阶层结构复合微球的制备、组装与表面润湿性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物微球材料可以用做涂料、阻燃材料、活性物质催化载体及光学器件等,因此吸引了学术界和工业界的广泛关注。微球的化学组成和形貌是决定其物理化学性质的最重要的因素,不同的形貌结构具有不同的功能性和应用领域。因此,制备具有不同化学组成和形貌的微球材料引起科研工作者极大的研究兴趣。单一组成的聚合物在特殊的应用领域可能具有局限性,因此人们设计和制备了复合型微球,如无机/聚合物,和聚合物/聚合物复合微球。在这类微球材料中,惰性的聚合物是一种理想的载体,既有利于活性物质的接触,又利于材料的回收和重复使用;而无机组分的引入不仅提高了复合材料的机械力学性能,同时也赋予其特殊的功能性。复合微球的形貌也是影响材料功能性的一个重要因素。近年来,阶层型复合微球引起了人们深入的关注,树莓型微球具有典型的规整阶层型表面形貌。相比较表面光滑的微球,树莓状结构复合微球具有一些特殊的性能,如粗糙的表面、比表面积较高、光散射性能优异等。基于以上的性能,阶层结构微球可以主要被用来构筑超疏水和超亲水表面、用作催化剂载体以及制作光学器件等。目前为止,大部分文献中报道的树莓状结构复合微球都是有机/无机和无机/无机类型的复合微球,有机/有机类型的树莓状复合微球的报道很少。文献中所报道的制备有机/有机类型的树莓状复合微球方法需要有苛刻的条件控制。因此,对规整树莓型复合微球的制备方法、形成机理以及微球形貌的可控性都有待更进一步研究。
     本论文主要围绕无机/聚合物和聚合物/聚合物型复合微球的制备和形貌控制,开展了辐射细乳液法制备Si02/PS树莓状微球、表面润湿性及其形貌控制的研究;辐射种子乳液法制备PS/PAN树莓状复合微球及其形貌控制的研究;辐射种子沉淀聚合法制备Si02/PAN树莓状复合微球的研究;Core-shell型PS/SiO2以及三角形复合微球的设计与合成;利用p环糊精作为乳化剂一步法制备亲水性复合微球的研究。具体的研究成果如下所述:树莓状聚苯乙烯/二氧化硅复合微球的制备及其在超疏水性材料方面的应用
     在亚微米二氧化硅颗粒存在的条件下,我们通过室温下的辐射细乳液聚合成功制备了具有规整树莓状结构的聚苯乙烯/二氧化硅复合微球。具体的制备过程如Scheme1所示。首先,使用Stober方法制备亚微米级的二氧化硅粒子。二氧化硅表面通过硅烷偶联剂(甲基丙烯酰氧丙基三甲氧基硅烷,MPS)改性。然后改性二氧化硅种子与苯乙烯单体,表面活性剂以及助稳定剂一起和水混合配置成细乳液,在细乳液体系中苯乙烯液滴吸附在二氧化硅种子表面。经过60Coγ射线引发的聚合,可以制备得到树莓状二氧化硅/聚苯乙烯复合微球。二氧化硅的MPS改性过程是获得树莓状复合微球的关键步骤,单体加入量和乳化剂浓度同样也会影响复合微球的形貌和表面润湿性。因为树莓状复合微球表面具有阶层微/纳米结构,同时表面粒子是疏水性的聚苯乙烯,因此可以通过他们的自组装来获得超疏水表面。与文献中使用树莓微球构筑超疏水表面的制备方法(主要是LBL组装法)相比,我们的方法包括三大优势:(一)树莓结构比通过LBL方法所构造的更稳定,因为PS和MPS之间形成了共价键;(二)以本工作中的树莓状SiO2/PS微球制备超疏水表面的过程较LBL组装方法更节省时间和更简便(三)无须经过低表面能物质(如十二烷基氯硅烷或聚二甲基硅氧烷)的额外疏水改性过程即可一步获得超疏水表面。因此,整个构筑过程更加简单的和方便。这种超疏水表面与水具有很高的粘附力,因此,此表面可用于无损失的转运水滴,在工业上具有潜在的应用价值。
     Scheme1A schematic diagram for the preparation of superhydrophobic film composed of SiO2/PS raspberry particles.
