金属离子印迹聚合物微球的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹聚合物已在分子层析、酶模拟、抗体/受体结合模拟、生物传感器、临床药物分析、膜分离技术等领域显示出广泛的应用前景。
    本文以Cu2+为印迹离子,以MAA为功能单体,TRIM为聚合物母体,以SDBS为分散剂,利用反相乳液-悬浮聚合法制备了Cu2+印迹聚合物微球。并对影响微球形态的工艺条件,如外水相中分散剂的种类、用量、功能单体的用量、内水相中金属离子的浓度、外水相的整体组成等进行了详细的研究。对制备的聚合物进行动力学和热力学研究,同时对不同工艺条件制备的聚合物对Cu2+、Ni2+的吸附选择行为进行测试。试验结果表明,利用反相乳液-悬浮聚合法可得到分散的聚合物微球,Cu2+印迹聚合物微球对Cu2+和Ni2+具有一定的选择性,其分离系数达到1.54。
    在上述研究的基础上,利用反相乳液悬浮聚合法,以2-丙烯酰胺-2-甲基丙磺酸(AMPS)为功能单体,制备了Cu2+和Ni2+印迹聚合物微球。对不同用量AMPS制备的聚合物形态及其吸附选择性能进行详细地研究。实验表明,随着功能单体含量的增加,聚合物微球的粒径和溶胀率都随之增大。与未印迹聚合物微球相比,印迹聚合物对印迹离子的吸附量明显增加,随着功能单体与印迹离子摩尔比的增大,印迹聚合物对印迹离子的相对吸附量也增加,相对分离因子(先增加后降低,在6:1时达到最大值1.70。
    此外,还采用反相乳液悬浮聚合法,改变外水相的组成,以PVA分散剂,制备了Cu2+印迹聚合物微球,并对所得聚合物的吸附选择性行为进行了研究。
    最后,以Ni2+为印迹离子,以TRIM为聚合物母体,MAA为功能单体,甲苯为致孔剂,采用悬浮聚合法制备Ni2+印迹聚合物微球。考察了分散剂的用量、功能单体的含量、引发剂的加入方式、油相与水相的比例、甲苯的含量等对微球形态的影响,同时研究了所得聚合物对印迹离子与竞争离子的选择性。在Ni2+和Cu2+、Ni2+和Zn2+的混合溶液中的吸附表明,Ni2+印迹聚合物对Ni2+选择性均高于未印迹聚合物的选择性,印迹聚合物的分离因子(分别为1.53和1.89,相对分离因子(分别为1.56和1.82。
Molecular imprinted polymers(MIPs), as molecular recognition materials with high selectivity to imprinting molecules, have extensive potential application in separation, purification, enzyme mimic, biomimic sensors, membrane separation and other fields.
    This paper aimed to study the preparion technique of metal ion imprinted polymer in aqueous system, the surface morphology of polymer obtained and their selective properties to metal ions.
    In this paper, Cu2+ imprinted polymer microspheres were prepared by reverse-emulsion suspension polymerization. The methacrylic acid (MAA), TRIM and SDBS were used as functional monomer, polymeric matrix and dispersant respectively. The process affecting the polymer morphology, such as the kind and amount of dispersant, the amount of functional monomer, the Cu2+ concentration and the composition of external aqueous phase, were investigated in detail. At the same time , the selective adsorption to Cu2+ and Ni2+, including the dynamics and thermodynamics, was performed. The results indicated that the polymer obtained exhibited good selectivity to Cu2+ and Ni2+ and the separation factor up to 1.54.
    Cu2+ and Ni2+ imprinted polymers were prepared with the optimal recipe obtained by previous studies and 2-acrylanido-2-methyl-propanesulfonic acid(AMPs) as functional monomer. It was showed that the particle size and swelling rate of imprinted polymers increased with the increase of functional monomer. The adsorption capacity to imprinted metal ion enhanced with the increase of mol ratio between functional monomer and imprinted metal ions. However the relative separation factor ( firstly increased and then decreased.
    Moreover, in order to avoid the bad effect of other metal ions on the Cu2+ imprinted polymer, the polymers were performed by inverse emulsion suspension polymerization and PVA as dispersant. The process of preparing was studied and selective adsorptions were carried
    lastly, the suspension polymerization method was applied to manufacture Ni2+ imprinted polymer and MAA as functional monomer. Those factors affected the polymer morphology, for instance the amount of functional monomer, the added order of AIBN, the ratio of oil and water, the amount of toluene, were investigated detailed. A further research on the selectivity of polymers to the imprinted metal ion and
    
    
    competitive ion was performed. The results showed the resulting polymer appeared regular sphericity and existed good recognition property to imprinted ion in mixture of imprinted ion and competitive ion.
引文
[1] Pauling L,A theory of structure and process of formation of antibodies, J Am Chem Soc, 1940, 62(3): 2643~2657.
    [2] Wulff G, Sarhan A,The use of polyner with enzyme-analogous structures for the resolution of racemates, Angew Chem Int Ed Engl, 1972, 11: 341-341.
    [3] Wulff G, Sarhan A, Iabrocki K. Tetrahedron Lett, 1973, 4329.
    [4] Wulff G, Vesper W, Einsler R G, et, al, Synthetic polymer with chiral cavities, Makromol. Chem., 1977,178(1):2799~2802.
