环保型水性聚氨酯分子结构与动态流变和胶膜性能的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境保护的压力迫使传统的溶剂聚氨酯逐渐淡出市场,而代之以水性聚氨酯产品。但在水性聚氨酯现有合成方法中,或多或少地使用了一定量的有机溶剂,以解决合成阶段的溶解性问题以及在分散阶段调整黏度。尽管低沸点有机溶剂可以提高乳液的干燥速率,高沸点溶剂可改善乳液的成膜性能,但综合来看,既增加了成本又污染了环境。所以,完全杜绝有机溶剂,将水性聚氨酯变成真正意义上的环境友好材料显得越来越重要。此外,有关该体系的系统应用工作就很多,关于该体系的的结构、流变特性和涂层在使用性能之间的相关性的系统设计与研究很少。其在一定意义上制约了水性聚氨酯应用的研究与开发。本研究通过引进不同的交联组分,改变分散体颗粒的大小等方式来研究颗粒间的相互作用对体系相行为形态、流变形为、热性能和机械性能的控制,为改善聚合物成膜性能和使用性能提供基础,并为该类材料的合成、成型和建模提供指导。本研究亦从材料的环境友好性出发,采用原位聚合法制得系列无溶剂聚氨酯微乳液复合体系,彻底摒弃了传统水性聚氨酯中所添加的助溶剂,解决环境污染问题。
     本课题采用种子乳液聚合法和原位聚合法两种方法成功制得系列聚氨酯/聚丙烯酸酯复合乳液,分别为PUA_1和PUA_2系列。并于体系中引入自交联单体三羟甲基丙烷(TMP)、功能性单体丙烯酸羟乙酯(HEA)、羟甲基丙烯酰胺(HAM)和环氧交联单体(E-44)。
     考察了聚氨酯大分子稳定剂作用下,聚合温度、丙烯酸酯单体总浓度及引发剂对共聚合动力学的影响,建立了转化率-时间关系曲线的模型函数——Boltzmann函数,并以其拟合了转化率-时间关系曲线,获得了聚合过程的重要特征参数。同时通过曲线非线性拟合,得到了总动力学模型即Rp~∝[M]~(2.38)[I]~(0.883)。并结合实验数据,对所建立动力学模型进行了最小二乘方线性回归,结果表明该模型对共聚合具有较好的预测能力。
     研究了PUA_2原位聚合体系稳定性的影响因素。结果表明,电解质类单体或引发剂的加入会引起PU乳胶粒聚沉,而非电解质亲水单体(HEA、HAM和AM)和非电解质引发剂ZAM可大幅改善乳液的稳定性。与单独的MMA和BA相比,MMA和BA的混合物作为预聚体连续相时,所制乳液稳定性可与以NMP等有机溶剂为连续相制得的乳液稳定性相媲美。为无溶剂聚氨酯/丙烯酸酯复合乳液的制备提供了确凿的依据。且其含量控制在10-30%之间,异氰酸根指数(R值)介于1.2-1.4,反应温度介于55-70℃,HAM含量介于10%-20%,环氧含量低于20%时,乳液稳定性较佳。
     系统分析了交联单体对各体系乳液形貌、粒径及其分布的影响。结果表明,纯聚氨酯颗粒间相互黏附,形成了类似虫状胶束的形状,粒径较小,呈单峰分布;PUA_1未能形成真正的核壳结构,而是形成一种嵌入式结构的复合粒子,且PUA_1乳液中有单独的PU和PA粒子存在,部分PA嵌入到PU中形成新的粒子。核磁共振分析亦表明PUA_1体系中苯乙烯和丙烯酸丁酯与PU发生了接枝反应。乳胶粒粒径为90.9nm,呈双峰分布,分布系数为0.074。随着TMP用量的增加,乳液粒径增加至103.9nm。而随着HEA用量的增加,乳液粒径可减小至72.3nm。PUA_2乳胶粒间相对分散,呈现夹心型近球状形态,疏水性聚丙烯酸酯与聚氨酯形成互穿网络。当HAM用量较大时,乳胶粒间亦发生团聚,乳液稳定性下降。而经环氧改性后,EPUA乳液颗粒间高度分散,呈现球状形态,乳液呈现一定的核壳结构,但核壳界限相对于PUA_2模糊一些。PUA_2乳液粒径为48.0nm,较PUA_1变小,呈双峰分布,分布系数为0.111。而环氧和丙烯酸酯共同改性制得的EPUA_2乳液粒径高于EPU,与PUA_2接近,平均粒径为53.4nm,且呈双峰分布,但分布较PUA_2变窄。乙烯基单体的后期引发聚合反应使乳液的粒径有所增加,由44.1增加至48.0nm,增幅不大;但粒径分布大幅增加,由0.035增加至0.111。随着MMA和BA的增加,乳液粒径由48.0增加至67.9nm;而当HAM用量由10%提高至15%时,体系粒径由70.2降至48.0nm,分布系数由0.127降至0.111。
     稳态流变行为研究表明聚氨酯体系在相反转前,黏度约为10~2Pa·s且几乎不随剪切应变的变化而变化,呈现牛顿流体行为。在相反转点,体系黏度高达10~5Pa·S,比相反转前增加了3个数量级。体系在相反转后变为O/W体系,黏度下降,但由于水基微粒间的相互作用,低剪切率下的黏度有所增加,并呈现剪切变稀行为。
     纯PU乳液为近牛顿流体,黏度基本不受剪切率的影响;纯PUA_1乳液亦呈现牛顿流体行为,无触变行为,零剪切黏度为0.016Pa.s。PUA_1乳液黏度随TMP用量的增加而下降,随HEA用量的增加而增加。TMP的加入可使体系呈现一定的剪切变稀行为和触变性,而HEA无此作用。若同时加入TMP和HEA,在一定TMP用量下,乳液的黏度亦随着HEA用量的增加而增加,且当HEA用量为0.8时,由于核壳交联结构的引入,乳液呈现复杂的触变行为。
     对PUA_2体系,以BA为预聚体连续相时,所制PUA_2B乳液黏度较高,达10~2Pa.s以上,表现强烈的假塑行为;以MMA为连续相时,所制PUA_2M乳液黏度下降了2个数量级,乳液的假塑行为较弱;而分别以MMA和BA的混合物、NMP为连续相时,所制PUA_2MB、PUA_2N乳液流变曲线基本吻合,黏度为0.1 Pa.s,呈现牛顿流体行为。PUA_2体系黏度均高于PUA_1体系。且该体系均具有一定的触变性能。乳液零剪切黏度随着CAPA分子量、HAM用量的增加而增加;随着TMP用量的增加而下降。经环氧改性后,乳液呈现非牛顿流动,并存在屈服应力σ_y,具有塑性体的可塑性质,乳液在低剪切率范围内黏度较高,有利于乳液流平性的改善。随着剪切率的进一步增加,体系呈现明显的假塑性流动行为,可使材料易于涂刷使用。
     动态流变行为研究表明,对PUA_1体系,随着TMP和HEA用量的增加,乳液的储能模量上升,内耗tanδ减低。说明PUA_1体系由粘性行为向弹性行为转变,颗粒间相互作用增强。纯PUA_1乳液的储能模量G′随着时间的延长基本保持不变。而经TMP和HEA改性后,G′随着时间的延长呈一定的上升趋势,且上升幅度随着TMP和HEA用量的增加而增加,乳液内部发生交联反应。
     对PUA_2体系,体系不存在明显的松弛行为。PUA_2M乳液的内耗tanδ在0.65左右,G′在低频区表现出平台区,且G′与G″在0.35Hz处相交,乳液弹性较高,颗粒易发生聚集或团聚,稳定性较差;PUA_2MB和PUA_2B具有较强的频率依赖性,且PUA_2B体系无序性较强,PUA_2MB的tanδ为1.1左右,PUA_2B的tanδ为1.3左右,稳定性相对较佳。
     对PUA_2MB体系,随着TMP用量的增加,乳液黏度下降,触变性减弱,体系结构相对无序,流动性较佳,乳液的内耗tanδ由1.1增加至1.5,储能模量下降,乳液由黏弹行为向纯粘性行为转变,体系趋于不稳定。当环氧量为8%,体系储能模量的频率依赖性较强,体系流动性较好;而当环氧量为20%时,G′在2.5Hz处出现转折点,tanδ~ω曲线上出现明显的转折点,说明体系存在一定的相分离和松弛行为。
     同时,对体系的热稳定性、力学性能、耐介质性和热降解动力学进行了研究。结果表明,CAPA分子量的提高,适量TMP、HEA、HAM和环氧的加入可在一定程度上提高体系的热稳定性、力学性能和耐介质性。热降解动力学研究亦表明,Kissinger法、Flynn-Wall-Ozawa法拟合的相关系数均高达0.97以上,适用于PUA_1体系。Flynn-Wall-Ozawa法和Friedman法对PUA_2体系拟合的相关系数亦高达0.97以上,适用于该体系。某阶段降解活化能的增加表明体系热稳定性增强。
     环氧树脂的加入可使胶膜的初始热分解温度由236.31℃提高至271.36℃,拉伸强度由12.7MPa增加至20.8MPa,T-剥离强度由2.1 N.mm~(-1)升高至8.1 N.mm~(-1),断裂伸长率由456%降至191%;吸水率由12.7%降至2.14%,吸甲苯率由112%降至70%,接触角由90.00°增加至106.49°;但过多的交联剂用量会消弱体系的综合性能。
     最后,综合研究了体系的相容性及相行为。结果表明,聚氨酯与环氧共混乳胶膜(PU/ER)的内耗峰为双峰,峰值分别为-56.2℃和130℃,且两峰之间的阻尼因子较小,两峰相对独立,体系两组分之间的相分离程度较高;PUA_2体系亦具有两个内耗峰,峰值分别为-29.6℃和50.5℃,与共混物相比,相容性得到一定提高;而EPUA_2体系只具备一个内耗峰,峰值为26.6℃,介于上述两个玻璃化温度之间。表明环氧共聚交联单体的引入,使得体系具有较高的相容性。
Driven by environmental regulation, waterborne polyurethane (WPU) has attracted more and more attention. However, in the preparation process of WPU, certain amount of organic solvent was added to adjust the viscosity of PU prepolymer. Although drying rate of the emulsion can be enhanced by adding low boiling point solvent, and film-forming properties can be improved by adding high boiling point solvent, organic solvent addtion not only brings pollution to the environment but also leads to high product cost. Therefore, completely replacement of organic solvent by water is of growing importance, which can make WPU a real sense of environmental friendly material. In addition, much emphasis has been placed on the application of this system. There are relatively little systematic reports on fundamental insights into the relationships among structure, rheological properties and application properties, which would restrict the deep research and exploitation of WPU to a certain extent. In this research, different crosslinkers were introduced to change the size and distribution of particles, thereby to study how controlled changes in particle interaction alter the phase behavior, micromorphology, rheology behavior, thermal properties and mechanical properties, which could provide fundamental information for film-forming performance and performance that the systems are likely to encounter during use. Simultaneously, the study can guide the synthesis, processing and modeling of these materials. Furthermore, in-situ polymerization was used to synthesize polyurethane micro-emulsion without any organic solvent.