     MPS改性的SiO2作为种子分散于St、HD油相之中,然后加入到SDS水溶液(6.94mM),形成了细乳液体系,在细乳液中纳米级的St液滴吸附到o-SiO2颗粒表面。经过γ射线辐射后,由单体液滴成核机理可知,单体液滴能原位聚合生成聚合粒子。如Fig.1-c和1-c1所示,复合微球为树莓状结构。树莓状SiO2/PS微球的平均直径约为257纳米,SiO2微球上的PS粒子的粒径约为58纳米。这种树莓状微球可用于构筑超疏水表面。正如我们预期,SiO2/PS粒子膜与水的接触角可达151°(Fig.1-c2所示),即已经达到超疏水的标准(≥150°)。Fig.2是树莓状SiO2/PS颗粒膜的扫描电镜和原子力显微镜图像。显然,由图片可知,树莓状微球紧密的排列在膜上,同时粒子膜具有微/纳米二级结构的粗糙表面。纯聚苯乙烯颗粒膜的水接触角是115°,低于超疏水临界水的接触角。这一结果证明,树莓状SiO2/PS复合微球产生的双尺寸的粗糙表面对由此产生的超疏水表面起着至关重要的作用。
     应当指出,二氧化硅表面的MPS接枝密度直接影响树莓状复合微球的形成。如果的NMPS增加6.76molecules/nm2,也就是说,我们用o-Si02-b微球作为种子,在这种情况下,只能得到核壳结构复合微球(Fig.1-e和el),而无法得到树莓状结构微球。这可能是由于单体与高功能化二氧化硅表面亲和力增加,因此,单体完全覆盖二氧化硅的表面。核壳结构的微球无法构筑双尺寸的粗糙表面,因此,表面仅表现一般的疏水性(水接触角仅为124。,见Fig.1-e2所示)。综上所述,MPS改性对合成SiO2/PS复合微球是必不可少的,但高接枝密度却不利于树莓状微球的形成。
     为了深入地研究SiO2/PS粒子膜表面的润湿性,除了静态接触角,我们也同时测量了动态接触角,包括前进角和后退角。测量数据见Table1所列。接触角滞后是前进角和后退角的差值。令人非常感兴趣的是:所有的接触角滞后都超过了100°,超疏水表面的接触角滞后也达到了116°。这种现象和不同于传统的超疏水表面,在传统的超疏水表面上接触角滞后一般都很小(≤10°),水滴可以在表面上滚动。对于本工作中制备的超疏水表面,由于接触角滞后很大,所以水滴无法在其上滚动,甚至,当表面翻转,水滴也不会滴落(见Fig.3)。水滴的质量约为2毫克,所以,水滴与表面的粘附力是很大的。为了表征这种粘附力的强度,我们通过高灵敏度的微电子机械天平系统(Data-Physics DCAT11,Germany)来测量粘附力,天平首先校准和归零。粒子膜在一定速率(0.05mm/s)下放入和拉出水槽,Fig.4记录了不同位置的平衡力,平衡力随着膜片的拉出逐渐增大,当膜片拉出水面的瞬间,达到最大值(0.24g×9.8mN/g=2.35mN),此时水体的浮力为零,因此可以认为此时的平衡力即为膜片与水的粘附力。为了便于比较,空白的玻璃基板与水的粘附力同样通过这种方法去测量,粘附力只有0.36mN
     这种强的粘附力可能是由于范德华力相互作用所导致的,我们假设只有粒子膜最外层树莓球最上层的PS能和水接触,即便是这样,能与水接触的PS粒子的密度也达到~1.55×107个/mm2,所以这些PS会产生总的强大的范德华力,所以就会导致水滴在膜上的粘附。这种效应类似于壁虎的脚趾,壁虎的脚趾由数以百万计的毛发组成,每个毛发都会产生微小的范德华力,但是数量如此庞大的毛发共同作用就会产生惊人的粘附力。所以,我们认为实际上水滴在膜上的状态是"gecko'state"(见Scheme2)。
     这种超疏水粒子膜可用于无损失的转运小水滴。如图示Scheme2B所示,我们将一滴水(2μL)滴在超疏水的荷叶叶片上,当粒子膜靠近水滴,可以很容易的将水滴吸附起来,将吸附的水滴接近一块亲水的PET薄膜,水滴就会无损失地转运到这块PET薄膜上。
     Scheme2(A) The possible schematic illustrations of a drop of water on the superhydrophobic SiO2/PS particulate film according to the Gecko's wetting state.(The black arrow represents the adhesive force between the water and PS nanoparticles)(B) Transportation process of a water droplet from lotus leaf to a hydrophilic surface by the SiO2/PS particulate film as a "mechanical hand".
     树莓状聚苯乙烯/聚丙烯腈复合微球的制备及其在超亲水性材料方面的应用
     目前为止,大部分文献中报道的树莓状复合微球都是有机/无机和无机/无机类型的复合微球,有机/有机类型的树莓状复合微球的报道很少。文献中所报道的制备有机/有机类型的树莓状复合微球方法需要有苛刻的条件控制。反应一般是通过高温化学引发的,而且制备过程也较复杂。我们组曾经使用单分散性的聚丙烯酸(PAA)改性的交联PS微球作为种子,以丙烯腈(AN)作为第二单体,使用辐射种子乳液聚合成功制备了单分散性规整树莓状PS/PAN复合微球。之前,我们认为种子微球交联是制备树莓状微球的关键条件。然而,最近发现通过辐射种子乳液聚合以非交联PAA改性的PS微球作为种子也同样可以用来制备得到树莓状PS/PAN复合微球,具体的实验步骤可见Scheme3。
     Scheme3A schematic diagram for the preparation of raspberry-like PS/PAN hybrid particles.
     单分散的PAA功能化的PS种球(a)和PS/PAN复合微球(c)的傅里叶变换红外光谱(FT-IR)如Fig.5所示,699cm-1、757cm-1的峰为聚苯乙烯苯环上C-H面外变形振动吸收峰,位于1452cm-1,1493cm-1,1601cm-1的峰为聚苯乙烯苯环的环振动吸收峰,位于3025cm-1的峰为聚苯乙烯苯环上C-H的伸缩振动吸收峰,位于2849cm-1,2923cm-1的峰为聚苯乙烯中饱和C-H的伸缩振动吸收峰,1705cm-1的峰为羧基功能化聚苯乙烯微球上PAA羧基官能团的特征伸缩振动吸收峰。2243crm-1为PS/PAN复合微球上腈基(C=N)的伸缩振动吸收峰,从而证明了PS/PAN复合微球中PAN的存在。
     Fig.6给出了通过无皂乳液聚合制备的PAA功能化的PS微球和辐射种子乳液聚合制备的树莓型的PS/PAN复合微球的TEM和SEM照片。从图中可见,PS种子球和PS/PAN树莓型微球的单分散性均很好,且PS/PAN树莓型微球的尺寸明显比PS种子球大。我们从不同样品的SEM照片中选取100个微球,分别测量它们的尺寸,计算出微球的粒子尺寸和尺寸分布。测量和计算的结果是:PS微球的数均直径Dn为354nm,重均直径Dw为355nm,该微球的多分散系数PDI为1.003;PS/PAN复合微球的尺寸多分散系数为1.005,证明该复合微球也具有很好的单分散性。该PS/PAN复合微球的数均直径Dn为415.7rnm,重均直径Dw为417.9rnm,较PS微球的直径大了约60rnm,从而证明丙烯腈的确在PS种球上发生了聚合。Fig.7是种球和此复合微球的尺寸和尺寸分布图。由图可见,PS种球只有一个相对狭窄单峰,表明种球的单分散性较好。PS/PAN复合微球也只有一个单峰,不过其单分散性较种子球差。