    [5] Vlatkis G., Andersson L.L., Muller R., Mosbach K., Drug assay using antibody mimics made by molecular imprinting, Nature, 1993, 361:645-647.
    [6] Cormack P A G, Mosbach K, Molecular imprinting: recent developments and the road ahead, Reactive and Functional Polymer, 1999,41(1-3):115-124.
    [7] Sellergren B, Shea K J, Chiral ion-exchange chromatography correlation between solute retention and a theoretical ion-exchange model using imprinted polymers, J Chromatogra A, 1993, 654: 17–28.
    [8] Wulff G, Sarhan A, Gimpel J, et al. Chem Ber, 1974, 107: 3364–3371.
    [9] Norrlw O, Glad M, Mosback K, Acrylic polymer preparation containing recognition sites obtained by imprinting with substrates, J Chromatogr, 1984, 299: 29–41.
    [10] Shea K J, Sasaki D Y, J Am Chem Soc, On the control of microenvironment shape of functionalized network polymers prepared by template polymerization, 1989, 111: 3442–3445.
    [11] Nicholls I A, Ramstrom, Mosback K, Insight into the role of the hydrogen bond and hydrophobic effect on recognition in molecularly imprinted polymer synthetic peptide receptor mimics, J Chromatogr A, 1995, 691: 349–353.
    [12] Arshady R, Mosback K. Makromol Chem, Synthesis of substrate-selective polymers by host-guest polymerization, 1981, 182: 687–692.
    [13] Wulff G, Minarik M. Chromatogr Commun, 1986, 9: 607.
    [14] Anderson H S, Nicholls I A, Recent Res Devel in Pure & Applied Chem, 1997, 1: 133–157.
    [15] Lele B S, Kulkarni M G, Mashekar R A, Molecularly imprinted polymer mimics of chymotrypsin, 1.Cooperative effects and substrate specificity, Reactive and
    
    
    functional polymers, 1999,39(1): 37~52.
    [16] Hart B R, Rush D J, Shea K J, Discrimination between enatiomers of structurally related molecules: separation of benzodiazepines by molecularly imprinted polymer, J Am Chem Soc, 2000, 122: 460–465.
    [17] Liang C D, Peng H, Bao X Y, et al, Study of molecular imprinting polymer coated BAW bio-mimic and its application to the determination of caffeine in human serum and urine,. Analyst 1999, 124: 1781–1785.
    [18] Dickert F L, Lieberzeit P, Tortschanoff M, Antibodies-a new generation of chemical sensors, Sensors and Actuators, B: hemical,2000,65(1):186~189.
    [19] Malitesta C, Losito I, Zambonin P G, Molecularly imprinted electrosynthesized polymers: New materials for biomimetic sensors, Analytical Chemistry, 1999,7(7):1366~1370.
    [20] Haupt K, Mosbach K, Molecularly imprinted polymers and theirs use in biomimetic sensors, Chemical Reviews, 2000,100(7): 2495~2504.
    [21] Nishide H, Tsuchida E, Selective adsorption of metal ions on poly(4-vinylpyridine) resins in which the ligand chain is immobilized by crosslinking, Makromol Chem, 1976, 177: 2295~2310.
    [22] Wulff G, Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies, Angew Chem. Int. Ed. Engl., 1995, 34:1812~1832.
    [23] (1) Owens P. K., Karsson L, Molecular imprinting for bio-and pharmaceutical analysis, Trends in Anal. Chem., 1999, 18: 146-155..
    [24] Wulff G, Role of binding-site interactions in the molecular imprinting of polymers Trends in Biotechnology, 1993,11(3):85~93.
    [25] Mosbach K, Molecular imprinting, molecularly imprinted polymers-theirs use in enantiomeric resolution, as antibody binding mimics and as catalysts, Protein Engineering, 1995,8:54~60.
    [26] Mosbach K, Ramstrom O, Emerging technique of molecular imprinting and its future impact on biotechnology, Bio/Technology, 1996,14(2):163~169.
    [27] Kempe M, Mosbach K, Molecular imprinting used for chiral separations, J. Chromatogr. A, 1995, 694:3~13.
    [28] Kempe M, Mosbach K, Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases, J. Chromatogr. A, 1995, 691:317~323.
    [29] Mosbach K, Toward the next generation of molecular imprinting with emphasis on the formation by direct molding of compounds with biological activity (biomimetics), Analytic Chimica Acta., 2001,435:3~8.
    [30] Bruggemann O, Haupt K, Ye L, et al., New configurations and applications of
    
    
    molecularly imprinted polymers, J. Chromatogr. A, 2000,889:15-24.
    [31] Mosbach K, Haupt K. J, Some new developments in non-covalent molecular imprinting technology, J. Mol. Recognit., 1998, 11(1-6):62-68.
    [32] Wulff G, Selective binding to polymers via covalent bonds : the structure of chiral cavities as special receptor sites, Pure and Applied Chemistry,1982,54(11): 2093-2102.
    [33] Sellergren B, Lepisteo M, Mosbach K, Highly enatio-and substrate-selective polymers obtained by molecular imprinting based on non-covalent interactions, Reactive Polymers, 1989, 10: 306-312.
