇,金晟娟,梁星宇.橡胶工业手册[M],修订版,第六分册,工业橡胶制品.北京:化学工业出版社,1993
    [7]唐坤明,黄克俊,李成奇.石墨在聚丙烯酸酯橡胶中的应用[J].橡胶工业,1995,42(12):723-725.
    [8]张在利,曾子敏,李嘉.氟橡胶性能、应用及我国氟橡胶工业发展现状[J].化工新型材料,2003,31(2):9-12.
    [9]李振环,李妍,法锡涵,杨怀玉,周仁民.氢化丁腈橡胶性能及其在机械密封中的应 用[J].流体机械,2003,3l(9):26-28.
    [10]高福年.硅橡胶骨架油封的研制[J].橡胶工业,2002,49(5):289-291.
    [11]屈盛官,高永忠,杨圣尔.聚四氟乙烯油封在车辆上的应用研究[J].2001,29(6):20-22.
    [12]王进文.减小橡胶摩擦因数的表面改性方法[J].橡胶工业,2002,49(12):761-765.
    [13]毕莲英.改变橡胶摩擦性能的综合方法[J].世界橡胶工业,2001,28(1):36-39.
    [14]李法华.功能性橡胶材料及制品的发展[J].橡胶工业,2001,48(1):112-121.
    [15]Humphrey B.Transparent film adds value to elastomers[J].Rubber World,1999,220(1):24-25.
    [16]Bielinski D.Low friction coating for rubber[J].Tribologia,2000,31(1):65-75.
    [17]王斌,王德贵,陆兆达.丁腈橡胶的XeF2表面氟化改性研究[J].应用化学,1997,14:51-54.
    [18]徐固.用卤化方法处理丁腈橡胶油封[J].橡胶工业,1986,33(5):1-3.
    [19]邹德广,杜华太,张斌.影响油封密封性能的材料结构因素分析[J].特种橡胶制品,2000,21(1):41-44.
    [20]Kobiki K.Hydrogenated acrylonitrile rubber compositions and wear-resistant self-lubricating sealing materials[P].JP 0940807,10 Feburary 1997.
    [21]Higashira T,Mikuni K.Nitrile rubber seals with low dynamic friction coefficient[P].JP 2003064223 A2,5 March 2003.
    [22]Saito,H;Nagano,A;Fujiyama,M.Low-friction nitrile rubber compositions for sliding parts[P].JP 2004115637 A2,15 April 2004.
    [23]高福年,李思婉.骨架油封白润滑性的提高及其机理的探讨[J].特种橡胶制品,1995,16(3):23-27.
    [24]颜志光.润滑材料与润滑技术[M].北京,中国石化出版社,2000.
    [25]Fusaro R L.Self-lubricating polymer composites and polymer transfer film lubrication for space applications[M].NASA Technical Memorandum 102492,February 1990.
    [26]Bielinski D,Slusarski L.Physical modification of elastomers to improve their tribological properties[J].Wear,1993,169:257-263.
    [27]Khedkar J,Negulescu I,Meletis E I.Sliding wear behavior of PTFE composites[J].Wear,2002,252:361-369.
    [28]乐启发,叶昌明,金菊香.改性聚四氟乙烯密封材料的研究与开发[J].中国塑料,2000,14(7):40-44.
    [29]何春霞,康丽霞.聚四氟乙烯及其石墨填充复合材料的摩擦磨损特性[J].工程塑料应用,2001,29(3):1-3.
    [30]Liu W M,Huang C X,Gao L,Wang J M,Dang H X.Study of the friction and wear properties ofMoS_2-filled Nylon 6[J].Wear,1991,151:111-118.
    [31]Bermudez M D,Carrion-Vilches F J,Martinez-Mateo 1,Marti nez-Nicolas G.Comparative study of the tribological properties of polyamide 6 filled with molybdenum disulfide and liquid crystalline additives[J].Journal of Applied Polymer Science,2001,81:2426-2432.
    [32]Wang J X,Gu M Y,Bai S H,Ge S R.Investigation of the influence of MoS_2 filler on the tribological properties of carbon fiber reinforced nylon 1010 composites[J].Wear,2003,255:774-779.
    [33]边俊峰,栗付平,张洪雁.二硫化钼在氟醚橡胶中的应用[J].橡胶工业,2000,47:274-275.
    [34]Bahadur S,Gong D L.The action of fillers in the modification of the tribological behavior ofpolymers[J].Wear,1992,158(1/2):41-59.