     XPS用于表征PS种球和PS/PAN复合微球的表面元素组成,其测量厚度约为~5纳米。XPS谱图(Fig.8)表明种球中只有C和O元素的存在,氧原子相对含量约为14.62%,通过计算可得PS种子表面PAA含量约为32.92%。在树莓状PS/PAN复合微球存在典型的N1s峰(-399.5eV),N元素的含量约为16.49%,从而证明了PAN存在于PS/PAN复合微球表面。
     Fig.9是PS种球,PAN和树莓状的PS/PAN复合微球的TGA曲线。由于PAN和PS的杂化,复合微球中PAN特征降解温度(280℃)比纯PAN的要稍微高一些(Fig.10)。由于相邻氰基之间容易形成热稳定的环状,交联或共轭结构,在氮气条件下,PAN无法完全烧完,即使温度达到600℃,也仍然有残留物存在,对于纯PAN,残留约43.6%,对于PS/PAN复合微球,最后有约20.5%的残留物。因此,树莓状微球中PAN百分比(PAN%)可以通过以下计算得到:
     在本工作中,我们发现通过反应体系pH调控可以达到使PS/PAN复合微球形貌变化的目的。如Fig.11所示,当pH为4时,通过此法可得到两种尺寸的微球,大尺寸的微球是核壳型PS/PAN复合微球,小尺寸的微球是纯PAN粒子。当pH在4.5至12条件下,可以高产率地制备得到树莓状复合微球。
     我们认为PS种子球上PAA链段上羧基对形成PS/PAN复合微球起着重要作用(Scheme4)。当pH值低于PAA的pKa(pKa=4.28)时,羧基不解离或解离较少,在这种情况下,有利于形成PS/PAN核壳型复合微球;当pH值高于4.28时,越来越多的羧基将逐渐解离成带负电荷羧酸根基团,此时更有利于树莓状或多鼓包等具有阶层结构的复合微球的形成。
     如上所述,树莓状PS/PAN复合微球其表面具有规整微纳米二级结构,而且其表面是由亲水性的聚丙烯腈纳米粒子组成,因此,这些树莓状微球可用于构筑超亲水表面(如Fig.12所示)。
     树莓状二氧化硅/聚丙烯腈复合微球的制备及其表面润湿性的研究
     通常情况下,二氧化硅必须要经过硅烷偶联剂的改性才能与聚合物有良好的相容性,硅烷化改性对于制备二氧化硅/聚合物复合微球是至关重要的步骤。本论文中,我们介绍一种简易快捷的方法可以用于制备二氧化硅/聚丙烯腈复合微球(见Scheme5)。在这种方法中,以未改性的二氧化硅(见Fig.13)作为种子,利用γ射线引发的辐射种子沉淀聚合法,成功制备得到了树莓状二氧化硅/聚丙烯腈复合微球(见Fig.13)。Fig.14的XPS谱图中结合能在399.2eV对应的是N1s的峰,对应的氮元素含量约为13.5%,反应体系中只有PAN分子中有氮元素,所以可以证明复合微球表面由PAN组成。研究表明,微球的表面形貌可以很容易地通过AN/二氧化硅质量比来调控(见Fig.15),当质量比在0.5以上时,才可以高产率地制备得到树莓状Si02/PAN复合微球,而且微球表面阶层结构随单体量的增加而愈加明显。最重要的是,这种树莓状微球可用于沉积自组装成超亲水表面(见Fig.16),而且表面的润湿性与微球的表面结构有很大的关系。
     核壳型和三角型PS/SiO2复合微球的制备
     首先我们利用分散聚合方法制备了PS微球(见Fig.17A,B和C),由FT-IR(见Fig.18)可知此微球表面残留有PVP,然后以此PS微球作为种子,通过溶胶-凝胶法可较简便地制备得到核壳型PS/SiO2复合微球(见Fig.17D,E和F)。在高温条件下煅烧可以除去PS核从而得到二氧化硅中空微球(见Fig.17G, H和I)。最重要的是,我们发现这种核壳型微球外层的二氧化硅壳层在溶胀过程中能起到保护PS核球的作用,从而能阻止核球完全被单体溶解。所以我们设计以这种核壳粒子作为种球,使用辐射种子乳液聚合来制备各向异性微球,具体的制备过程见Scheme6,核壳型粒子在被St溶胀过程中,被溶胀的PS将会膨胀,从而胀裂二氧化硅壳层,溶胀的PS从裂开的二氧化硅壳层中挤出新的鼓包。最后,当γ-射线辐射引发St聚合后即可形成三角形的微球。这种新颖的方法在制备各向异性复合微球具有潜在的应用价值。
     我们制备了三种具有不同二氧化硅壳层厚度的PS/SiO2核壳微球。实验表明:二氧化硅壳层厚度对于使用核壳型PS/SiO2:种球来制备三角形复合微球起着至关重要的作用。当二氧化硅壳层厚度只有20纳米,其不足以阻止PS核在溶胀过程中被完全溶解。因此,最后反应只得到聚集状的微球。随着壳层厚度的增加,会有越来越多的三角形复合微球形成(见Fig.17)。因此,二氧化硅壳层对于三角形微球的制备起着重要的作用。
     单体/核壳粒子质量比的变化也同样会影响三角形复合微球的制备,St单体加入量很少(WSt/Seed是1.25和2.5)时,只能制备得到少量三角形复合微球;随着单体加入量增加,会生成越来越多的三角形微球(见Fig.19)。此外,新生成的PS新头的尺寸也会随着WSt/Seed增大而增大。使用氢氟酸去除三角形微球上二氧化硅壳层后,可以很清楚地观察到复合微球是三角形的。当WSt/Seed更进一步增大,如增加至7时,只能得到微球的聚集体,如果WSt/Seed再增加至10,几乎所有的种子微球都破碎了,留下破碎二氧化硅壳层碎片,这一结果的主要原因是种子微球的PS核被过量的St完全溶解,导致二氧化硅壳层剥落。本研究中,我们发现制备三角形复合微球的相对最优WSt/Seed是5。
     p-环糊精存在下辐射乳液聚合制备亲水性PS微球
     因为环糊精(CD)外层有很多羟基基团,所以具有很强的亲水性,所以可以在CD做乳化剂的时候,利用CD来提高疏水性聚合物乳胶粒子的亲水性。但很可惜,几乎所有的文献资料表明,聚合反应结束后CD分子都会从聚合物分子链上滑落,而不会牢固地固定在聚合物微球表面。本论文中,我们设计在简单的St/β-CD/H20的三元体系中,因为在油水界面上可以生成固体St/β-CD包合物颗粒,我们计划利用包合物颗粒作为Pickering乳化剂来制备亲水性树莓状PS微球,具体实验步骤见Scheme7所示。的主要步骤包括:St与β-CD的水溶液混合,油水界面上可以生成固体St/β-CD包合物颗粒,经过乳化可形成Pickering乳液;然后Y射线引发聚合即可制备得到PS微球,由于聚合反应是在常温下进行的,St/β-CD固体包合物最大程度地保持为固体状态,同时高能辐射条件下,St和环糊精上可能都会产生接枝活性点,因此可以使p-CD牢固的固定在PS微球上,所以制备得到的PS微球是亲水性的。
     Scheme7One-pot synthesis of hydrophilic PS microspheres through radiation Pickering emulsion polymerization.