    [34] Katz A, Davis M E, Investigation into the mechanisms of molecular recognition with imprinted polymers, Macromolecules, 1999,32(12): 4113-4121.
    [35] Nicholls I A, Adbo K, Andersson H S, et al, Can we rationally design molecularly imprinted polymers? Analytica Chimica Acta, 2001, 425:9-18.
    [36] Sellergren B, Lepisto M, Mosbach K, Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions, NMR and chromatographic studies on the nature of recognition, Journal of the American Chemical Society, 1988,110(17): 5853-5860.
    [37] Chen W Y, Chen C S, Lin F M, Molecular recognition in imprinted polymers: Thermodynamic investigation of analyte binding using microcalorimetry, J. Chromatogr. A, 2001, 923: 1-6.
    [38] Zhou J, He XW, Zhao J, et al, Study of binding action and selectivity of trimethoprim molecular template polymers, Chemical Journal of Chinese Universities, 1999, 20(2): 204-208.
    [39] Dickert F L, Besenbock H, Tortshanoff M, Molecular imprinting through Vander Waals interactions: Fluorescence detection of PAHs in water, Advance Materials, 1998,10(20): 149-151.
    [40] Cheong S H, Rachkov A E, Park J K, et al, Synthesis and binding properties of a noncovalent molecularly imprinted testosterone-specific polymers, J. Polym.Sci. A,: Polymer Chemistry, 1998, 36(11): 1725-1732.
    [41] Piletsky S A, Pietskaya E V, Panasyuk T L, et al, Imprinted membranes for sensors technology: opposite behavior of covalently and noncovalently imprinted membranes, Macromolecules, 1998, 31(7): 2137-2140.
    [42] Piletsky S A, Andersson H S, Nicholls I A, combined hydrophobic and electrostatic interaction-based recognition in molecularly imprinted polymers, Macromolecules, 1999, 32(3): 633-636.
    [43] Yu C, Mosback K, Molecular imprinting utilizing an amide functional group for
    
    
    hydrogen bonding leading to highly efficient polymers, Journal of Organic Chemistry, 1997, 62(12): 4057-4064.
    [44] Sreenivasan K, Sivakumar R, Interaction of molecularly imprinted polymers with creatinine, J. Appl. Polym. Sci. 1997, 66(13): 2539-2542.
    [45] Kugimiya A, Matsui J, Takeuchi T, Sialic acid-imprinted polymers using noncovalent interactions, Materials Science and Engineering C: Biomimetic Materials, ssensors and Systems, 19997, 4(4): 263-266.
    [46] Sellergren B, Noncovvalent molecular imprinting: antibody-like molecular recognition in polymer network materials, Trends in Analytical Chemistry, 1997, 16(6): 310-320.
    [47] Hwang Ch-Ch, Lee W-Ch, Chromatographic characteristics of cholesterol-imprinted polymers prepared by covalent and noncovalent methods, J. Chromatogr. A, 2002,962: 69-78.
    [48] Zhang T L, Liu F, Chen W, Influence of intramolecular hydrogen bond of templates on molecular recognition of molecularly imprinted polymers, Analytica Chimica Acta, 2001, 450:53-61.
    [49] Yano k Tanabe K, Takeuchi T, et al, Molecularly imprinted polymers which mimic multipl hydrogen bonds between nucleotide bases, Analytica Chimica Acta, 1998, 363: 111-117.
    [50] Lu Y, Li Ch X, Liu X H, et al, Molecular recognition through the exact placement of functional groups on non-covalent molecularly imprinted polymers, J. Chromatogr. A: 2002, 950: 89-97.
    [51] Sasaki T, Hwang k Q, Yakura Y, et al, Template-assisted assembly of metal binding sites on a silica surface, Materials Science and Engineerig:C, 1995, 3: 137-141.
    [52] Whitcombe M J, Rodriguez M E, Villar P, Vulfson E N, A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol, J. Am. Chem. Soc., 1995,117: 7105- 7111.
    [53] Bergold A., Scouten W. H., Solid Phase Biochemistry ( Ed:Scouten W.H.) New York: Wiley, pp 149-187.
    [54] Wullf G., Laucer M., Bohnke H., Rapid proton transfer as cause of an unusually large neighboring group effect**, Angew. Chem. Int. Ed. Engl., 1984, 23:741-742.
    [55] Laucer M., Bohnke H., Salenia M., Wullf G., Chem.Ber., 1985,118:246.
    [56] Wullf G., Schmidt H., Witt H., Zentel R., Cooperativity and transfer of chirality in liquid – crystalline polymers, Angew. Chem. Int. Ed. Engl., 1994, 33:188 - 191.
    
    [57] Shea K J, Sasaki D Y, Stoddard G J, Fluorescence probes for evaluating chain solvation in network polymers: An analysis of the solvatochromic shift of the dansyl probe in macroporous styrene-divinylbenzene and styrene-diisopropenylbenzene copolymers, Macromolecules, 1989, 22(4): 1722-1730.
    [58] Sarhan A., Ali M. M., Abdelaal M. A., Racemic resolution of mandelic acid on polymers on polymers with chiral cavities. 3*. Co-operative binding over phenylboronic acid groups and N-bases, React. Polym., 1989, 11:57 - 70.
    [59] Wullf G., Minarik M., Template imprinted polymers for HPLC separation of racemates, J. Liq. Chromatogr., 1990, 13:2987 - 3000.