    [35]李秀兵,高义民,邢建东,王昱,方亮.树脂基复合材料中石墨与MoS2的减摩作用机理[J].西安交通大学学报,2004,38(5):452-456.
    [36]杨建,田明,贾清秀,张立群.二硫化钼对NBR胶料性能的影响[J].橡胶工业,2005,52(10):587-591.
    [37]Hamed G R.Reinforcement of rubber[J].Rubber Chemistry and Technology,2000,73:524-533.
    [38]Zhang L Q,Jia D M.The nano-reinforcing technique and science of rubber[C].Symposium of international rubber conference 2004,Volume A,Beijing,China,46-66.
    [39]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    [40]张文钲.纳米级二硫化钼的研发现状[J].中国钼业,2000,24(5):23-26.
    [41]Chung D D L.Review:Exfoliation of graphite[J].Journal of Materials Science,1987,22:4190-4198.
    [42]王铀,沈静铢.制备聚合物纳米复合材料展望[J].化工新型材料,1998,1:8-12.
    [43]刘祥萱,马卫华,扬绪杰.纳米粒子催化马来酰亚胺溶液聚合[J].高分子材料,1997,4:1-4.
    [44]Eduardo R H,Pilar A,Blanca C,Juan C G.Nanocomposite materials with controlled ion mobilityk[J].Advanced Materials,1995,7(2):180-184.
    [45]赵竹第,李强,等.尼龙6/蒙脱土纳米复合材料的制备、结构与力学性能的研究[J].高分子学报,1997,5:519-523.
    [46]王胜杰,李强,漆宗能.硅橡胶/蒙脱土复合材料的制备、结构与性能[J].高分子学报,1998.2:149-153.
    [47]章永化,龚克成.Sol-Gel法制备有机/无机纳米复合材料的进展[J].高分子材料科学与工程,1997,13(4):14-18.
    [48]徐炽焕.聚合物合金和纳米复合材料[J].化工新型材料,1998,26(11):19-22.
    [49]刘立敏,乔放,朱晓光.熔体插层制备尼龙6/蒙脱土纳米复合材料的性能表征[J].高分子学报,1998,3:303-310.
    [50]乔放,李强,漆宗能.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究[J].高分子通报,1997,3:135-143.
    [51]余鼎声,王一中.粘土/尼龙6嵌入化合物的合成与表征[J].高分子材料科学与工程,1998,14(3):26-29.
    [52]Zhang L Q,Jia D M.The nano-reinforcing technique and science of rubber[C].Symposium of international rubber conference 2004,Volume A,Beijing,China,46-66
    [53]Hamed G R.Reinforcement of rubber[J].Rubber Chemistry and Technology,2000,73:524-533
    [54]吴绍吟,李红英,马文石,陈立辉.纳米碳酸钙对溶聚丁苯橡胶胶料的补强作用[J].橡胶工业,1999,46(8):456-460.
    [55]吴绍吟,练恩生,马文石,李小锦,苟权俊.纳米碳酸钙填充NBR的研究[J].橡胶工业,2000,47(5):267-271.
    [56]周祚万,楚珑晟,张再昌.纳米氧化锌在橡胶复合材料中的初步应用[J].橡胶工业,2002,49(7):403-405.
    [57]周丽玲,陈桂兰,傅政,李有秋,梅国鹏.纳米氧化锌的结构形态及其在BR中胶料中的应用[J].橡胶工业,2003,50(1):15-18.
    [58]林桂,钱燕超,张鹏,徐瑞芬,于亮,张立群.纳米二氧化钛填充橡胶复合材料的分 散结构与性能[J].合成橡胶工业,2005,(2):98-104.
    [59]Tian M,Qu C D,Feng Y X,Zhang L Q.Structure and properties of fibrillar silicate/SBR composites by direct blend process[J].Journal of Materials Science,2003,38:4 917-4 920.
    [60]宁英沛,卢祥米,张忠琨,王彦妮.纳米导电纤维填充硅橡胶的性能[J].合成橡胶工业,1995,18(6):332-334.
    [61]陈克正,裘怿明,张忠琨.纳米导电纤维与导电炭黑并用填充硅橡胶胶料的流变性能[J].橡胶工业,1998,45(10):583-586.