     通过TEM照片(Fig.20)可知,最后所获得的PS微球并不是如我们所设计的那样得到树莓状微球,从电镜照片上可以看出,PS微球具有光滑的表面,同时也具有不是特别明显的核壳型结构。颗粒的平均直径随着p-CD加入量的增大而有所增加。XPS可以证明使用p-CD作为乳化剂条件下,辐射法所制备的PS微球表面的氧元素含量(9.61%)比通过化学制备的PS微球含量要大的多。可以说明辐射法制备的PS表面固定有更多的p-CD。
     如Fig.23所示,当p-CD加入量为7.5%时,相应的PS粒子膜接触角约为57.3°,而通过化学法制备的PS微球,其表面的CD含量较低,所以相应的水接触角高达99.9°。由于PS微球表面含有β-CD,所有制备的PS微球的粒子膜表面水接触角都小于90°,而且接触角随p-CD加入量增加逐渐降低,当p-CD加入量增加到15%,水接触角甚至可以低至36°(Fig.24)。因此,此方法为聚合物微球的亲水性改性提供了一个便捷的途径。
The development of polymer microspheres has great influence on our economy and life. It has become an increasingly important subject to achieve desirable physical properties for coatings, light-sensing materials, bio-medicine, and so on. Furthermore, the morphology and size of particles are key factors to determine potential applications of polymer microspheres. So that, great interest has been focused on the morphology control of polymer microspheres, and the microspheres with different novel morphologies have been prepared. Amongst, the hierachical microspheres have attracted more and more attention because of their wide range of applications, e.g. surface enhanced Raman scattering (SERS), heterogeneous catalysts, and most importantly, fabrication of superhydrophobic materials. As we know, the raspberry hybrid particle possesses well-defined hierarchical structure, which consists of a microsized core decorated with nanoscaled particles on the surface. Thus, nowadays, raspberry hybrid particles have been intensively employed by more and more researchers to prepare superhydrophobic films with a dual-size hierarchical structured surface.
     This study aims at the preparation of raspberry, core-shell and triangle particles with controllable morphologies by different emulsion system (seed emulsion, miniemulsion) based on the interface physical chemistry theory, and the assembly of these particles to fabricate particulate surface with particular wettability. The main content is as follows:
     1. raspberry-like SiO2PS particles were prepared by introducing of MPS-modified SiO2particles into radiation miniemulsion polymerization of St. MPS modification with a lower cover density of0.90molecules/nm2on the surface of SiO2is a crucial step to form a raspberry-like structure. The Wst/o-SiO2(Weight ratio of St to o-SiO2) and surfactant concentration also influence the morphology and wettability of the resultant SiO2PS hybrid particles. The optimum Wst/o-SiO2and SDS concentration for well-defined raspberry SiO2PS particles is50and6.94mM, respectively. When the raspberry SiO2PS particles were deposited on a glass substrate from ethanol dispersion, a film with dual-size roughness on the surface can be obtained. The surface of the film exhibites superhydrophobic property with a water contact angle of151°and a large contact angle hysteresis (-116°). Compared with the traditional superhydrophobic surface, the as-prepared layer shows strong adhesion to water. The mechanism of the superhydrophobilicity and high adhesion to water produced on the raspberry SiO2/PS particulate film was considered to be the Gecko's state because of the van der Waals force between water and PS nanospheres on the film surface and the large density of the PS nanoparticles contacted with water (-1.55×107/mm2). This kind of superhydrophobic particulate film can be used as a "mechanical hand" for transportation of small water droplets without lost, thus it may have potential applications in industrial field.
     2. Submicron-sized polystyrene/polyacrylonitrile (PS/PAN) hybrid particles were prepared by y-ray-induced seeded polymerization, in which the mono-disperse poly (acrylic acid)(PAA)-functionalized PS particles were used as seed particles and acrylonitrile (AN) as the second monomer. The morphology of the PS/PAN hybrid particles could be easily controlled by the pH value of seeded emulsion system. In particular, with the increase of pH value from4to9.6, the morphology of the corresponding PS/PAN hybrid particles gradually changed from core-shell to well-defined raspberry-like structure. The result of X-ray photoelectron spectroscopy (XPS) spectrum revealed the existence of PAN on the surface of the resultant hybrid particles. In addition, the particulate films were constructed by assembling these raspberry-like particles on glass substrates. Without any treatment, superhydrophilic surfaces can be obtained and the contact angle of water on the dual-sized structured surface is highly influenced by the micro/nano surface structure of raspberry-like particles.