     In this research, two series of polyurethane/polyacrylate composite emulsions were succesfuly prepared by seed emulsion polymerization and in-situ emulsion polymerization, named PUA_1 and PUA_2, respectively. At the same time, self-crosslinking monomer (trimethylolpropane, TMP), functional monomer (2-hydroxyethyl acrylate, HEA), (n-methylolacrylamide, HAM) and epoxy monomer (E-44) was introduced into the system.
     With the action of polyurethane stabilizer, effect of polymerization temperature, monomer concentration and initiator concentration on copolymerization kinetics were investigated. Model function of cumulative conversion versus reaction time--Boltzmann Fnction was built up, and was employed to fit the samples of cumulative conversion versus reaction time. The maximum polymerization rate(MV), average polymerization rate(AV) in the steady stage, average nucleation rate(NV) and the corresponding cumulative conversion at moment of nucleation stage ceasing and at the steady stage completing were estimated by calculating extremums and inflexions of its fitted Boltzmann Function. Whereafter, the polymerization rate versus each single polymerization parameter was analyzed with non-linear fitting and the related equation was obtained, that is, Rp∝[M]~(2.38)[I]~(0.883). Finally, least squares linear regression was performed on the model, the result show that this model own excellent forecasting ability to this copolymerization.
     The factors influencing the stability of PUA_2 emulsion were studied. It was found that aggregate took place among particles with the addition of electrolyte , while the stability of PUA_2 emulsion can be improved by the addition of HEA, HAM, acrylamide (AM) and waterborne initiator (ZAM). The system prepared with the mixture of MMA and BA as the continuous phase of prepolymer has comparative stability with the system using organic solvent (such as N-methyl pyrrolidone, NMP), and superior to the system using methyl methacrylate (MMA) or butyl acrylate (BA), providing accurate basis for the preparation of polyurethane/polyacrylate composite emulsion without any organic solvent. The stability of PUA_2 system reach optimum under the following conditions: the dosage of MMA and BA ranges from 10% to 30%, R value ranges from 1.2 to 1.4, copolymerization temperature ranges from 55℃to 70℃, HAM dosage ranges from 10% to 20%, and epoxy monomer dosage is lower than 20%.
     Effects of crosslinker on the micromorphology, particle size and distribution of emulsion were systematically investigated. It was found that particles of pure polyurethane adhere to each other, similar to wormlike micelle. The particle size of pure polyurethane was very small, showing unimodal distribution. It was also found that core-shell structure didn't form in PUA_1 system prepared by seed emulsion polymerization, and an embedded structure was detected instead. Moreover, individual PU and PA particle was detected in this system, and part PA was grafted into PU, which can also be demonstrated by nuclear magnetic resonance (NMR). As the increase of TMP dosage, the particle size increases from 90.9nm to 103.9nm, with bimodal distribution. And the particle size decreases from 90.9nm to 72.3nm with the increase of HAM dosage. However, the PUA_2 emulsion displays sandwich morphology with relative dispersed particles, and hydrophobic polyacrylate/polyurethane interpenetrating network was formed. Aggregation tends to take place among particles as the increase of HAM dosage, resulting in the decrease of emulsion stability. But particles in the emulsion modified with epoxy monomer are highly dispersed with core/shell spherical morphology, and it is difficult to discern the boundary between core and shell. The particle size of PUA_2 emulsion was 48.0nm, smaller than that of PUA_1 emulsion, exhibiting bimodal distribution with distribution coefficient of 0.111. The particle size of EPUA_2 emulsion modified with epoxy and acrylate is about 53.4nm with bimodal distribution which is higher than EPU and similar to PUA_2. But the PUA_2 system shows broader distribution. In addition, the particle size increases from 44.1nm to 48.0nm, and distribution coefficient increased greatly from 0.035 to 0.111 through post polymerization of vinyl monomer. The particle size increases from 48.0nm to 67.9nm as the dosage of MMA and BA increases. The particle size decreases from 70.2nm to 48.0nm when the HAM dosage increases from 10% to 15%, with distribution coefficient decreasing from 0.127 to 0.111.