    [62]Sanui K,Ogata N,Kamitani K,Watanabe M.ln-situ direct polycondensation in polymer matrices.II.ln-situ direct polycondensation in styrene-butadiene block copolymers[J].Journal of Polymer Science Part A Polymer Chemistry,1993,31(3):597-602.
    [63]国家自然科学基金委员会.高分子材料科学[M].P63,科学出版社,北京,1994.
    [64]Zhang L Q,Wang Y Z,Wang Y Q,Sui Y,Yu D S.Morphology and Mechanical Properties of Clay/Styrene-Butadiene Rubber Nanocomposites[J].Journal of Applied Polymer Science,2000,78:1873-1878.
    [65]Wu Y P,Wang Y Q,Zhang H F,Wang Y Z,Yu D S,Zhang L Q,Yang J.Rubber-pristine clay nanocomposites prepared by co-coagulating rubber latex and clay aqueous suspension[J].Composites Science and Technology,2005,65:1195-1202.
    [66]Usuki A,Kawasumi M,Kojima Y,Okada A,Kurauchi T,Kamigaito O.Swelling behavior of montmorillonite cation exchanged for v-amine acid by 1-caprolactam[J].J Mater Res,1993,8:1174-1178.
    [67]Reichert P,K Kressler J,Thomann R,Mulhaupt R,Stoppelmann G.Acta Polym,1998,49:116-123.
    [68]Messersmith P B,Giannelis E P.Chem Mater,1993,5:1064-1066,
    [69]Pantoustier N,Alexandre M,Degee P,Calberg C,Jerome R,Henrist C,Cloots T,Tulmont A,Dubois P.Polymer,2001,9:1-9.
    [70]Pantoustier N,Lepoittevin B,Alexandre M,Kubies D,Caberg C,Jerome R,Dubois P.Polym Eng Sci,2002,42:1928-1937.
    [71]Zhu J,Morgan A B,Lamelas F J,Wilkie C A.Fire properties of polystyrene-clay nanocomposites[J].Chem Mater,2001,13:3774-3780.
    [72]Okamoto M,Morita S,Yaguchi H,Kim Y H,Kotaka T,Tateyama H.Polymer,2000,41:3887-3890.
    [73]Okamoto M,Morita S,Kim Y H,Kotaka T,Tateyama H.Polymer,2001,42:1201-1206.
    [74]Yao K J,Song M,Hourston D J,Luo D Z.Polymer/layered clay nanocomposites:2polyurethane nanocomposites[J].Polymer,2002,43:1017-1020.
    [75]Tudor J,Wilington L,O'Hare D,Royan B.Intercalation of catalytically active metal complexes in phyllosilicates and their application as propene polymerization catalyst[J].Chem Commun,1996,17:2031-2032.
    [76]Sun T,Garces J M.Adv Mater,2002,14:128-130.
    [77]Alexandre M,Dubois P,Sun T,Graces JM,Jerome R.Polymer,2002,43:2123-2132
    [78]Bergman J S,Chen H,Giannelis E P,Thomas M G,Coates G W.J.Chem Soc Chem Commun,1999,21:2179-2180.
    [79]Messersmith P B,Giannelis E P.Chem Mater,1994,6:1719-1725.
    [80]Lan T,Pinnavaia T J.Chem Mater,1994,6:2216-2219.
    [81]Becket O,Varley R,Simon G.Morphology,thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins[J]. Polymer,2002,43:4365-4373.
    [82] Messersmith P B, Giannelis E P. Synthesis and barrier properties of poly(1-caprolactone)-layered silicate nanocomposites[J]. J Polym Sci Part A Polym Chem,1995,33: 1047-1057.
    [83] US 4889885[P].
    [84] WO 9700910[P].
    
    [85] Vaia R A, Ishii H, Giannelis E P. Chem Mater, 1993, 5: 1694-1696.
    [86] Liu L M, Qi Z N, Zhu X G. Studies on nylon 6/clay nanocomposites by melt-intercalation process[J].J.Appl Polym Sci, 1999,71: 1133-1138.
    
    [87] Usuki A, Kato M, Okada A, Kurauchi T. J Appl Polym Sci, 1997,63: 137-138.
    [88] Wang K H, Choi M H, Koo C M, Choi Y S, Chung U. Polymer, 2001, 42: 9819-9826.
    [89] Paul M-A, Alexandre M, Degee P, Henrist C, Rumont A, Dubois P. Polymer, 2003, 44:443-450.
    
    [90] Usuki A, Tukigase A, Kato M. Polymer, 2002, 42: 2185-2189.