    [60] Wullf G., Oberkobusch D., Minarik M., React. Polym.Ion. Exch. Sorbents, 1985, 3: 261.
    [61] Andersson L. I., Shannessy D. J., Mosbach K., J. Chromatogr., 1990, 513:167.
    [62] Wullf G., Best W., Akelah A., React. Polym.Ion. Exch. Sorbents, 1984, 2:167.
    [63] O’Shannessu D. J., Ekberg B., Mosbach K., Molecular imprinting of amino acid derivatives at low temperature (0) using photolytichomolysis of azobisnitriles, Anal. Biohchem., 1989, 177:144-149.
    [64] Kempe M., Mosbach K., Binding studies on substrate- and enantio – selective molecularly imprinted polymers, Anal. Lett. 1991, 24:1137 - 1145.
    [65] Sellergren B., Shea K, Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers, .J Chromatogr., 1993, 635:31 - 49.
    [66] Katz A., Davis M. E., Investigation into the mechanisms of molecular recognition with imprinted polymers, Macromolecules, 1999, 32: 4113 - 4121.
    [67] Sellergren B., Ekberg B., Mosbach K., Molecular imprinting of amino acid derivatives in macroporous polymers. Demonstration of substrate- and enantio-selectivity by chromatographic resolution off racemic mixtures of amino acid derivatives, J., Chromatogr., 1985, 347:1 - 10.
    [68] Matsui J., Otto D., Toshifumi T, 2-(Trifluomethyl)acrylic acid: a novel functional monomwe in non-covalent molecular imprinting, Anal. Chim. Acta., 1997, 343:1- 4.
    [69] Kempe M., Mosbach K., Direct resolution of naproxen on a non- covalent molecularly imprinted chiral stationary phase, J. Chromatography A, 1994, 664:276 - 279.
    [70] Piletsky S. A., Matuschewski H., Schedler U., Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photooograph copolymerization in water, Macromolecules,, 2000, 33: 3092- 3098.
    
    [71] Lubke C., Whitecome J., Vulfason E., Imprinted polymers prepared with stoichiometric template –monomer complexes efficient binding of ampicillin from aqueous solution, Macromolecules, 2000, 33:5098- 5105.
    [72] Ramstrom O., Andersson L. I., Mosbach K., Recognition sites incorporating both pyridinyl and carboxy functionalities prepared by molecular imprinting, J. Org. Chem., 1993, 58: 7562- 7564.
    [73] Piletsky S. A., Andersson H S, Nicholls I A, Combined hydrophobic and electrostatic interaction-based recognition in molecularly imprinted polymers, Macromolecules, 1999, 32(3): 633- 636.
    [74] Shea K. J., Spivak D. A., Sellergren B., Polymer complements to nucleotide bases. Selective binding of adenine derivatives to imprinted polymers, J. Am. Chem. Soc., 1993, 115: 3368- 3369.
    [75] Dauwe C., Sellergren B., Influence of template basicity and hydrophobicity on the molecular recognition properties of molecularly imprinted polymers, J. Chromatogr. A, 1996, 753: 191- 200.
    [76] Fujii Y., Kikuchi K., Matsutani K., et al, Template synthesis of polymer schiff base cobalt(II) complex and formation of specific cavity for chiral amino acid, Chem. Letter., 1984, 153(9):1487 - 1490.
    [77] Fujii Y., Matsutani K., Kikuchi K., Formation of a specific co-ordination cavity for a chiral amino acid by template synthesis of a polymer schiff base cobalt(II) complex, J. Chem. Soc., Chem. Commun., 1985, 7: 415 - 417.
    [78] Dhal P. K., Arnold F.H., Template- mediated synthesis of metal- complexing polymers for molecular recognition, J. Am. Chem. Soc., 1991, 113:7417 - 7418.
    [79] Dhal P. K., Arnold F.H., Metal- coordination interactions in the template- mediated synthesis of substrate-selective polymers: recognition of bis(imidazole) substrates by copper(II) iminodiacetate containing polymers, Macromolecules, 1992, 25: 7051 - 7059.
    [80] Kabanov V A, Efendiev A A, Orudzhev D D, Samedora N M. Dokl Chem (Engl Transl), 1978, 238: 22.
    [81] Nishide H, Tsuchida E., Seletive adsorption of metal ions on poly(4-vinylpridine) resins in which the ligand chain in immobilized by crosslinking, Makromol Chem, 1976, 177: 2295-2310.
    [82] Nishid H., Deguchi J.,Tsuchida E., Adsorption of metal ions on crosslinked poly(4-vinylpridine) resins prepared with a metal ion as template, J. Polym. Sci., Polym. Chem., Ed., 1977, 15: 3023-3029.
    [83] David A. H., George K. S., Preparation of site-selective ion-exchange resins, Separation Sci. and Tech., 1991, 26(3): 345-354.
    [84] Gupta S. G., Neckers D. C., Ibid., 1982, 20: 1609.
    [85] Kato M., Nishid H., Tsuchida E., Sasaki T., Ibid., 1981, 19: 1803.
    [86] Ohga K, Kurauchi Y, Yanase H, Adsorption of Cu2+ or Hg2+ ion on resins prepared by crosslinking metal- complexed chitosans, Bull Chem Soc Jpn, 1987, 60: 444- 446.