     Steady rheology study shows that the viscosity of polyurethane is about 10~2Pa·s and kept invariable with shear rate, exhibiting Newtonian liquid behavior before the phase inversion. While reaching the phase inversion point, the viscosity increased to 10~5Pa·s, accompanied by the decrease of viscosity after phase inversion. Moreover, an oil-in-water system was built instead of water-in-oil system; and the viscosity at lower shear rate increases owing to the interaction between waterborne particles, exhibiting shear thinning behavior.
     A Newtonian response is obtained for PU emulsion, as well as PUA_1 emulsion. And no thixotropy behavior was detected in this system. The zero shear viscosity of PUA_1 emulsion was 0.016Pa.s, decreasing with the TMP dosage. While an increase in HEA dosage caused the increase of PUA_1 viscosity. Furthermore, shear thinning behavior and thixotropy behavior can be observed in this sytem with TMP addition, which can't be obtained by HEA addition. If TMP and HEA were simultaneously added into the system, its viscosity increased with HEA dosage, and complex thixotropy behavior was observed due to the crosslinking structure between core and shell.
     For the PUA_2 system, the viscosity of the PUA_2B emulsion prepared with BA as the continuous phase of prepolymer reaches 10~2Pa.s, presenting strong pseudoplastic behavior. The viscosity of PUA_2M emulsion prepared with MMA as the continuous phase was reduced by two orders of magnitude, showing weaker pseudoplastic behavior. While steady rheologival cure of PUA_2MB emulsions prepared with mixture of MMA and BA as continuous phase is similar to that of PUA_2N emulsion prepared with NMP as the continuous phase, their viscosity were about 0.1 Pa.s, presenting Newtonain flow behavior. In a word, the viscosity of PUA_2 was higher than that of PUA_1, and PUA_2 system was endowed with certain thixotropy. The zero shear viscosity increased with the increase of the CAPA molecular weight and HAM dosage, and decreased with the increase of TMP dosage. Furthermore, yielding stressσ_y and plasticity existed in the PUA_2MB emulsion modified by epoxy resin, presenting non-Newtonian flow behavior. Moreover, the viscosity at low shear rate was relative higher, beneficial to the improvement of leveling. And pseudoplastic flow was observed with the increase of shear rate, which was good for brushing.
     Dynamic rheological investigation was also performed on the system. As to pure PUA_1 system, it was found that storage modulus(G') kept invariable with time, while the storage modulus increased with TMP and HEA addition, but internal friction tanδwas opposite, indicating a transformation from pure viscous behavior to viscoelastic behavior, and enhanced interaction between particles. It was also found that the rising amplitude increased as TMP and HEA increased, which can be ascribed to the occurrence of crosslinking reaction in the emulsion.
     For the PUA_2 system, an obvious relaxation behavior was detected. tanδof PUA_2M was about 0.65, and a platform area was observed in the low frequency region for G'. Moreover, the intersection of G' and G" was found at 0.35Hz, implying higher emulsive elastic. Under such circumstances, it is easy for particles to aggregate or accumulate, resulting in the decrease of emulsion stability. At the same time, strong frequency dependence was found in both PUA_2MB and PUA_2B system, and PUA_2B system own higher randomness. Furthermore, compared with PUA_2M, PUA_2MB and PUA_2B were endowed with better emulsion stability, tanδof PUA_2MB was about 1.1, tanδof PUA_2B was about 1.3.
     With respect to PUA_2MB system, the viscosity decreases with the increase of TMP dosage, and the thixotropy was weakened. The fluidity of this system was improved with relatively disordered structure. Furthermore, tanδof the emulsion increases from 1.1 to 1.5, while the storage modulus showed contrary tendency, and a transition from viscoelastic behavior to pure viscous behavior took place in this system, leading to the decrease of emulsion stability. When the epoxy resin(E-44) dosage was 8%, a strong frequency dependence and good fluidity were observed in the emulsion; but when E-44 dosage increase to 20%, a turning point was detected in both G'~ωand tanδ~ωcurves, which indicated that phase separation and relaxation behavior occur in the emulsion.
     Simultaneously, thermal stability, mechanical properties and solvent resistance of the system were studied. The results showed that thermal stability, mechanical properties and solvent resistance of the system can be enhanced to a extent with proper amount of TMP、HEA、HAM and epoxy resin, as well as CAPA with higher molecular weight. At the same time, thermal degradation kinetics was investigated. It was found that the correlation coefficients fitted by Kissinger and Flynn-Wall-Ozawa method all exceed 0.97, indicating that these two methods were suitable for PUA_1 system. It was also found that the correlation coefficients fitted by Flynn-Wall-Ozawa and Friedman method for PUA_2 system were also over 0.97. The increase of the degradation activation energy in some stage manifests the enhancement of thermal stability.
     In addition, the initial decomposition temperature increased from 236.31℃to 271.36℃by the introduction of E-44, the tensile strength increased from 12.7MPa to 20.8MPa, T-peel strength increased from 2.1N.mm~(-1) to 8.1 N.mm~(-1), while elongation at break decreased from 456% to 191%; water absorption decreased from 12.7% to 2.14%, toluene absorption reduced from 112% to 70%, the contact angle increased from 90.00°to 106.49°. However, the comprehensive properties of the system will be weakened with excess crosslinking agent.
     Finally, compatibility and phase behavior of the system were investigated by Dynamic Mechanical Analysis. Two peaks were observed in the the tanδ~T curve of film prepared from blend of polyurethane and epoxy resin (PU/ER) .They were -56.2℃and 130℃, respectively, indicating higher degree of phase separation. Two internal friction peaks were also found in the PUA_2 system, -29.6℃and 50.5℃, respectively. But the compatibility was improved to an extent. However the compatibility can be improved greatly with E-44 addition, and only one internal friction peak was observed at 26.6℃.
引文
[1] Chen G N, Chen K N. Self-curing behaviors of single pack aqueous-based polyurethane system[J]. Journal of Applied Polymer Science, 1997, (63): 1609-1623.
    
    [2] Delpech M C, Coutinho F M B. Waterborne anionic polyurethanes and poly (urethane-urea) s: influence of the chain extender on mechanical and adhesive properties[J]. Polymer Testing, 2000, (19): 939-952.
    [3] Lay D G, Cranley P. Applications and developments of polyurethane adhesives [J]. Adhesives Age, 1994, (5): 6-9.
    [4] F M B Coutinho, M C Delpech. Some properties of films cast from polyurethane aqueous dispersions of polyether-based anionomer extended with hydrazine[J]. Polymer Testing, 1996, (15): 103-113.
    [5] S H Baek, B K Kim. Synthesis of polyacrylamide/polyurethane hydrogels by latex IPN and AB crosslinked polymers[J]. Colloids and Surface A, 2003, (220): 191-198.
    [6] G J Wang, C S Kangb, R GJin. Synthesis of acrylic core-shell composite polymers and properties of plastisol-gels[J]. Progress in Organic Coatings, 2004, (50): 55-61.
    [7] Li Chen, Su Chen. Latex interpenetrating networks based on polyurethane polyacrylate and epoxy resin[J]. Progress in Organic Coatings, 2004, 49(3): 252-258.