     3. It is well know that silica must be modified with silane coupling agent, such as MPS, to improve the affinity of SiiO2particles to organic components before they can be used as carrier to load polymer. However, recently, we have successfully prepared raspberry silica/polyacrylonitrile (SiO2PAN) hybrid particles by Υ-ray radiation induced seeded polymerization using unmodified SiO2particles (590nm) as seeds. The surface morphologies of the obtained SiO2/PAN can be easily adjusted by the weight ratio of AN to SiO2seeds. Most importantly, superhydrophilic surfaces can be obtained by assembling these raspberry-like SiO2/PAN particles on glass substrates, and the contact angle of water on the dual-sized structured surface is greatly influenced by the micro/nano surface structure of raspberry-like particles.
     4. PS/silica hybrid microspheres with core-shell and raspberry-like structure were prepared respectively with different sol-gel reaction catalysts (NH3-H2O, diethanolamine, triethylolamine and triethylamine) in the presence of PS microspheres. The PS microspheres were prepared by dispersion polymerization using poly(vinylpyrrolidone)(PVP) as the stabilizer. Since the seed PS microspheres contain PVP molecules on the surface, which was facilitated to give perfect location of silica on PS microspheres. After calcination of the core/shell structured particles at800℃, hollow silica microspheres were successfully prepared. The formation of hollow silica particles strongly indicates that PVP-stabilized PS microspheres prepared by dispersion polymerization can be successfully employed to the fabrication of a well-defined silica layer due to the existence of PVP molecules on the surface. The wettability of the PS and PS/SiO2microspheres was also characterized by measuring the water contact angle of the corresponding particulate film. Furthermore, a novel strategy has been designed for the preparation of triangle polystyrene/SiO2(PS/SiO2) hybrid particles using radiation-induced seeded emulsion polymerization from above PS/SiO2seed particles. The triangle particles can be fabricated in relatively high yield when the weight ratio of monomer/seed particles (WSt/PS) is5. Moreover, the size of the protruded PS bulbs of the triangle particles obviously increases with the weight ratio of monomer/seed particles from1.25to5. This novel method is applicable to the preparation of anisotropic hybrid particles from polymer/inorganic core-shell particles.
     5. Polystyrene (PS) microspheres with hydrophilic β-cyclodextrin (β-CD) shell were fabricated one-step via γ-ray radiation induced emulsion polymerization in a simple ternary system of styrene/β-CD/water (St/β-CD/water) at room temperature. The solid inclusion complex of St and β-CD (St/β-CD IC) particles formed at the St droplets-water interface act in-situ as the surfactant not only to stabilize the emulsion but also make contribution to the formation of a hydrophilic β-CD shell on the prepared PS microspheres, which was observed by TEM and XPS investigation. The average size of the PS particles is dependent on the weight ratio of β-CD to St (Wβ-CD/St), which increases from186nm to294nm as Wβ-CD/St rises from5%to12.5%. The water contact angle (CA) of the obtained PS latex film was measured to study the hydrophilic property of PS microspheres. The results show that all the CA of the obtained PS latex film are lower than90°, and reduce with the content of β-CD even to36°. Thus, this work provides a new and one-pot strategy to surface hydrophilic modification on hydrophobic polymer particles with cyclodextrins through radiation emulsion polymerization.
引文
[1]Agrawal, M.; Gupta, S.; Stamm, M., Recent developments in fabrication and applications of colloid based composite particles. J. Mater. Chem.2011,21, (3), 615-627.
    [2]Marinakos, S. M.; Shultz, D. A.; Feldheim, D. L., Gold nanoparticles as templates for the synthesis of hollow nanometer-sized conductive polymer capsules. Adv. Mater. 1999,11,(1),34-37.
    [3]Beecroft, L. L.; Ober, C. K., Nanocomposite materials for optical applications. Chem. Mater.1997,9, (6),1302-1317.
    [4]Liang, Z.; Susha, A.; Caruso, F., Gold Nanoparticle-Based Core-Shell and Hollow Spheres and Ordered Assemblies Thereof. Chem. Mater.2003,15, (16),3176-3183.
    [5]Caruso, F.; Spasova, M.; Salgueirino-Maceira, V.; Liz-Marzan, L. M, Multilayer Assemblies of Silica-Encapsulated Gold Nanoparticles on Decomposable Colloid Templates. Adv. Mater.2001,13, (14),1090-1094.
    [6]Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A., Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach. Chem. Mater.2000,13, (1),109-116.
    [7]Caruso, R. A.; Susha, A.; Caruso, F., Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres. Chem. Mater.2001,13, (2),400-409.
    [8]Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P., Synthesis of Nanosized Gold-Silica Core-Shell Particles. Langmuir 1996,12, (18),4329-4335.
    [9]Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P., Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc.1997,119, (30),7019-7029.
    [10]Bakr, O. M.; Wunsch, B. H.; Stellacci, F., High-Yield Synthesis of Multi-Branched Urchin-Like Gold Nanoparticles. Chem. Mater.2006,18, (14), 3297-3301.
    [11]Cheng, Q.; Pavlinek, V.; He, Y.; Yan, Y.; Li, C.; Saha, P., Synthesis and electrorheological characteristics of sea urchin-like TiO<sub>2</sub> hollow spheres. Colloid Polym. Sci.2011,289, (7),799-805.
    [12]Nguyen, D.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E., About the suitability of the seeded-dispersion polymerization technique for preparing micron-sized silica-polystyrene clusters. J. Mater. Chem.2010,20, (42),9392.
    [13]Chen, R.; Pearce, D. J. G.; Fortuna, S.; Cheung, D. L; Bon, S. A. F., Polymer Vesicles with a Colloidal Armor of Nanoparticles. J. Am. Chem. Soc.2011,133, (7), 2151-2153.