    [91] Davis C H, Mathias L J, Gilman J W, Schialdi D A, Shields J R, Trulove O, Sutto T E,Delong H C. J Polym Sci Part B Polym Phys, 2002, 40: 2661-2666.
    [92] Chisholm B J, Moore R B, Barber G, Khouri F, Hempstead A, Larsen M, Olson E, Kelley J,Balch G, Caraher J. Macromolecules, 2002, 35: 5508-5516.
    
    [93] Huang X, Lewis S, Brittain W J, Vaia R A. Macromolecules, 2000, 33: 2000-2004.
    [94] Sinha Ray S, Maiti P, Okamoto M, Yamada K, Ueda K. Macromolecules, 2002, 35:3104-3110.
    
    [95] Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K. Chem Mater, 2002, 14: 4654-4661.
    [96] Pluta M, Caleski A, Alexandre M, Paul M-A, Dubois P. Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties[J]. J Appl Polym Sci, 2002, 86(6): 1497-1506.
    [97] Paul M-A, Alexandre M, Degee P, Henrist C, Rumont A, Dubois P. Polymer, 2003, 44:443-450.
    [98] Sinha Ray S, Yamada K, Okamoto M, Ueda K. New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology[J]. Polymer, 2003,44: 857-866.
    
    [99] Sinha Ray S, Okamoto K, Okamoto M. Macrololecules, 2003, 36: 2355-2367.
    [100] Kim B K, Seo J W, Jeong H M. Morphology and properties of waterborne polyurethane/clay nanocomposites[J]. European Polymer Journal, 2003, 39(1): 85-91.
    
    [101]刘大华.合成橡胶工业手册[M].化学工业出版社,1991.
    
    [102] Jimenez G, Ogata N, Kawai H, Ogihara T. Structure and thermal/mechanica properties of poly(s-caprolactone)-clay blend[J]. J Appl Polym Sci, 1997, 64: 2211-2220.
    [103] Wu J, Lener M M. Chem Mater, 1993, 5: 835-838.
    
    [104] Hyun Y H, Lim S T, Choi H J, Jhon M S. Macromolecules, 2001, 34: 8084-8093.
    [105] Lim S K, Kim J W, Chin I, Kwon Y K, Choi H J. Chem Mater, 2002, 14: 1989-1994.
    [106] Hackett E, Manias E, Giannelis E P. Computer Simulation Studies of PEO/Layer Silicate Nanocomposites[J]. Chem Mater, 2000, 12: 2161-2167.
    [107] Ogata N, Kawakage S, Ogihara T. Poly(vinyl alcohol)-clay and poly(ethylene oxide)-clay blend prepared usingwater as solvent[J]. J Appl Polym Sci, 1997, 66: 573-581.
    [108]Greenland D J.Adsorption of poly(vinyl alcohols)by montmorillonite[J].J Colloid Sci,1963,18:647-664.
    [109]Francis C W.Adsorption of polyvinylpyrolidone on reference clay minerals[J].Soil Sci,1973,115:40-54.
    [110]Sadhu A,Bhowmick A K.Preparation and Properties of Styrene-Butadiene RubberBased Nanocomposites:The Influence of the Structural and Processing Parameters[J].J Appl Polym Sci,2004,92:698-709.
    [111]Pramanik M,Srivastava S K,Samanteray B K.Rubber-clay nanocomposite by solution blending[J].J.Appl.Polym.Sci.,2003,87:2216-2220.
    [112]Schon F,Thomann R,Gronski W.Shear controlled morphology of rubber/organoclay nanocomposites and dynamic mechanical analysis[J].Macromol Syrup,2002,189:105-110.
    [113]Varghese S,Karger-Kocsis J.Nature rubber-based nanocomposites by latex compounding with layer silicates[J].Polymer,2003,44:4921-4927.
    [114]Wang Y Z,Zhang L Q,Tang C H.Preparation and characterization of rubber-clay nanocomposites[J],J Appl Polym Sci,2000,78:1879-1884.
    [115]Wu Y P,Jia Q X,Yu D S,et al.Structure and properties of nitrile rubber(NBR)-clay nanocomposites by co-coagulating NRR latex and clay aqueous suspension[J].J Appl Polym Sci,2003,89:2855-3858.