    [8] C Decker, R Vataj, A Louati. Synthesis of acrylic polymer networks by electroinitiated polymerization[J]. Progress in Organic Coatings, 2004, (50): 263-268.
    [9] J Huybrechts, P Bruylants, A Vaes, et al. Surfactant-free emulsions for waterborne, two-component polyurethane coatings[J]. Progress in Organic Coatings, 2000, 38 (2): 67-77.
    
    [10]Muller, Horst, Hille, et al. Polymer[P]. US patent: 6770702, 2004-08-03.
    [11] Kim BY, Kim T K. Aqueous dispersion of polyurethanes from H12MDI, PTAd/PPG, and DMPA: Particle size of dispersion and physical properties of emulsion cast films[J]. Journal of Applied Polymer Science, 1991, (43): 393-398.
    [12] Kim C K, Kim B K. IPDI-based polyurethane ionomer dispersions: Effects of ionic, nonionic hydrophilic segments, and extender on particle size and physical properties of emulsion cast film[J]. Journal of Applied Polymer Science, 1991, (43): 2295-2301.
    
    [13] Chan W C, Chen S A. Conformations of polyurethane cationomers in organic solvents and in organic solvent/water mixtures[J]. Polymer, 1993, (34): 1265-1270.
    
    [14] Michael Dreja, Kurt Heine, Bernd Tieke, et al. Effects of Functionalized Latex Particles and Anionic Surfactants on the Flow Behavior of Aqueous Gelatin Dispersions[J]. Journal of colloid and interface science ,1997,(191): 131-140.
    [15] Julia J, Salvatella D, Lopes J. Aqueous polyurethane dispersions for adhesives applications[J]. Adhesives Age, 1994, (5): 26-31.
    [16] Howarth G A . Oxazolidines and tetramethylxylenediisocyanate based polyurethanes in legislation-compliant anticorrosion coatings [J]. Surface Coatings International Part B: Coatings Transactions, 1999, (82): 14-18.
    [17] YADemchenko, M Studenovsky, Z Sedlakova, et al. Thermal and dynamic mechanical behabior of polyurethanes based on diisocyanates and diethanolamine derivatives with mesogenic groups in side chain[J]. European Polymer Journal, 2003, (39): 437-448.
    
    [18] Cheong I W, Nomura M, Kim J H. Synthesis and aqueous solution behabior of water-soluble polyrethane (IPDI-PPG-DMPA) resin[J]. Macromol Chem Phys, 2000, (201): 2221-2227.
    
    [19] Shunji Sugano , Charoen Chinwanitcharoen , Shigeyoshi Kanoh , et al . Preparation of aqueous polyurethane dispersions using aromatic diisocyanate[J]. Macromol Symp, 2006, (239): 51-57.
    
    [20] T Hentschel, H Munstedt. Kinetics of the molar mass decrease in a polyurethane melt: a rheological study[J]. Polymer, 2001, (42): 3195-3203.
    
    [21] Eli Ruckenstein, Yue Sun. Synthesis of surface conductive polyurethane films[J]. Synthetic Metals, 1995, (75): 79-84.
    
    [22] Franck Rey Flandrin, Jean-Michel Widmaier, Jean-Jacques Flat. Thermal ageing of polyurethane with hydrogenated polyisoprene soft segments [J].Polymer Degradation and stability,1997,(57):59-67.
    [23]Karl-Ludwig Noble.Waterborne polyurethanes[J].Progress in Organic Coatings,1997,(32):131-136.
    [24]Werner J Blank,Valentino J Tramontano.Properties of crosslinked polyurethane dispersions[J].Progress in Organic Coatings,1996,(27):1-15.
    [25]Tsung-Tang Hsieh,Kuo-Huang Hsieh,George P Simon,et al.Interpenetrating polymer networks of 2-hydroxyethyl methacrylate terminated polyurethanes and polyurethanes[J].Polymer,1999,(40):3153-3163.
    [26]Gui You Wang,Yu Ling Wang,Chun Pu Hu.Interpenetrating polymer networks of polyurethane and graft vinyl ester resin:polyurethane formed with toluene diisocyanate[J].European Polymer Journal,2000,(36):735-742.
    [27]周新华.水性双组分丙烯酸聚氨酯的制备与性能研究[D].广州:华南理工大学,2005.
    [28]Delpech M C,Coutinho F M B.Waterborne anionic polyurethanes and poly [urethane-urea]s:influence of the chain extender on mechanical and adhesive properties[J].Polymer Testing,2000,(19):939.
    [29]Ph Game,DSage,J P Chapel.Surface Mobility of Polyurethane Networks Containing Fluorinated Amphiphilic Reactive Additives[J].Macromolecules,2002,(35):917-923.
    [30]Douglas A,Wicks Zeno W,Wicks Jr.Autoxidizable urethane resins [J].Progress in Organic Coatings,2005,(54):141-149.
    [31]谢维斌,陈国强.水性聚氨酯制备及其改性[J].苏州大学学报(工科版),2004,(24):43-46.
    [32]余海斌,张邦华,宋谋道,等.刚性无机粒子对PDMS/PU共混体系增强改性的研究[J].南开大学学报(自然科学版),1996,29(2):66-71.
    [33]J Huyburchts,P Bruylants,A Vaes,et al.Surfactant-free emulsions for waterborne,two-component polyurethane coatings[J].Progess in Organic Coating,2000,(38):67-77.
    [194]Yoshizumi Matsuno,Takato Adachi,Nobushige Numa.Application of graft copolymers using macromonomer method to two-component polyurethane coatings[J].Progress in Organic Coating,1999,(35):117-127.
    [34]D Diterich.Aqueous emulsions dispersions and solutions of polyurethanes:synthesis and properties[J].Progress in Organic Coating,1981,(9):281-340.
    [35]C Prestidge,T F Tadros.Viscoelastic properties of aqueous concentrated polystyrene latex dispersions containing grafted poly(ethylene oxide)chains[J].J Colloid Interface Sci,1988,(124):660-665.
    [36]W J Frith,T A Strivens,J Mewis.Dynamic mechanical properties of polymerically stabilized dispersions[J].J Colloid Interface Sci,1990,(139):55-62.
    [37]R F Tirpak,P H Markusch.Aqueous dispersions of crosslinked polyurethanes [J].J Coatings Techol,1986,(58):49-54.
    [38]Xiaodong Wang,Xin Luo,Xinfeng Wang.Study on blends of thermoplastic polyurethane and aliphatic polyester:morphology,reology,and properties as moisture vapor permeable films[J].Polymer Testing,2005,(24):18-24.
    [39]Samy A Madbouly,Joshua U Otaigbe,Ajaya K Nanda,et al.Rheological behavior of aqueous polyurethane dispersions:effects of solid content,degree of neutralization,chain extension,and temperature[J].Macromolecules,2005,(38):4014-4023.
    [40]Jan Y H,Hwang Y T,Shih C Y,et al.Microphase sturcture and mechanical properties of the acrylic-PU aqueous dispersions:effects of acrylate polymerization processes[R].22nd Waterborne,High-Solids and Powder Coatings Symposium,New Orleans,1991.
    [41]Hegedus C R,Kloiber K A.Aqueous acrylic-polyurethane hybrid dispersions and their use in industrial coatings[J].Journal of Coatings Technology,1996,(68):39.
    [42]王东山,余爱方,何树杰等.聚碳酸亚丙酯型聚氨酯/聚甲基丙烯酸甲酯互穿网络聚合物的研究[J].高分子材料科学与工程,2000,(16):135-138.