    [14]Puretskiy, N.; Ionov, L., Synthesis of Robust Raspberry-like Particles Using Polymer Brushes. Langmuir 2011,27, (6),3006-3011.
    [15]Yin, J. B.; Zhao, X. P.; Xiang, L. Q.; Xia, X.; Zhang, Z. S., Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles. Soft Matter 2009,5, (23),4687-4697.
    [16]Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A., Colloidosomes:Selectively Permeable Capsules Composed of Colloidal Particles. Science 2002,298, (5595),1006-1009.
    [17]Reculusa, S.; Poncet-Legrand, C.; Perro, A.; Duguet, E.; Bourgeat-Lami, E.; Mingotaud, C.; Ravaine, S., Hybrid Dissymmetrical Colloidal Particles. Chem. Mater. 2005,17, (13),3338-3344.
    [18]Glotzer, S. C., Some Assembly Required. Science 2004,306, (5695),419-420.
    [19]Ge, J.; Hu, Y.; Zhang, T.; Yin, Y, Superparamagnetic Composite Colloids with Anisotropic Structures. J. Am. Chem. Soc.2007,129, (29),8974-8975.
    [20]Yin, Y.; Lu, Y.; Xia, Y, A Self-Assembly Approach to the Formation of Asymmetric Dimers from Monodispersed Spherical Colloids. J. Am. Chem. Soc.2001, 123, (4),771-772.
    [21]Lu, L.; Ai, K.; Ozaki, Y, Environmentally Friendly Synthesis of Highly Monodisperse Biocompatible Gold Nanoparticles with Urchin-like Shape. Langmuir 2008,24,(3),1058-1063.
    [22]Zhang, W.-D.; Phang, I. Y.; Shen, L.; Chow, S. Y.; Liu, T., Polymer Nanocomposites Using Urchin-Shaped Carbon Nanotube-Silica Hybrids as Reinforcing Fillers. Macromol. Rapid Comm.2004,25, (21),1860-1864.
    [23]Manoharan, V. N.; Elsesser, M. T.; Pine, D. J., Dense Packing and Symmetry in Small Clusters of Microspheres. Science 2003,301, (5632),483-487.
    [24]Cho, Y.-S.; Yi, G.-R.; Lim, J.-M.; Kim, S.-H.; Manoharan, V. N.; Pine, D. J.; Yang, S.-M., Self-Organization of Bidisperse Colloids in Water Droplets. J. Am. Chem. Soc.2005,127, (45),15968-15975.
    [25]Li, Y.; Li, C. C.; Cho, S. O.; Duan, G. T.; Cai, W. P., Silver Hierarchical Bowl-Like Array:Synthesis, Superhydrophobicity, and Optical Properties. Langmuir 2007,23,(19),9802-9807.
    [26]Li, Y.; Lee, E. J.; Cho, S. O., Superhydrophobic Coatings on Curved Surfaces Featuring Remarkable Supporting Force. J. Phys. Chem. C 2007,111,14813-14817.
    [27]Wei, H.; Li, B.; Du, Y.; Dong, S.; Wang, E., Nucleobase-Metal Hybrid Materials:□ Preparation of Submicrometer-Scale, Spherical Colloidal Particles of Adenine-Gold(Ⅲ) via a Supramolecular Hierarchical Self-Assembly Approach. Chem. Mater.2007,19, (12),2987-2993.
    [28]Li, Y; Cai, W. P.; Duan, G. T.; Cao, B. Q.; Sun, F. Q.; Lu, F., Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method. J. Colloid Interf. Sci.2005,287, (2),634-639.
    [29]Li, Y.; Cai, W. P.; Cao, B. Q.; Duan, G. T.; Sun, F. Q.; Li, C. C.; Jia, L. C., Two-dimensional hierarchical porous silica film and its tunable superhydrophobicity. Nanotechnology 2006,17, (1),238-243.
    [30]Agrawal, M.; Pich, A.; Gupta, S.; Zafeiropoulos, N. E.; Formanek, P.; Jehnichen, D.; Stamm, M., Tailored Growth of In(OH)3 Shell on Functionalized Polystyrene Beads. Langmuir 2009,26, (1),526-532.
    [31]Wang, J. Y.; Yang, X. L., Synthesis of Core-Corona Polymer Hybrids with a Raspberry-like Structure by the Heterocoagulated Pyridinium Reaction. Langmuir 2008,24,3358-3364.
    [32]Bai, B.; Quici, N.; Li, Z.; Puma, G. L., Novel one step fabrication of raspberry-like TiO=2@yeast hybrid microspheres via electrostatic-interaction-driven self-assembled heterocoagulation for environmental applications. Chemical Engineering Journal 2011,170, (2-3),451-456.
    [33]Pi, M.; Yang, T.; Yuan, J.; Fujii, S.; Kakigi, Y.; Nakamura, Y.; Cheng, S., Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell. Colloids and Surf. B: Biointerf.2010,78, (2),193-199.
    [34]Wan, Q.; Li, Y.; Todd, C.; Harris, J.; Nicholson, D.; Chaput, B., Preparation of raspberry-shaped styrene-butadiene-methyl acrylate-acrylic acid latex particles by emulsion polymerization followed by alkali/heating method. J. Appl. Polym. Sci.2011, 121,(3),1276-1284.
    [35]Wang, C.; Yan, J.; Cui, X.; Wang, H., Synthesis of raspberry-like monodisperse magnetic hollow hybrid nanospheres by coating polystyrene template with Fe3O4@SiO2 particles. J. Colloid Interf, Sci.2011,354, (1),94-99.
    [36]Wang, J.; Li, H.; Yang, X., Preparation of hollow composite spheres with raspberry-like structure based on hydrogen-bonding interaction. Polymers for Advanced Technologies 2009,20, (12),965-971.
    [37]Li, Y. X.; Pan, Y F.; Zhu, L. L.; Wang, Z. Q.; Su, D. M.; Xue, G, Facile and Controlled Fabrication of Functional Gold Nanoparticle-coated Polystyrene Composite Particle. Macromol. Rapid Comm.2011,32, (21),1741-1747.