    [116]Wu Y P,Zhang L Q,Wang Y Q,et al.Structure of carboxylated acrylonitrile- butadiene rubber(CNBR)-clay nanocomposites by co-coagulating rubber latex and clay aqueous suspension[J].J Appl Polym Sci,2001,82:2842-2848.
    [117]Varghese S,Gatos K G,Apostolov A,et al.Morphology and mechanical properties of layered silicated reinforced nature and polyurethane rubber blends produce by latex compounding[J].J Appl Polym Sci,2004,92:543-551.
    [118]刘岚,罗远芳,贾德民等.胶乳接枝插层法制备天然橡胶/蒙脱士纳米复合材料的研究[J].广州化工,2003,31:103-106.
    [119]Vaia R A,Price G,Ruth P N,Nguyen H T,Lichtenhan J.Polymer/layered silicate nanocomposites as high performance ablative materials[J].Appl Clay Sci,1999;15:67-92.
    [120]Giannelis E P,Krishnamoorti R,Manias E.Polymer-silica nanocomposites:model systems for confined polymers and polymer brushes[J].Adv Polym Sci,1999,118:108-147.
    [121]LeBaron P C,Wang Z,Pinnavaia T J.Polymer-layered silicate nanocomposites:an overview[J].Appl Clay Sci,1999,15:11-29.
    [122]Biswas M,Sinha Ray S.Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites[J].Adv Polym Sci,2001,155:167-221.
    [123]Kornmann X,Lindberg H,Berglund L A.Synthesis of epoxy-clay nanocomposites:influence of the nature of the clay on structure[J].Polymer,2001,42:1303-1310.
    [124]Alexandre M,Dubois P.Polymer-layered silicate nanocomposites:preparation,properties and uses of a new class of materials[J].Macromolecular Materials and Engineering,2000,28:1-63.
    [125]Okada A,Kawasumi M.Synthesis and characterization of anylon-6/clay hybrid[J].Polym Prepr,1987,28(2):447-448.
    [126]Kojima Y,Usuki A,Kawasumi M,Okada A,Kurauchi T,Kamigaito O.One-pot synthesis of nylon 6-clay hybrid[J].J Polym Sci Part A Polym Chem,1993,31:1755-1758.
    [127]Reichert P,Nitz H,Klinke S,Brandsch R,Thomann R,Mulhaupt R.Poly(propylene)/organoclay nanocomposite formation:influence of compatibilizer functionality and organoclay modification[J].Macromol Mater Eng,2000,275:8-17.
    [128]Kojima Y,Usuki A,Kawasumi M,Okada A,Kurauchi T,Kamigaito O,Kaji K.Novel preferred orientation in injection-molded nylon 6-clay nanocomposites[J].J Polym Sci Part B Polym Phys,1995,33:1039-1045.
    [129]Wang Z,Lan T,Pinnavaia T J.Hybrid organic-inorganic nanocomposites formed from an epoxy polymer and a layered silicic acid(Magadiite)[J].Chem Mater,1996,8:2200-2204.
    [130]Zilg C,Mulhaupt R,Finter J.Morphology and toughness/stiffness balance of nanocomposites based upon anhydridecured epoxy resins and layered silicates[J].Macromol Chem Phys,1999,200:661-670.
    [131]Zheng H,ZhangY,Peng Z L,et al.Influence of clay modification on the structure and properties of EPDM/montmorillonite nanocomposites[J].Polym Testing,2004,23:217-223.
    [132]郑华,彭宗林,张勇,等.EPDM/有机蒙脱土纳米复合材料的制备利性能研究[J].橡胶工业,2003,50:398-342.
    [133]Okada A,Usuki S,Kurauchi T,et al.Hybrid organic-inorganic composites.ACS Symp Ser,1995.
    [134]Yano K,Usuki A,Okada A,Kurauchi T,Kamigaito O.Synthesis and properties of polyimide-clay hybrid[J].J Polym Sci Part A Polym Chem,1993,31:2493-8.
    [135]Yano K,Usuki A,Okada A,Kurauchi T,Kamigaito O.Synthesis and properties of polyimide-clay hybrid[J].Polym Prepr(in Japanese),1991,32(1):65-67.
    [136]Yano K,Usuki A,Okada A.Synthesis and properties of polyimide-clay hybrid films[J].J Polym Sci Part A Polym Chem,1 997,3 5:2289-94.
    [137]张惠峰,冯予星,吴友平,等.SBR粘土纳米复合材料的气密性能研究[J].橡胶工业,2001,48(10):587-590.