    [43]Xiaoli Zhu,Xubao Jiang,Zhiguo Zhang,et al.Influence of ingredients in water-based polyurethane-acrylic hybrid latexes on latex properties
    [44]A C AznarO R Pardini,J I Amalvy.Glossytopcoat exterior paint formulations using water-based polyurethane/acrylic hybrid binders[J].Progess in Organic Coating,2006,(55):43-49.
    [45]P Radhakrishnan Nair,C P Reghunadhan Nair.D J Francis.Polyurethanes with polybutyl acrylate grafts via macromonomer technique:Thermal and mechanical properties[J].European Polymer Journal,1997,(33):89-95.
    [46]C Decker,F Masson,R Schwalm.Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings[J].Polymer Degradation and Stability,2004,(83):309-320.
    [47]St Opera,S Viad,A Stanciu.Optimization of the systhesis of polyurethane acrylates with polyester compounds[J].European Polymer Journal,2000,(36):2409-2416.
    [48]V V Shilov,L V Karabanova,Yu S Lipatov,et al.Structure of mutually penetrating polymer networks based on polyurethane and polyurethane acrylate[J].Polymer Science U S S R,1978,(20):725-733.
    [49]N I Korzhuk,V F Babichi,Yu S Lipatov,et al.Study of the relaxation properties of polyurethane acrylates and polyurethanes[J].Polymer Science U S S R,1971,(13):2325-2333.
    [50]靳东杰,刘治猛,哈成勇.高分子通报,2003,(1):71.
    [51]Yoshihiro Okamoto,Yoshiki Hasegawa,Fumio Yoshino.Urethane/acrylic composite polymer emulsions[J].Progress in organic coatings,1996,(29):175-182
    [52]李延科,凌爱莲.丙烯酸酯改性水性聚氨酯乳液性能的研究[J].化工新型材料,2000,28(5):31-32.
    [53]邵菊美,陈国强,史丽颖.丙烯酸酯共混改性水性聚氨酯的结构与性能[J].印染助剂,2003,20(4):23-25.
    [54]李延科,凌爱莲,桑鸿勋.丙烯酸酯—聚氨酯改性乳液的性能研究[J].中国胶粘剂,2001,10(6):7-10.
    [55]Nishimura Seiji.Aqueous covering composition[P].JP:95242855,1995.
    [56]Okamoto Yoshihiro,Numa Nobushige.Two-pack aqueous coating composition [P].EP:665252,1995.
    [57]朱弼中,李克友,等.聚氨酯-聚丙烯酸酯复合聚合物乳液的研究[J].皮革科学与工程,1993,(3):8-14.
    [58]Okamoto Yoshihiro,Hasegawa Yoshiki,Yoshino Fumio.Urethane/acrylic composite polymer emulsion[J].Progress in Organic Coatings,1996,(29):175-182.
    [59]崔月芝,段洪东,王世泰,等.水性聚氨酯与丙烯酸酯乳液交联反应的研究[J].塑料工业,2002,(30):10-12.
    [60]郭平胜,卢秀萍.聚氨酯-丙烯酸酯(PUA)复合乳液的研究进展[J].化学技术与开发,2006,35(11):6-9.
    [61]洪亮,瞿金清,蓝仁华.现代化工,2002,22(增):55.
    [62]胡永生,陶勇,胡春国.合成橡胶工业,2001,(2):99.
    [63]Urska sebenik,Matjaz.Krajnc.Seeded semibatch emulsion copolymerization of methyl methacrylate using aqueous polyurethane dispersion:effect of hard segment on grafting efficiency[J].Colloids and Surfaces,2002,(207):169-176.
    [64]Urska sebenik,Janvit Golob,Matjaz Krajnc.Comparison of properties of acrylic-polyurethane hybrid emulsions prepared by batch and semibatch processes with monomer emulsion feed[J].Polymer International,2003,(52):740-748.
    [65]Urska sebenik,Matjaz Krajnc.Seeded semibatch emulsion copolymerization of methyl methacrylate and butyl acrylate using polyurethane dispersion:effect of soft segment length on kinetics[J].Colloids and Surfaces A:Physicochem.Eng.Aspects,2004,(233):51-62.
    [66]Lee Jeong Sam,Kim Byung Kyu.Modification of aqueous polyurethanes via latex AB Crosslinked polymers[J].Journal of Applied Polymer Science,2001,(82):1315-1322.
    [67]陈金莲,瞿金清,陈焕钦.丙烯酸改性水性聚氨酯乳液的研制[J].化学建材,2004,(6):8-10.
    [68]陆铭,孙杰.聚氨酯.丙烯酸酯核-壳乳液的制备及其包裹的RDX[J].火炸药学报,2004,27(3):17-20.
    [69]修玉英,李雯静,罗强.乙烯基单体改性水性聚氨酯的研究[J].涂料工业,2004,34(2):59-63.
    [70]I L Hyuk Kim,Jin Sup Shin,In Woo Cheong.Seeded emulsion polymerization of methyl methacrylate using aqueous polyurethane dispersion:effete of hard segment on grafting efficiency[J].Colloids and Surfaces,2002,169-176.
    [71]李芝华,李国莱,等.聚氨酯水分散体系中丙烯酸酯共聚物乳液合成机理研究[J].涂料工业,1998,(7):3-5.
    [72]M Hirose,F Kadowaki.The structure and properties of core-shell type acrylic-polyurethane hybrid aqueous emulsion[J].Progress in Organic Coatings,1997,(31):157-169.
    [73]李芝华,李国莱,等.聚氨酯-聚丙烯酸树脂乳液聚合特征[J].中国胶粘剂,1998,(8):1-2,4.
    [74]AdlerH J,Karsten J,Bettina V B.Polyurethane macromers:New building blocks for acrylic hybrid emulsions with outstanding performance[J].Progress in Organic Coatings,2001,(43):251-257.
    [75]In-Woo Cheong,Mamoru Nomura,Jung Hyun Kim.Water-soluable polyurethane resins as emulsifiers in emulsion polymerization of styrene:nucleation and particle growth[J].Macromol.Chem.Phys,2001,202(11):2454-2460.
    [76]In-Woo.Cheong,Seung-Hee Song,Mamoru Nomura,et al.Water-soluable polyurethane resins as emulsifiers in emulsion polymerization of styrene:the effect of the neutralization degree of the resin[J].Macromol.Chem.Phys,2001,202(9):1710-1716.
    [77]Sang Eun Shim,Hyejun Jung,Kangseok Lee.et al.Dispersion polymerization of methyl methacrylate with a novel bifunctional polyurethane macromonomer as a reactive stabilizer[J].Journal of colloid and interface science,2004,(279):464-470.
    [78]Sperling L H.Interpenetrating Polymer Networks and Related Materials[M].Plenum Press,1987:3-6,78.
    [79]王平华,伍胜利,刘春华等.核壳型水性聚氨酯-丙烯酸酯复合乳液研究[J].高分子材料科学与工程,2005,21(5):28-32.
    [80]靳东杰,哈成勇,刘治猛等。聚氨酯-丙烯酸酯乳液的结构与性能[J].化学建材.2003,(5):5-8.
    [81]Lee J S,Shin J H,Kim B K.Modification of aqueous polyurethanes by forming latex interpenetrating polymer networks with polystyrene[J].Colloid & Polym Science,2001,(279):959-965.
    [82]游波,武利民,李丹.缩聚物/加聚物复合胶乳的制备科学Ⅱ.核壳结构聚氨酯-丙烯酸酯复合乳液的合成与表征[J].高分子材料科学与工程,2003,19(1):84-88.