    
    [87] Screenivasulu R P, Kobayashi T, Abe M, et al, Molecular imprinted Nylon-6 as a recognition materials of amino acids, European Polymer Journal, 2002, 38(3):521-529.
    [88] Lubke C, Lubke M, Whitecombe M J, et al, Imprinted polymers prepared with stoichiometric template-monomer complexes: efficient binding of ampicillin from aqueous solutions, Macromolecules, 2000, 33(14):5098-5105.
    [89] Mullett W M, Lai E P C, Determination of theophylline in serum by molecularly imprinted solid-phase extraction with pulsed elution, Analytical chemistry, 1998, 70(17): 3636-3641.
    [90] Crescenzi V, Masci G, Fonsi M, et al, Molecularly imprinted polymers binding clenbuterol, Polymer Preprints, Division of Polymer Chemistry, American Chemistry Society, 1998, 39(2): 699-700.
    [91] Andersson L I, Application of molecular imprinting to the development of aqueous buffer and oganic solvent based radioligand binding assays for (S)-propranolol, Analytical Chemistry, 1996, 68(1): 111-118.
    [92] Zander A, Findlay P, Renner T, et al, Analysis of nicotine and its oxidation products in nicotine chewing gum by a molecularly imprinted solid-phase extraction, Analytical Chemistry, 1998, 70(15): 3304-3314.
    [93] Joshi V P, Karmalkar R N, Kulkarni M G, et al, Effect of solvents on selectivity in separation using molecularly imprinted adsorbents: separation of phenol and bisphenol A, Industrial and Engineering Chemistry Research, 1999, 38(11): 4417-4423.
    [94] Rachkov A E, Cheong S-H, Elskaya A V, et al, Molecularly imprinted polymers as artificial steroid receptors, Polymers for Advanced Technologies, 1998, 9(8): 511-519.
    [95] Whitecombe M J, Rodriguez M E, Villar P, et al, New method for the introduction of recognition site functionality into polymers prepared by molecular imprinting synthesis and characterization of polymeric receptors for cholesterol, J. American Chemistry Society, 1995, 117(27): 7105-7113.
    [96] Spivak D A, Shea K J, Binding of nucleotide bases by imprinted polymers, Macromolecules, 1998, 31(7): 2160-2165.
    [97] Dabulis K, Klibanov A M, Molecular imprinting of proteins and other macromolecules resulting in new adsorbents, Biotechnology and Bioengineering, 1992, 39(2): 176-185.
    [98] Spivak D A, Shea K J, Investigation into the scope and limitations of molecular imprinting with DNA molecules, Analytical Chimica Acta, 2001, 435: 7105-7113.
    [99] Hirayama K, Sakai Y, Kameoka K, Synthesis of polymer particles with specific lysozyme recognition sites by a molecular imprinting technique, Journal of Application Polymer Science, 2001, 81(14):3378-3387.
    [100] Masci G, Aulenta F, Crescenzi V, Uniform-sized clenbuterol molecularly imprinted polymers prepared with methacrylic acid or acrylamide as an interacting monomer, Journal of Applied Polymer Science, 2002, 83(12):
    
    
    2660-2668.
    [101] Matsui T, Doblhoff-Dier O, Takeuchi T, 2-(Trifluoromethyl) acrylic acid: a novel functional monomer in non-covalent molecular imprinting, Analytica. Chimica. Acta., 1997, 343: 1-4.
    [102] Sergey A, Piletsky ?, Hakan S, Combinded hydrophobic and electrostatic interaction-based recognition in molycularly imprinted polymers, Macromolecules, 1999, 32:633-636.
    [103] Shifumi T, Daigo F, Jun M, Combinatorial molecular imprinting: an approach to synthetic polymer receptors, Anal. Chem, 1999,71: 285- 290.
    [104] Masahiro Y, Kazuya U, Masahiro G, et. al., Metal ion imprinted microshere prepared by surface molecular imprinting technique using water-in-oil-in-water emulsions, J. Applied Polymer Science, 1999, 73: 1223-1230.
    [105]Pinel C, Loisil P, Gallezot P, Preparation and utilization of molecularly imprinted silicas, Advanced Materials, 1997, 9: 582- 585.
    [106] Hunnius M, Rufinska A, Maier W F, Selective surface adsorption versus imprinting in amorphous microporous silicas, Microporous and Mesoporous Mateerials, 1999, 29: 389- 403.
    [107] Markowitz M A,Kust P R, Deng G, Catalytic silica particles via template-directed molecular imprinting, Langmuir, 2000, 16: 1759- 1765.
    [108] 何天白,胡汉杰,海外高分子科学的新进展,北京化学工业出版社,1997,193-214.
    [109] Slade C J, Molecular (or bio-) imprinting of bovine serum albumin, J Molecular Catalysis B: Enzymatic,2000, 9: 97- 105.
    [110] Ye L, Cormack A P G, Mosbach K, Molecularly imprinted monodisperse microspheres for competitive radioassay, Analytical Chemistry, 1999, 36: 35-38.
    [111] Yu C, Mosbach K, Molycular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers, J Org Chem, 1997, 62: 4057- 4064.