    [138]张立群,孙朝晖,王一中,等.粘土/NBR纳米复合材料的性能研究[J].橡胶工业,1998,46(4):213-216.
    [139]Sinha Ray S,Yamada K,Okamoto M,Ogami A,Ueda K.New polylactide/layered silicate nanocomposites 3 High performance biodegradable materials[J].Chem Mater,2003,15:1456-65.
    [140]Blumstein A.Polymerization of adsorbed monolayers:Ⅱ.Thermal degradation of the inserted polymers[J].J Polym Sci A,1965,3:2665-2673.
    [141]Giannelis E P.Polymer-layered silicate nanocomposites:synthesis,properties and applications[J].Appl Organomet Chem,1998,12:675-680.
    [142]Gilman J W.Flammability and thermal stability studies of polymer-layered silicate(clay)nanocomposites[J].Appl Clay Sci,1999,15:31-49.
    [143]Zanetti M,Camino G,Thomann R,Mulhaupt R.Synthesis and thermal behavior of layered silicate-EVA nanocomposites[J].Polymer 2001,42:4501-4507.
    [144]Sur G S,Sun H L,Lyu S G,Mark J E.Synthesis,structure,mechanical properties,and thermal stability of some polysulfone/organoclay nanocomposites[J].Polymer,2001,42:9783-8789.
    [145]Lepoittevin B,Devalckenaere M,Pantoustier N,Alexandre M,Kubies D,Calberg C,Jerome R,Dubois P.Poly(1-caprolactone)/clay nanocomposites prepared by melt intercalation:mechanical,thermal and theological properties[J].Polymer.2002,43:4017-4023.
    [146]Yoon J T,Jo W H,Lee M S,Ko M B.Effects of comonomers and shear on the melt intercalation of styrenics/clay nanocomposites[J].Polymer,2001,42:329-336.
    [147]Kim S W,Jo W H,Lee M S,Ko M B,Jho J Y.Preparation of clay-dispersed poly(styrene-co-acrylonitrile)nanocomposites using poly(1-caprolactone)as a compatibilizer[J].Polymer,2001,42:9837-9842.
    [148]Fujiwara S,Sakamoto T.Flammability properties of Nylon-6/mica nanocomposites.Kokai patent application.No.SHO 511976-109998,1976.
    [149]Gilman J W,Kashiwagi T,Lichtenhan J D.Flammability studies of polymer-layered silicate nanocomposites[J].SAMPE J,1997,33:40-45.
    [150]Gilman J W,Jackson C L,Morgan A B,Harris Jr R,Manias E,Giannelis E P,Wuthenow M,Hilton D,Phillips S H.Flammability properties of polymer-layered silicate nanocomposites.Propylene and polystyrene nanocomposites[J].Chem Mater,2000,12:1866-1873.
    [151]Hutchison J C,Bissessur R,Shiver D F.Conductivity anisotropy of polyphosphazene-montmorillonite composite electrolytes[J].Chem Mater,1996,8:1597-1599.
    [152]Kurokawa Y,Yasuda H,Oya A.J Mater Sci Lett,1996,15:1481.
    [153]Chung D D L.Graphite review[J].Journal of Materials Science,2002,37:1475-1489.
    [154]Milewski J V,katz H S.Handbook of Reinforcements for Plastics[M].Van Nostrand Reinold Co.,New York,1987,Page 42.
    [155]Ebbesen T W.Carbon Nanotubes[M].CRCPress,Boca Tation,1997,Page 5.
    [156]白新德,等.纳米复合材料-石墨层间化合物(GlCs)的电化学合成研究[J].复合材料学报,1996,13(2):53.
    [157]Suzuki M,et al.Phys Rev B,1985,32(10):6800.
    [158]Inagaki M.Application of graphite intercalation compounds[J].J Mater Res,1989,4(6):1560.
    [159]周伟,董建,兆恒,沈万慈,康飞宇.膨胀石墨结构的研究[J].炭素技术,2000,(109):26-30.
    [160]Chuan X,Chen D,Zhou X.Intercalation of CuC12 into expanded graphite[J].Carbon,1997,35(2):311-313.
    [161]Inagaki M,Suwa T.Pore structure analysis of exfoliated graphite using image processing of scanning electron micrographs[J].Carbon,2001,39(6):915-920.
    [162]Podall H,Foster W E,Giraitis A P.J Org Chem,1958,23:82.