    [83]Vijayendran Bheema Rao,Derby Richard,et al.Aqueous polyurethane-vinyl polymer dispersions for coating applications[P].USP:5173 526,1992.
    [84]陈义芳.交联水性聚氨酯涂料及性能[J].聚氨酯工业,1999,(14):10-11.
    [85]陈义芳.聚氨酯-丙烯酸互穿网络聚合物乳液的制备[J].聚氨酯工业,1999,14(3):10-11.
    [86]H Kagerer,H U Moritz,H P Rink et al.Analytical investigations on acrylic polyurethane hybrid-dispersions[J].J.Coat.Technol,2002,174(927):63-67.
    [87]俞敦义,史铁京.环氧-丙烯酸酯/聚氨酯互穿网络涂料的研制[J].涂料工业,1996,(6):16-17.
    [88]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用.北京:化学工业出版社,第二版,556.
    [89]Asua J M.Mini-emulsion polymerization[J].Prog Polym Sci.,2002,(27):1283-1346.
    [90]王月菊,胡慧庆,杨建军,等.微乳液聚合制备聚氨酯-丙烯酸酯复合乳液研究进展[J].中国涂料,2008,7(23):27-30.
    [91]Gooch J,Dong H,Schork F.Waterborneoil-modified polyurethane coatings via hybrid miniemulsion polymerization[J].J Appl PolymSci.,2000,(76):105-114.
    [92]Li M,Daniels E,Dimonie V,Sudol E,ElAasser M.Preparation of polyurethane-acrylichybrid nanoparticles via a mini-emulsion polymerization process[J].Macromolecules,2005,(38):4183-4192.
    [93]Wang C,Chu F,Graillat C,Guyot A.Hybrid acrylic polyurethane polymer latexes.Ⅱ.Mechanical properties[J].Polym Adv Yechnol,2005,:139-145.
    [94]王春鹏,储富祥,金立维等.不同端基聚氨酯-丙烯酸酯复合细乳液的表征,高分子材料科学与工程,2006,22(5):90-94.
    [95]Wang C,Chu F,Graillat C,Guyot A,Gauthier C,Chapel JP.Hybrid polymerlatexes acrylics-polyurethane from miniemulsion polymerization:properties of hybrids versus blends[J].Polymer,2005,(46):1113-1124.
    [96]Wang C,Chu F,Graillat C,Guyot A.Hybrid acrylic-polyurethane latexes by mini-emulsion polymerization[J].Polym React Eng,2003,(11):541-56.
    [97]Mehlika Pulat,Dogan Babyigit.Surface modification of PU membranes by graft copolymerization with acrylamide and itaconic acid monomers [J].Polymer Testing,2001,(20):209-216.
    [98]Hegedus C R,Kloiber,K A.Acrylic-polyurethane aqueous dispersions:structure and properties in industrial coatings[R].21~(st) Waterborne, High-Solids and Powder CoatingsSymposium,New Orleans February,1994.
    [99]Barrere M,Landfester K.High molecularweight polyurethane and polymer hybrid particles in aqueous miniemulsion[J].Macromolecules,2003,(36):5119-5125.
    [100]Mequanint K,Sanderson R,Pasch H.Phosphated polyurethane-acrylic dispersions:synthesis,theological properties and wetting behaviour [J].Polymer,2002,(43):5341-5346.
    [101]Masakazu Hirose,Jianhui Zhou,Katsutoshi Nagai.The structure and properties of acrylic-polyurethane hybrid emulions[J].Progress in Organic Coating,2000,(38):27-34.
    [102]Oshita,Shinichi,Iwaizumi.Aqueous dispersion of urethane vinyl composite resin[P].US:5 652 291,1997-07-29.
    [103]张辉,沈慧芳,张心亚等.影响聚氨酯-丙烯酸酯复合乳液性能的因素[J].化工学报,2005,(56):1777-1782.
    [104]Chen Li,Chen Su.Latex interpenetrating networks based on polyurethane,polyacrylate and epoxy resin[J].Progress in Organic Coatings,2004,(49):252-258.
    [105]吕冬,杜中杰,张晨等.聚氨酯/聚(甲基丙烯酸甲酯-甲基丙烯酸丁酯)互穿聚合物网络聚合物的阻尼性能[J].石油化工,2006(35):994-997.
    [106]Wu Limin,You Bo,Li Dan.Synthesis and characterization of urethane/Acrylate Composite Latex[J].Journal of Applied Polymer Science,2002,(84):1620-1628.
    [107]Wu L,You B,Li D.Synthesis and characterization of urethane/acrylate composite latex[J].Appl.Polym.Sci,2000,84(8):1620-1628.
    [108]Son S H,Lee H J,Kim J H.Effects of carboxyl groups dissociation and dielectric constant on Particle size of polyurethane dispersions.Colloids Surf.A,1998,(133):295.
    [109]Kim B,K Kim T,KJeong H M.Aqueous dispersion of Polyurethane anionomers from H_(12)MDI/IPDI,PCL,BD and DMPA[J].J.Appl.Polym.Sci,1994,(53):371.
    [110]Kim Hyuk,Jin Shin Sup,Cheong In Woo,et al.Seeded emulsion polymerization of methyl methacrylate using aqueous polyurethane dispersion:effect of hard segment on grafting efficiency[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,(207):169-176.
    [111]徐强,景浩,胡春圃,应圣康.聚氨酯脲-丙烯酸酯水分散液的粒径及形态研究[J].功能高分子学报,1999,12(4):405-408.
    [112]徐强,景浩,胡春圃,等.水性聚氨酯脲-丙烯酸酯膜的表面性能[J].合成橡胶工业,2000,23(5):294-297.
    [113]Zhang Hongtao,Guan Rong,Yin Zhaohui,et al.LIN.Soap-Free seeded emulsion copolymerization of MMA onto PU-A and their properties [J].Journal of Applied Polymer Science,2001,(82):941-947.
    [114]Lee K H,Kim B K.Structure-property relationships of polyurethane anionomer acrylate[J].Polymer,1996,(37):2254-2257.
    [115]Kim Ⅱ H,Shin J S.Seeded emulsion polymerization of methyl methacrylate using aqueous polyurethane dispersion:effect of hard segment on grafting efficiency[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,(207):169-176.
    [116]许戈文编著.水性聚氨酯材料.北京:化学工业出版社,2007:150.
    [117]Lee Y M,Lee J C,Kim B K.Effect of soft segrnent length on the Properties of polyurethane anionimer dispersion[J].Polymer 1995,(35):1095.
    [118]Yang Jianwei,Wang Zhiming,Zeng Zhaohua,etal.Chain-extended polyurethane-acrylate ionomer for UV-curable waterborne coatings [J].Journal of applied polymer science,2002,(84):1818-1831.
    [119]Kim Han Do,Kim Tae Woo.Preparation and properties of UV-curable polyurethane acrylate ionomers[J].Journal of Applied Polymer Science,1998,(67):2153-2162.
    [120]Jhon T Mehl,Renata Murgasova,Xia Dong,et al.Characterization of polyether and polyester polyurethane soft blocks using MALDI mass spectrometry[J].Anal Chem,2000,(72):2490-2498.
    [121]刘瑾,马得柱,陈晓明.不同软段结构聚氨酯-酰亚胺嵌段共聚物的合成及热性能研究[J].高分子学报,2002,(2):221-225.
    [122]Hourston D J,Williams G D,Satguru R,et al.The influence of the degreeof neutralization,the ionic moiety,and the counterion on water-dispersible polyurethanes[J].Journal of Applied Polymer Science,1999,(74):556-566.