    [38]Duan, G.; Cai, W.; Luo, Y.; Li, Y.; Lei, Y, Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering. Appl. Phy. Lett.2006,89, (18),181918(1-3).
    [39]Caruso, F., Nanoengineering of particle surfaces. Adv. Mater.2001,13, (1), 11-22.
    [40]Liu, Z.; Zhao, B.; Guo, C.; Sun, Y.; Xu, F.; Yang, H.; Li, Z., Novel Hybrid Electrocatalyst with Enhanced Performance in Alkaline Media:Hollow Au/Pd Core/Shell Nanostructures with a Raspberry Surface. J. Phys. Chem. C 2009,113, (38),16766-16771.
    [41]Yao, T.; Wang, C.; Wu, J.; Lin, Q.; Lv, H.; Zhang, K.; Yu, K.; Yang, B., Preparation of raspberry-like polypyrrole composites with applications in catalysis. J. Colloid Interf. Sci.2009,338, (2),573-577.
    [42]Liu, Z.; Zhao, B.; Guo, C.; Sun, Y.; Shi, Y.; Yang, H.; Li, Z., Carbon nanotube/raspberry hollow Pd nanosphere hybrids for methanol, ethanol, and formic acid electro-oxidation in alkaline media. J. Colloid Interf. Sci.2010,351, (1), 233-238.
    [43]Ming, W.; Wu, D.; van Benthem, R.; de With, G, Superhydrophobic films from raspberry-like particles. Nano Lett.2005,5, (11),2298-301.
    [44]Tsai, H. J.; Lee, Y. L., Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces. Langmuir 2007,23, (25),12687-92.
    [45]Qian, Z.; Zhang, Z. C.; Song, L. Y.; Liu, H. R., A novel approach to raspberry-like particles for superhydrophobic materials. J. Mater. Chem.2009,19, (9), 1297-1304.
    [46]D'Acunzi, M.; Mammen, L.; Singh, M.; Deng, X.; Roth, M.; Auernhammer, G. K.; Butt, H.-J.; Vollme, D., Superhydrophobic surfaces by hybrid raspberry-like particles. Faraday Discuss.2010,146,35-48.
    [47]Yang, C.; Tartaglino, U.; Persson, B. N. J., Influence of Surface Roughness on Superhydrophobicity. Phys. Rev. Lett.2006,97,116103.
    [48]Roach, P.; Shirtcliffe, N. J.; Newton, M. I., Progess in superhydrophobic surface development. Soft Matter 2008,4, (2),224-224.
    [49]Zhang, X.; Shi, F.; Niu, J.; Jiang, Y. G.; Wang, Z. Q., Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem.2008,18, (6), 621-621.
    [50]Du, H. W.; Hamilton, P. D.; Reilly, M. A.; d'Avignon, A.; Biswas, P.; Ravi, N., A facile synthesis of highly water-soluble, core-shell organo-silica nanoparticles with controllable size via sol-gel process. J. Colloid Interf. Sci.2009,340, (2),202-208.
    [51]Hwang, H. S.; Lee, S. B.; Park, I., Fabrication of raspberry-like superhydrophobic hollow silica particles. Mater. Lett.2010,64, (20),2159-2162.
    [52]Bao, Y. B.; Li, Q. Y.; Xue, P. F.; Huang, J. F.; Wang, J. B.; Guo, W. H.; Wu, C. F., Tailoring the morphology of raspberry-like carbon black/polystyrene composite microspheres for fabricating superhydrophobic surface. Mater. Res. Bull.2011,46, (5), 779-785.
    [53]Yang, P.; Deng, T.; Zhao, D.; Feng, P.; Pine, D.; Chmelka, B. F.; Whitesides, G. M.; Stucky, G. D., Hierarchically Ordered Oxides. Science 1998,282, (5397), 2244-2246.
    [54]Wan, J.; Alizadeh, A.; Taylor, S. T.; Malenfant, P. R. L.; Manoharan, M.; Loureiro, S. M., Nanostructured Non-oxide Ceramics Templated via Block Copolymer Self-Assembly. Chem. Mater.2005,17, (23),5613-5617.
    [55]Goodwin, J. W.; Ottewill, R. H., Faraday Discuss. Chem. Soc.1978,65,338
    [56]Okubo, M.; Miyachi, N.; Lu, Y., Variation of surface unevenness of anomalous composite polymer particles produced by the stepwise heterocoagulation of small particles onto large particle by heat treatment. Colloid Polym. Sci.1994,272, (3), 270-275.
    [57]Okubo, M.; He, Y.; Ichikawa, K., Analysis of " stepwise" heterocoagulation process of small cationic polymer particles onto large anionic polymer particles using dynamic light scattering. Colloid Polym. Sci.1991,269, (2),125-130.
    [58]Okubo, M.; Ichikawa, K.; Tsujihiro, M.; He, Y., Production of anomalous polymer microspheres having uneven surfaces by "stepwise" heterocoagulation technique. Colloid Polym. Sci.1990,268, (9),791-796.
    [59]Li, R.; Yang, X.; Li, G.; Li, S.; Huang, W., Core-Corona Polymer Composite Particles by Self-Assembled Heterocoagulation Based on a Hydrogen-Bonding Interaction. Langmuir 2006,22, (19),8127-8133.
    [60]Wang, J.; Yang, X., Synthesis of Core-Corona Polymer Hybrids with a Raspberry-like Structure by the Heterocoagulated Pyridinium Reaction. Langmuir 2008,24, (7),3358-3364.
    [61]Wang, J.; Yang, X., Raspberry-like polymer/silica core-corona composite by self-assemble heterocoagulation based on a hydrogen-bonding interaction. Colloid Polym. Sci.2008,286, (3),283-291.