    [112] Haupt K, Dzgove A, Mosbach K, Assay system for the herbidide 2,4- dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element, Anal. Chem., 1998, 70:628- 631.
    [113] Haginaka J, Takehira H, Hosoya K, et al, Molecularly imprinted uniform- sized polymer-based stationary phase for naproxen comparison of molecular recognition ability of the molecularly imprinted polymers prepared by thermal and redox polymerization techniques, J. Chromatogr. A, 1998, 816: 113- 121.
    [114] Yoshida M, Uezu K, Goto M, et al, Metal ion imprinted microspheres prepared by surface molecular imprinting technique using water- in
    
    
    –oil- in- water emulsions, J. Applied Polym. Sci., 1999, 73: 1223- 1230.
    [115] 张洁辉,游贤贵,周惠南等,大孔苯乙烯- 二乙烯基苯树脂的合成吸附性质,成都科技大学学报,1990, 4:13- 19.
    [116] 成国祥,曾令刚,刘超等,乳液模板法制备含孔材料,热固性树脂,2001,16:29- 32.
    [117] Cheng C M, Micale F J, Vanderhoff J W, et al, Synthesis and characterization of monodisperse porous polymer particle, J. Polym. Sci.: Part A: Polym Chem, 1992, 30: 235- 244.
    [118] Spivak D, Shea K J, Macromolecules, 1998, 31: 2160.
    [119] Spivak D,Gilmore M A, Shea K J, Evaluation of binding and origins of specificity of 9-ethyladenine imprinted polymer, J Am Chem Soc, 1997, 119: 4388-4393.
    [120] Vlatakis G., Anderson L I., Mosbach K., et al., Drug assay using antibody mimics made by molecular imprinting, Nature, 1993, 361:645-647.
    [121] Andrew G M., Mosbach K., Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase, Anal. Chem., 1996, 68:3769 - 3774.
    [122] Richard J A., Mosbach K., Molecularly imprinted polymers by suspension polymerization in perfluorocarbon liquid with emphasis on the influence of the porogenic solvent, J. Chromatogr., A, 1997, 787:55-66.
    [123] Lei Ye, Olof Ramstrǒm, Mosbach K., Molecularly imprinted polymeric adsorbents for byproduct removal, Anal. Chem., 1998, 70:2789 - 2795.
    [124] Harkins D A, Schweitzer G K, Preparation of site-selective ion-exchange resins, Sep Sci Technol, 1991, 26: 345–354.
    [125] Meng Zihui, Wang Jinfang, Zhou Liangmo, et al., Chinese J. Chromatogr., 1999, 17(4): 323.
    [126] Yoshifumi K, Hirofumi S, Hidoto S, et al, Selective adsorption of metal ions to surface-template resins prepared by emulsion polymerization using 10-(-p-vinylphenyl) decanoic acid, Bull Chem Soc Jpn, 1996, 69: 125–130.
    [127] Masaharu Murata, Shinji Hijiya, Mizuo Maeda, Makoto Takagi, Template-dependent selectivity in metal adsorption on phosphoric diester-carrying resins prepared by surface template polymerization technique, Bull. Chem. Soc. Jpn., 1996, 69: 637-642.
    [128] Ken Hosoya, Jean M F., Influence of the seed polymer on the chromatographic properties of size monodisperse polymeric separation media prepared by a multi-step swelling and polymerization method, J. Polym. Sci., Part A: Polym. Chem.,1993, 31:2129- 2141.
    [129] Haginaka J, Takehira, H, Hosoya K, et al, Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen comparison
    
    
    of molecular recognition ability of the molecular imprinted polymers prepared by thermal and redox polymerization techniques, J. Chromatogr. A,1998, 816: 113- 121.
    [130] Masahiro Yoshida, Kazuya Uezu, Fumiyuki Nakashi, et al., Spacer effect of novel bifunctional organophosphorous monomers in metal- imprinted polymers prepared by surface template polymerization, J. Polym. Sci., Part A: Polym. Chem., 1998, 36: 2727- 2734.
    [131] Hosoya K., Yoshizako K., Shirasu Y., Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography structural contribution of cross-linked polymer network on specific molecular recognition, J. Chromatogr. A., 1996, 728: 139-147.
    [132] Kazuhiko T, Kai Y Y, Mizuo M, et al, Metal ion-selective adsorbent prepared by surface-imprinting polymerization. Metal ion-selective adsorbent prepared by surface-imprinting polymerization, Bull Chem Soc Jpn, 1993, 66: 114–120.
    [133] 成国祥,张立永,付聪,种子溶胀悬浮聚合法制备分子印迹聚合物微球,色谱,2002, 20(2):102- 107。
    [134] Glad M, Reinholdsson P, Mosbach K, Molecularly imprinted composite polymers based on trimethylolpropane Trimethacrylate(TRIM) particles for efficient enantiomeric separations, Reactive Polymers, 1995, 25(1): 47- 54.
    [135] Uezu K., Nakamura H., Kanno J.,et al, Metal ion- imprinted polymer prepared by the combination of surface template polymerization with postirradiation by (-ray, Macromolecules, 1997, 30: 3888- 3891.
    [136] Dai S H., Williams T. F., Angew. Chem. Int. Ed.,1999, 9: 38.
    [137] Uezu K., Yoshida M., Goto M.,et al, Molecular recognition using surface template polymerization, Chemtech.,1999, 29(4): 12- 18.