    [123]Mequanint K,Sanderson R,Pasch H.Phosphated polyurethane-acrylic dispersions:synthesis,rheological properties and wetting behaviour [J].Polymer,2002,(43):5341-5346.
    [124]Kwak Yong-Sil,Park Sang-Woo,Kim Hart-Do.Preparation and properties of waterborne polyurethane-urea anionomers-influenees of the type of neutralizing agentand chain extender[J].Colloid.Polym.Sci,2003,(28):957-963.
    [125]Cheong I W,Nomura M,Kim J H.Water-soluble polyurethane reslns as emulsifiers in emulsion polymerization of styrene:Nuleation and particle growth[J].Macromolecular Chemistry and Phsics,2001,202(11):2454-2460.
    [126]Song Chunmei,Yuan Qiaolong,Wang Dening.Effect of the content of urea groups on the particle size in water-borne polyurethane or polyurethane/polyacrylate dispersions[J].Colloid Polym.Sci,2004,(282):642-645.
    [127]Bontinck D,Tielemans M,Loutz J M.Self crosslinking acrylic-polyurethane dispersions[R].14~(th) International Conference Coatings,Community and Care,Copenhagen,1994.
    [128]肖继君,赵俊芳等.河北科技大学学报,2002,23(1):14-18.
    [129]Zhang Guixi,Zhang Zhicheng.The 60Co-γ ray-initiated seeded emulsion polymerization of methyl methacrylate in the presence of waterborne polyurethane seeds[J].Radiation Physics and Chemistry,2004,(71):271-274.
    [130]陈红,张洪涛,陈福和.聚氨酯-聚丙烯酸酯复合乳液的合成与表征[J].胶体与聚合物,2000,(18):7-10.
    [131]李芝华,李菊仁.丙烯酸树脂改性的水性聚氨酯热行为分析[J].湖南师范大学自然科学学报,1998,21(3):55-59.
    [132]李芝华,李菊仁.丙烯酸树脂改性的水性聚氨酯热行为分析[J].湖南师范大学自然科学学报,1999,22(3):68-73.
    [133]李芝华,郑子樵.丙烯酸改性水性聚氨酯结构设计及其规律[J].中南工业大学学报(自然科学版),1999,30(6):615-617.
    [134]Chen Li,Chen Su.Latex interpenetrating networks based on polyurethane,polyacrylate and epoxy resin[J].Progress in Organic Coatings,2004,(49): 252-258.
    [135]Hirose M,Kadowaki F.The structure and properties of core-shell type acrylic-polyurethane hybrid aqueous emulsions[J].Progress in Coatings,1997,(31):157-169.
    [136]李克友,耿克斌,等.合成橡胶工业,1998,21(3):158-160.
    [137]Park N,Suh K.Organic-inorganic microhybrid material via a novel emulsion mixing method[J].Journal of Applied Polymer Science,1999,(71):1579-1605.
    [138]Zhou S S,Wu L M,Jian S,et al.The change of the properties of acrylic based Polyurethane via addtion of nano-silica[C].Shanghai International Nanotechnology Cooperation Symosium Shen.1-4 Augest,2002,Shanghai:153-167.
    [139]宋春梅,喻志刚,袁荞龙,等.新型水性有机-无机杂化材料(英文)[J].合成橡胶工业,2001,24(6):368.
    [140]Park N,Suh K.Organic-inorganic microhybrid material via a novel emulsion mixing method[J].Journal of Applied Polymer Science,1999,(71):1579-1605.
    [141]Maria J Berrocal,Ibrahim H A Badr,Dayong Gao,et al.Reducing the thrombogenicity of ion-selective electrode membranes through the use of a silicone-modified segmented polyurethane[J].Analytical Chemistry,2001,(73):5328-5333.
    [142]董岸杰,冯士有,万同,等.水性丙烯酸-聚氨酯微乳液的制备及粒子形态[J].应用化学,1998,15(1):101-103.
    [143]董岸杰,冯士有,万同,等.核-壳结构聚丙烯酸酯-聚氨酯微乳液膜的相行为[J].应用化学,1998,15(6):16-20.
    [144]董岸杰,何菲,孙多先.核-壳结构水性丙烯酸-聚氨酯微乳液膜表面结构[J].天津大学学报(自然科学与工程技术版),1999,32(2):149-153.
    [145]Dong Anjjie,Wan Tong,Feng Shiyou,et al.IR Spectra studies ofcore-shell type waterborne polyaerylate-polyurethane microemulsions[J].Journal of Polymer Science,Part B:Polymer Physics,1999,(37):2642-2650.
    [146]Dong Anjie,An Yingli,Feng Shiyou,et al.Preparation and morphology studies of core-shell type waterborne polyacrylate-polyurethane mierospheres[J].Journal of Colloid and InterfaceScience,1999,(214): 118-122.
    [147]Ward R S,White K A.Proceedings from the 8~(th) CIMTEC-Forum of New Materials,Topical Symposium Ⅷ,Materials in Clinical Applications [R].Florence,Italy,1994.
    [148]Trovati A.Process for producing aqueous dispersions of polyurethanes [P].European Patent:0098752 B1,1987.
    [149]Shi Yuanchang,Wu Youshi,Zhu Zhiqian.Modification of aqueous acrylic-polyurethane via epoxy resin postcrosslinking[J].Journal of Applied Polymer Science,2003,88(2):470-475.
    [150]Chen Li,Chen Su.Latex interpenetrating networks based on polyurethane,polyacrylate and epoxy resin[J].Progress in Organic Coatings,2004,(49):252-258.
    [151]Guan-Nan Chen,Kan-Nan Chen.Hybridization of aqueous-based polyurethane with glycidyl methacrylate copolymer[J].Journal of Applied Polymer Science,1999:903-913.
    [152]Kim Byung Kyu,Shin Jung Hwan.Modification of waterborne polyurethane by forming latex interpenetrating polymer networks with acrylate rubbe [J].Colloid Polymer Science,2002,(280):716-724.
    [153]Kim Byung Kyu,Lee Jong Cheol.Modification of waterborne polyurethanes by acrylate incorporations[J].Journal of Applied Polymer Science,1995,(58):1117-1124.
    [154]Petrovic S Z,Zavargo Z,Flynn J H,et al.Thermal-degradation of segmented polyurethanes[J].Journal of Applied Polymer Science,1994,(51):1087-1095.
    [155]D K Chattopadhyay,B Sreedhar,K V S N Raju.Thermal stability of chemically crossliked moisture-cured polyurethane coatings[J].Journal of Applied Polymer Science,2005,(95):1509-1518.
    [156]R G Gilbert.Emulsion polymerization:A mechanistic approach[M].San Diego:Academic press,1995.
    [157]夏正斌,徐伟萍,陈焕钦.丙烯酸聚氨酯涂料成膜过程(Ⅰ)溶剂扩散系数的估算[J].化工学报,2003,(54):1442-1445.
    [158]夏正斌,徐伟萍,陈焕钦.丙烯酸聚氨酯涂料成膜过程(Ⅱ)模型及模拟[J].化工学报,2003,(54):1446-1449.
    [159]Subiao Zhang,Hongtao Lv,Han Zhang,et al.Waterborne polyurethanes:spectroscopy and stability of emulsions[J].Journal of Applied Polymer Science,2006,(101):597-602.
    [160]Anila Asif,Wenfang Shi.UV curable waterborne polyurethane acrylate dispersions baded on hyperbranched aliphatic polyester:effect of molecular sturcture on physical and thermal properties[J].Polymers for Advanced Technologies,2004,(15):669-675.