    [163]Shioyama H.Synth Met,2000,114:1.
    [164]Shioyama H.Carbon,1997,35:1664.
    [165]Shioyama H,Tatsumi K,Iwashita N,et al.Synth Met,1998,96:229.
    [166]Uhl F M,Wilkie C A.Polymer Degradation and Stability,2002,76:111.
    [167]Xiao M,Sun L Y,Liu J J,et al.Polymer,2002,43(8):2245.
    [168]Chen G H,Weng W.G,Wu D J,Wu C L.PMMA/graphite nanosheets composite and its conducting properties[J].European Polymer Journal,2003,39:2329-2335.
    [169]Chen G H,Wu D J,Weng W G,He B,Yan W L.Preparation of polystyrene-graphite conducting nanocomposites via intercalation polymerization[J].Polymer International,2001,50:980-985.
    [170]Pan Y X,Yu Z Z,Ou Y C,Hu G H.A New Process of Fabricating Electrically Conducting Nylon 6/Graphite Nanocomposites via Intercalation Polymerization[J].J Polym Sci Part B Polym Phys,2000,38:1626-1633.
    [171]Du X S,Xiao M,Meng Y Z.Synthesis and Characterization of Polyaniline/Graphite Conducting Nanocomposites[J].Journal of Polymer Science Part B:Polymer Physics,2004,42:1972-1978.
    [172]Lu J R,Weng W,Chert X F,Wu D J,Wu C L,Chen G H.Adv Funct Mater,2005,15:1358.
    [173]Jia W,Tchoudakov R,Narkis M,Siegmann A.Polym Compos,2005,26:526.
    [174]Chert G H,Wu D J,Weng W G,Yah W L.J Appl Polym Sci,2001,82:2506.
    [175]Wang W P,Pan C Y.J Polym Sci Part B Polym Phys,2003,41:543.
    [176]Wang W P,Pan C Y.Eur Polym J,2004,40:543.
    [177]Uhl F M,Wilkie C A.Nylon/Graphite Nanocomposites[J].Polymer Preprints,2001,42(2):176.
    [178]Jia W,Tchoudakov R,Narkis M,Siegmann A.Performance of Expanded Graphite and Expanded Milled-Graphite Fillers in Thermosetting Resins[J].Polymer Composites,2005,26(4):526-533.
    [179]Liu D W,Du X S,Meng Y Z.Preparation of NBR/expanded graphite nanocomposites by simple mixing[J].Polymers and Polymer Composites,2005,13(8):815-821.
    [180]Shen J W,Chen X M,Huang W Y.Novel Electrically Conductive Polypropylene/Graphite Nanocomposites[J].J Mater Sci Lett,2002,21:213.
    [181]Shen J W,Chen X M,Huang W Y.Structure and Electrical Properties of Grafted Polypropylene/Graphite Nanocomposites Prepared by Solution Intercalation[J].Journal of Applied Polymer Science,2003,88:1864-1869.
    [182]Zeng W,Wong S C,Sue H J.Transport Behavior of PMMA/Expanded Graphite Nanocomposites[J].Polymer,2002,73:6767.
    [183]Stankovich S,Dikin D A,Dommett G H B,et al.Graphene-based composite materials[J].Nature,2006,442:282-286.
    [184]王敏.丙烯酸脂橡胶的应用与开发[J].制品与工艺,1999,3:42.
    [185]谢长雄.丙烯酸酯橡胶的性能和应用[J].合成材料老化与应用,2003,3:28-30.
    [186]唐坤明,唐坤珍.丙烯酸醋橡胶的配合技术[C].2001年全国橡胶制品技术研讨会论文集,Page 97-100.
    [187]唐坤明.硫化剂TCY在活性氯型聚丙烯酸酯橡胶胶料中的应用研究[J].橡胶工业,1999.10(46):594-597.
    [1]Chen G H,Weng W G,Wu D J,et al.Preparation and characterization of graphite nanosheets from ultrasonic powdering technique[J].Carbon,2004,42:753-759.
    [2]Flory P J,Rehner J.Statistical Mechanics of Cross-Linked Polymer Networks II.Swelling[J].J Chem Phys,1943,11(11):521-526.
    [3]Hwang W,Wei K,Wu C.Mechanical,thermal,and barrier properties of NBR/organosilicate nanocomposites[J].Polym Eng Sci,2004,44(11):2117-2124.