    [138] Feng X, Fryxell G E, Wang L Q, et al., Functionalized monolayers on ordered mesoporous surports, Science 1997, 276: 923-926.
    [139] Dai S, Burleigh M C, Shin Y, et al., Molecular imprinting of surfaces, Angew Chem Int Ed. 1999, 38: 1235–1239.
    [140] Uezu K, Nakamura H, Goto M, et al, Metal-imprinted microsphere prepared by surface-template polymerization with W/O/W emulsion, J Chem Eng Jpn, 1999, 32: 262–267.
    [141] Masahiro Y, Uezu K, Goto M, Metal ion imprinted microsphere prepared by surface molecular imprinting technique using water-in-oil-in-water emulsions, J Appl Polym Sci, 1999, 73: 1223–1230.
    [142] Matsui J., Takeuchi T., Anal. Commun., 1997, 34: 199.
    [143] Sellergren B., Ekberg B., Mosbach K, Molecular imprinting of amino acid derivatives in macroporous polymers: Demonstration of substrate and
    
    
    enantio-selectivity by chromatographic resolution of racemic mixtures of amino acid derivatives, J., Chromatogr., 1985, 347:1-10.
    [144] Schweitz L., Andersson L. M., Nilsson S, Capillary electrochromatography with predetermined selectivity obtained through molecular imprinting, Anal. Chem., 1997, 69(6): 1179-1183.
    [145] Schweitz L., Andersson L. M., Nilsson S, Capillary electrochromatography with molecular imprinted-based selectivity for enantiomer separation of local anaesthetics, J. Chromatogr. A, 1997, 792: 401-409.
    [146] Kobayashi T, Wang H Y, Fujii N, Molecular imprinting of theophylline in acrylonitrile-acrylic acid copolymer membrane, Chem. Lett.,1995, 8:927-928.
    [147] Mathew K J, Shea K J, Imprinted polymer membranes for the selective transport of targeted neutral molecules, J Am Chem Soc, 1996, 118: 8154-8155.
    [148] Yoshikawa M, Fujusawa T, Lzumi J, et al, Molecularly imprinted polymeric membranes involving tetrapeptide KQKL derivatives as chiral-recognition sites toward amino acids, Anal Chim Acta, 1998, 365: 59-67.
    [149] Hong J M, Anderson P E, Qian J, et al, Chem Mater, 1998, 10:1029.
    [150] Heegaard N H H, Nilsson S, Guzman N A, Affinity capillary electrophoresis: important application areas and some resent development, J Chromatogr B, 1998, 715: 29-5 4.
    [151] Joshi V P, Karode S K, Kulkarni M G, et al, Novel separation strategies based on molecularly imprinted adsorbents, Chem Eng Sci, 1998, 53: 2271- 2284.
    [152] Hwang Ch-Ch, Lee W-Ch, Chromatographic resolution of the enantiomers of phenylpropanolamine by using molecularly imprinted polymer as the stationary phase, J Chromatogr B: Biomedical Science and Application, 2001, 765: 445- 53.
    [153] Baggiani C, Trotta F, Giraudi G, et al, Chromatographic characterization of a molecularly imprinted polymer binding theophylline in aqueous buffers, J Chromatigr A, 1997, 786:23- 29.
    [154] Baggiani C, Giraudi G, Trotta F, et al, Chromatographic characterization of a molecularly imprinted polymer binding cortisol, Talanta, 2000, 51: 71- 75.
    [155] Baggiani C, Giraudi G, Giovannoli C, et al, Chromatographic characterization of a molecularly imprinted polymer binding the herbicide 2,4,5-trichlorophenoxyacetic acid, J Chromatigr A, 2000, 883: 119- 126.
    [156] Hogenoorn E, Van Z P, Recent and future developments of liquid chromatography in pesticide trace analysis, J Chromatogr. A, 2000, 892: 435- 453.
    [157] Zheng N, Fu Q, Li Y Z, et al, Chromatographic characterization of sulfonamide imprinted polymers, Microchemical J, 2001, 69: 55- 60.
    
    [158] Khasawneh M A, Vallano P T, Remcho V T, Affinity screening by packed capillary high performance liquid chromatography using molecularly imprinted sorbents: II. Covalent imprinted polymers, J Chromatogr. A, 2001, 922: 87- 97.
    [159] Buchmeiser M R, New synthetic ways for the preparation of high- performance liquid chromatography supports, J Chromatogr. A, 2001, 918: 233- 266.
    [160] Hosoy K, Shirasu Y, Kimata K, et al, Molecularly imprinted chiral stationary phase prepared with racemic template, Anal Chem, 1998, 70: 9443- 945.
    [161] Mao Y, Warner M, Imprinted networks as chiral pumps, Physical Review Letters, 2001, 86: 5309- 5312.
    [162] Yoshikawa M, Izumi J- I, Kitao T, Alternative molecular imprinting, a facial way to intruduce chiral recognition sites, Reactive and Functional Polymers,1999, 42: 93- 102.
    [163] Fischer L, Mueller R, Ekberg B, et al, Direct enantioseparation of β- adrenergic blockers using a chiral station phase prepared by molecular imprinting, J Am Chem Soc, 1991, 113: 9358- 9366.