    [161]Kim B K,Shin J H.Modification of waterborne polyurethane by forming latex interpenetrating polymer networks with acrylate rubber[J].Colloid Polym Sci,2002,(280):716-724.
    [162]Decker C,Masson F,F Schwalm.Dual-curing of waterborne urethane-acrylate coatings by UV and thermal processing[J].Macromol Mater Eng,2003,(288):17-28.
    [163]Chunpeng Wang,Fuxiang Chu,Alain Guyot,et al.Hybrid acrylic-polyurethane latexes:emulsion versus miniemulsion polymerization [J].Journal of Applied Polymer Science,2006,(101):3927-3941.
    [164]Jian-Zei Lai,Hao-Jan Ling,Guan-Nan Chen,et al.Polymer hybrids from self-emulsified PU anionomer and water-reducible acrylate copolymer via a postcuring reaction[J].Journal of Applied Polymer Science,2003,(90):3578-3587.
    [165]方少明,周立明,文丽君.PLA嵌段的聚氨酯丙烯酸酯大单体的合成及聚合物的制备[J].高分子材料科学与工程,2005:85-88.
    [166]X Q Wu,F J Schork,J W Gooch.Hybrid miniemulsion polymerization of acrylic/alkyd systems and characterization of the resulting polymers [J].Journal of Applied Polymer Science,1999,(37):4159-4168.
    [167]Urska Sebenik,MatkaZ Krajnc.Properties of acrylic-polyurethane hybrid emulsions synthesized by the semibatch emulsion copolymerization of acrylates using different polyurethane particles[J].Journal of Applied Polymer Science,2005,(43):4050-4069.
    [168]Xichong Chen,Limin Wu,Shuxue,et al.In situ polymerization and characterization polyester-based polyurethane/nano-silica composites [J].Polymer International,2003,(19):155-157.
    [169]陈向荣,丁小斌,郑朝晖等.聚氨酯-聚丙烯酸酯共聚乳液的成膜和性能 [J].高分子材料科学与工程,2003,(52):993-998.
    [170]D Roizard,A Nilly,P Lochon.Preparation and study of crosslinked polyurethane films to fractionate toluene-n-heptane mixtures by pervaporation[J].Separation and Purification Technology,2001,(22-23):45-52.
    [171]And Y A Wang,Kueir-rarn Lee,Tsung-neng Hsu,et al.2,3-(Epoxypropyl)-methacrylate chemical modified polyurethane for pervaporation[J].Eur Polym J,1998,(34):1105-1111.
    [172]Wicks Z W,Wicks D A,Rosthauser J W.Two package waterborne urethane systems[J].Progress in Organic Coatings,2002,44(2):161-183.
    [173]D Kanja,J Golob,A Zupancic-valant,et al.The sturcture and properties of acrylic-polyurethane hydrid emulsions and comparision with physical blends[J].Jouranl of Applied Polymer Science,2000,(78):67-80.
    [174]Clayton A B,Allen P E M,Keon B,et al.Dynamic-mechanical properties and cross-polarized,proton-enhanced,magic angle spinning ~(13)C-NMR,time constants of urethane acrylates[J].Eur Polym J,1993,(29):1283-1292.
    [175]Tsung-Tang Hsieh,Kuo-Huang Hsieh,George P Simon,et al.Interpenetrating polymer networks of 2-hydroxyethyl methacrylate terminated polyurethanes and polyurethanes[J].Polymer,1999,(40):3153-3163.
    [176]吴其晔,巫静安.高分子材料流变学[M].北京:高等教育出版社,2001:1.
    [177]江体乾.化工流变学[M].上海:华工理工大学出版社,2004:82-84.
    [178]Dennis Laba.Rheological properties of cosmetics and toiteries[M].New York:Marcel Deker,Inc,1993.
    [179]于同隐,何曼君,卜海山等.高聚物的粘弹性[M].上海:上海科学技术出版社,1986.
    [180]王雯霏.嵌段共聚物在选择性溶剂中的形态结构及流变学特性的研究[D].南京:浙江大学,2008.
    [181]Ferry J D.Viscoelastic properties of polymers[M].Newyork:wiley,1980:56.
    [182]Onogi S,Masuda T.Rheological properties of anionic polystyrenes Ⅱdynamic viscoelasticity of blends of narrow-distribution polystyrenes [J].Macromolecules,1970,(3):116-125.
    [183]L E 尼尔生.聚合物流变学[M].北京:科学出版社,1983:39.
    [184]巴勒斯 H A,赫顿 J H,瓦尔特斯 K.流变学导引[M].吴大诚,古大治(第一版),中国石化出版社,1992:133-158.
    [185]张东洋.建筑乳胶涂料的研制及其分散、流变机理的研究[D].上海:华东理工大学,2001.
    [186]Alfred J W,Michael E.Rheological control of water-based coatings [J].Modern paint and coatings,1980,(10):116-118.
    [187]Shaw K G,Leipold P.New cellulosic polymers for rheology control of latex paints[J].Journal of Coatings Technology,1985,57(727):63-71.
    [188]Murakami T,Fernando R H,Glass J E.The influence of hydrophobically -modified,alkali-swellable emulsions on the rheology of pigmented coatings.J.Oil.Col.Chem.Assoc,1993,8-14.
    [189]Wang Z,Wang X,Fang T.The rheology of the offset inks[J].Surface Coatings International,1998,(5):219-222.
    [190]Jes C Knudsen,Lars H φgendal,Leif H,et al.Droplet Surface Properties and Rheology of Concentrated Oil in Water Emulsions Stabilized by Heat-Modified β-LactoglobulinB[J].Langmuir,2008,(24):2603-2610.
    [191]J M Franco,A Raymundo,I Sousa.Influence of Processing Variables on the Rheological and Textural Properties of Lupin Protein-Stabilized Emulsions[J].J.Agric.Food.Chem,1998,(46):3109-3115
    [192]Rajinder Pal.Multiple O/W/O Emulsion Rheology[J].Langmuir,1996,(12):2220-2225.
    [193]Anne Koenig,Pascal Hebraud,Patrick Perrin.Preparation and rheological properties of emulsion gels[J].Langmuir,2002,(18):6458-6461.
    [194]Wang W J,Zheng Q.A novel approach to rheological characterization for the gelation in polymer crystallization[J].Chin J Polym Sci,2005,(23):423-434.
    [195]G L Flickinger,I S Dairanieh,C F Zukoski.The rheology of aqueous polyurethane dispersions[J].J.Non-Newtonian Fluid Mech,1999,(87):283-305.
    [196]Samy A,Madbouly Joshua U,Otaigbe,et al.Rheology behavior of aqueous polyurethane dispersions:effect of solid content,degree of neutralization,chain extension and temperature[J].Macromolecule,2005,38(9):4014-4023.
    [197]徐强,景浩,胡春圃等.聚氨酯-丙烯酸酯水分散液的流变性能[J].华东理工大学学报,2001,27(1).
    [198]郑强,左敏.高分子复杂体系的结构与流变行为[J].中国科学,2007,38(37):512-524.
    [199]Michel Tielemans,Patrice Roose.Study of the rheology of aqueous radiation curable polyurethane dispersions modified with associative thickeners [J].Progress in Organic Coatings,2008,63(2):182-188.
    [200]R Pons,C Solans,Th F Tadros.Rheological behavior of highly concentrated oil-in-Water(o/w) emulsions[J].Langmuir,1995,(11):1966-1971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700