    [4]Deng J S,Isayev I.Injection molding of rubber compounds:experimentation and simulation[J].Rubber Chemistry and Technology,1991,64(2):296-325.
    [5]Bielifiski D,Slusarski L.Physical modification of elastomers to improve their tribological properties[J].Wear,1993,169:257-263.
    [6] Ito K, Oki Y, Hirata M. Performance of a New NBR Rubber for Sliding Wear Applications[J].NTN Technical Review, 2000, 68: 90-95.
    [1]Schweitz J A,Ahman L.Friction and wear of polymer composites[M],Chapter 9,Mild wear of rubber-based compounds.Amsterdam,New York,Elsevier Press,1986.
    [2]王贵一.橡胶的摩擦及试验[J].特种橡胶制品,2000,21(3):55-62.
    [3]Celzard A,Schneider S,Mareche J.F.Densification of expanded graphite[J].Carbon,2002,40:2185-2191.
    [1]Chen G H,Weng W G,Wu D J,Wu C L,et al.Preparation and characterization of graphite nanosheets from ultrasonic powdering technique[J].Carbon,2004,42(4):753-759.
    [2]Chen G H,Weng W G,Wu D J,Wu C L.Exfoliation of graphite flake and its nanocomposites[J].Carbon,2003,41(3):619-621.
    [3]Chen G H,Wu C L,Weng W G,Wu D J,et al.Preparation of polystyrene/graphite nanosheet composite[J].Polymer,2003,44(6):1781-1784.
    [4]Schniepp H C,Li J L,McAllister M J,Sai H,Herrera-Alonso M,Adamson D H,Prud'homme R K,Car R,Saville D A,Aksay 1 A,Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide[J].Journal of Physical Chemistry Part B,2006,110:8535-8539.
    [5]Stankovich S,Dikin D A,Dommett G H B,et al.Graphene-based composite materials[J].Nature,2006,442:282-286.
    [1]Wu Y P,Wang Y Q,Zhang H F,et al.Rubber-pristine clay nanocomposites prepared by co-coagulating rubber latex and clay aqueous suspension[J].Composites Science and Technology,2005,65:1195-1202.
    [2]Inagaki M,Suwa T.Pore structure analysis of exfoliated graphite using image processing of scanning electron micrographs[J].Carbon,2001,39(6):915-920.
    [3]Chen G H,Wu D J,Weng W G,et al.Preparation of polystyrene-graphite conducting nanocomposites via intercalation polymerization[J].Polymer International,2001,50(9):980-985.
    [4]Payne A R.In:G.Kraus,Editor.Reinforcement of Eiastomers[M].New York:Wiley Interscience,1965.Chapter 3,p.69-123.
    [5]张惠峰.层状硅酸盐/橡胶纳米复合材料的结构与性能研究[D].北京化工大学,2005,page 73-77.
    [6]Ito K,Oki Y,Hirata M.Performance of a New NBR Rubber for Sliding Wear Applications[J].NTN Technical Review,2000,68:90-95.
    [1]Coran A Y.Vulcanization[M].in:Eirich R R,editors.Science and Technology of Rubber,Academic Press,New York,1978.p.325.
    [2]Szabo T,Berkesi O,Forgo P,Josepovits K,Sanakis Y,Petridis D,Dekany I.Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides[J].Chem Mater,2006,18(11):2740-2749.
    [3]Collins R L,Bell M D,Kraus G.Unpaired Electrons in Carbon Blacks[J].J Appl Phys,1959,30(1):56-62.
    [4]Voudrias E A,Larson R A,Snoeyink V L.Importance of surface free radicals in the reactivity of granular activated carbon under water treatment conditions[J].Carbon,1987,25(4):503-515.
    [5]Manivannan A,Chirila M,Giles N C,Seehra M S.Microstructure,dangling bonds and impurities in activated carbons[J].Carbon,1999,37(11):1741-1747.
    [6]Hwang Y L,Yang C C,Hwang K C.The Spike in the C_(60)~· ESR Spectrum:Oxygen Effect and Negative Temperature Dependence of the C_(60)O_2~·- Isomerization Rate[J].J Phys Chem A,1997,101(43):7971-7976.
    [7]Dluzneski P R.Rubber Chem Technoi,2001,74:451.
    [8]van der Hoff B M E.Ind Eng Chem Prod Res Dev,1963,2:273.
    [9]Toboisky A V,MercurioA.JAm Chem Soc,1959,81:5535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700