    [164] Lei J D, Tan T W, Enantioselective separation of naproxen and investigation of affinity chromatography model using molecular imprinting, Biochemical Engineering, 2002, 11: 175- 179.
    [165] Sellergren B, Anal. Chem, Direct drug determination by selective sample enrichment on an imprinted polymer, 1994, 66: 1578-1582.
    [166] Muldoon M T, Stanker L H, Molecularly imprinted solid phase extraction of atrazine from beef liver extraction, Anal. Chem, 1997, 69: 803-808.
    [167] Martin P, Wilson I D, Morgan D E, et al, A highly selective solid extraction sorbent for pre-concentration of sameridine made by molecular imprinting Chromatography, Anal Chem, 1997, 34: 45-62..
    [168] Mullett W M, Lai E P C, Determination of theophylline in serum by molecularly imprinted solid-phase extraction with pulsed elution, Anal Chem, 1998, 70: 3636-3641.
    [169] Yoshikawa M, Izumi J, Kitao T, Molecularly imprinted polymeric membranes containing DIDE derivatives for optical resolution of amino acids, Macromolecules, 1996, 29: 8197-8203.
    [170] Yoshikawa M, Izumi J, Kitao T, Enantioselective electrodialysis of N-(-acetyltryptophans through molecularly imprinted polymeric membranes, Chem Lett, 1996, 611-612.
    [171] Kobayashi T, Wang H Y, Fujji N, Molecularly imprint membranes of polyacrylonitrile copolymers with different acrylic acid segments, Anal Chim Acta, 1998, 365: 81-88.
    [172] Hong J-M, Anderson P E, Qian J, et al, Chem Mater, 1998, 10: 1029.
    [173] Ekberg B, Mosbach K, Molecular imprinting: A technique for producing specific separation materials, Trends in Biotechnology, 1989, 7: 92-96.
    [174] Piletsky S A, Piletskaya E V, Elgersma A V, et al, Atrazine sensing by molecularly imprinted membranes, Biosensors and Bioelectronics, 1995, 10: 959-964.
    [175] Shea K J, Sasaki D Y, Stoddard G J, Fluorescene probes for evaluating chain
    
    
    solvation in network polymers. An analysis of the solvvatochromic shift of the dansyl probe in macroporous styrene-divinylbenzene and styrene-diisopropenylbenzene copolymers, Macromolecules, 1989, 22: 1722-1730.
    [176] Vlatakis G, Anderson L I, Mueller R, et al, Drug assay using antibody mimics made by molecular imprinting, Nature, 1993, 361: 645.
    [177] Sellergren B, Imprinted polymers: stable, reusable antibody-mimics for highly selective separations, American Laboratory, 1997, 29: 14-16.
    [178] Cheong S H, Mcniven S, Rachkov A, et al, Testosterone receptor binding mimic construed using molecular imprinting, Macromolecules, 1997, 30: 1317-1322.
    [179] Anderson L I, Nicholls I A, Mosbach K, Antibody mimics obtained by noncovalent molecular imprinting, ACS Symposium Series, 1995, 586: 89-97.
    [180] Piletsky S A, Piletska E V, Bosi A, et al, Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays, Biosensors and Bioelectronics, 2001, 16: 701-707.
    [181] Leonhardt A, Mosbach K, Enzyme-mimicking polymers exhibiting specific substrate binding and catalytic functions, Reactive Polymers, Ion Exchange sorbents, 1986, 6: 285-290.
    [182] Ye L, Ramstrom O, Ansell R J, et al, Use of molecularly imprinted polymers in a biotransformation process, Biotechnology and Bioengineering, 1999, 64: 650-655.
    [183] Lye G J, Woodley J M, Application of in situ product-removal techniques to biocatalytic processes, Trends in Biotechnology, 1999,17: 395-402.
    [184] Mosbach K, Towards the development of artificial recognition elements in sensors technology vision with emphasis on molecular imprinting, 2001, Electrochemistry, 69:919-919.
    [185] Kriz D, Mosbach K, Competitive amperometric morphine sensor based on an agarose immobilized molycularly imprinted polymer, Anal Chim Acta, 1995, 300 :71-75.
    [186] Kriz D, Ramstrom O, Svensson A, Introducing biomimetic sensors based on molecularly imprinted polymers as recognition, Anal Chem, 1995, 67:2142-2144.
    [187] Jakusch M, Jannotto M, Mizaikoff B, Molecularly imprinted polymers and infrared evanescent ware spectroscopy:A chemical sensors approach, Anal. Chem., 1999, 71: 4786-4791.
    [188] Rosatzin T, Andersson L I, Simon W, et al, J Chem Soc Perkin Trans, 1991, 2:1261.
    [189] Xiang F. Z, Murray G. M, Synthesis and characterization of site-selective ion-exchange resins templated for Lead(II) ion, Separation Science and Technology, 1996, 31:2403-2418.
    [190] Orhan Güney, Yasar Yilmaz, ?nder Pekcan, Metal ion templated chemosensor for metal ions based on fluorescence quenching, Sensors and Actuators B, 2002, 85:86-89.
    [191] Singh A, Puranik D, Guo Y, Towards achieving selectivity in metal ion binding by fixing ligand-chelator complex geometry in polymers, Reactive and Functional Polymers, 2000, 44:79-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700