    [62]Li, G.; Yang, X.; Wang, J., Raspberry-like polymer composite particles via electrostatic heterocoagulation. Colloids Surfaces A 2008,322, (1-3),192-198.
    [63]Li, G.; Yang, X.; Bai, F.; Huang, W., Raspberry-like composite polymer particles by self-assemble heterocoagulation based on a charge compensation process. J. Colloid Interf. Sci.2006,297, (2),705-710.
    [64]Li, G.; Song, Y.; Yang, X.; Huang, W., Preparation of poly(divinylbenzene-co-N-isopropylacrylamide) microspheres and their hydrogen-bonding assembly behavior for raspberry-like core-corona polymer composite. J. Appl. Polym. Sci.2007,104, (2),1350-1357.
    [65]Ottewill, R.; Schofield, A.; Waters, J.; Williams, N., Preparation of core-shell polymer colloid particles by encapsulation. Colloid Polym. Sci.1997,275, (3), 274-283.
    [66]Kulbaba, K.; Cheng, A.; Bartole, A.; Greenberg, S.; Resendes, R.; Coombs, N.; Safa-Sefat, A.; Greedan, J. E.; Stover, H. D. H.; Ozin, G A.; Manners, I., Polyferrocenylsilane Microspheres:□ Synthesis, Mechanism of Formation, Size and Charge Tunability, Electrostatic Self-Assembly, and Pyrolysis to Spherical Magnetic Ceramic Particles. J. Am. Chem. Soc.2002,124, (42),12522-12534.
    [67]Yamaguchi, K.; Ito, M.; Taniguchi, T.; Kawaguchi, S.; Nagai, K., Preparation of core-shell composite polymer particles by a novel heterocoagulation based on hydrophobic interaction. Colloid Polym. Sci.2004,282, (4),366-372.
    [68]Gu, X. L.; Zhu, X.; Kong, X. Z.; Zhang, Z., One step in situ self-assembly of microspheres through precipitation polymerization in the presence of an organic template. Soft Matter 2011,7, (8),4055-4061.
    [69]Ma, G. H.; Su, Z. G., Polymer Microspheres Materials. Chemical Industry Press: Bei Jing,2005; p 7-8.
    [70]Colver, P. J.; Colard, C. A. L.; Bon, S. A. F., Multilayered Nanocomposite Polymer Colloids Using Emulsion Polymerization Stabilized by Solid Particles. J. Am. Chem. Soc.2008,130, (50),16850-16851.
    [71]Schmid, A.; Scherl, P.; Armes, S. P.; Leite, C. A. P.; Galembeck, F., Synthesis and Characterization of Film-Forming Colloidal Nanocomposite Particles Prepared via Surfactant-Free Aqueous Emulsion Copolymerization. Macromolecules 2009,42, (11), 3721-3728.
    [72]Eun Mi, L.; Hyun Woo, L.; Jae Hyeung, P.; Han, Y. A.; Byung Chul, J.; Weontae, O.; Yulin, D.; Jeong Hyun, Y., Multihollow structured poly(methyl methacrylate)/silver nanocomposite microspheres prepared by suspension polymerization in the presence of dual dispersion agents. Colloid Polym. Sci.2008, 286,(12),1379-1385.
    [73]Wu, Y N.; Zhang, J.; Zhao, H. Y, Functional Colloidal Particles Stabilized by Layered Silicate with Hydrophilic Face and Hydrophobic Polymer Brushes. J. Polym. Sci. Pol. Chem.2009,47, (6),1535-1543.
    [74]Schmid, A.; Fujii, S.; Armes, S. P.; Leite, C. A. P.; Galembeck, F.; Minami, H.; Saito, N.; Okubo, M., Polystyrene-silica colloidal nanocomposite particles prepared by alcoholic dispersion polymerization. Chem. Mater.2007,19, (10),2435-2445.
    [75]Chen, T.; Colver, P. J.; Bon, S. A. F., Organic-inorganic hybrid hollow spberes prepared from TiO2-stabilized pickering emulsion polymerization. Adv. Mater.2007, 19, (17),2286-2289.
    [76]Reculusa, S.; Mingotaud, C.; Bourgeat-Lami, E.; Duguet, E.; Ravaine, S., Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites. Nano Lett.2004,4, (9),1677-1682.
    [77]Reculusa, S.; Poncet-Legrand, C.; Ravaine, S.; Mingotaud, C.; Duguet, E.; Bourgeat-Lami, E., Syntheses of raspberrylike silica/polystyrene materials. Chem. Mater.2002,14, (5),2354-2359.
    [78]Luna-Xavier, J. L.; Bourgeat-Lami, E.; Guyot, A., The role of initiation in the synthesis of silica/poly(methyl methacrylate) nanocomposite latex particles through emulsion polymerization. Colloid Polym. Sci.2001,279, (10),947-958.
    [79]Bourgeat-Lami, E.; Lansalot, M., Organic/Inorganic Composite Latexes:The Marriage of Emulsion Polymerization and Inorganic Chemistry Hybrid Latex Particles. In van Herk, A. M.; Landfester, K., Eds. Springer Berlin/Heidelberg:2011; Vol.233, pp 53-123.
    [80]Xiao, X. C.; Chu, L. Y.; Chen, W. M.; Wang, S.; Xie, R., Preparation of submicrometer-sized monodispersed thermoresponsive core-shell hydrogel microspheres. Langmuir 2004,20, (13),5247-5253.
    [81]Pusch, J.; van Herk, A. M., Emulsion Polymerization of Transparent Core-Shell Latices with a Polydivinylbenzene Styrene and Vinyl Acetate. Macromolecules 2005, 38, (16),6909-6914.
    [82]Ferguson, C. J.; Russell, G. T.; Gilbert, R. G., Synthesis of latices with hydrophobic cores and poly(vinyl acetate) shells.2. Use of poly(vinyl acetate) seeds. Polymer 2003,44, (9),2607-2619.
    [83]Hu, X.; Tong, Z.; Lyon, L. A., Multicompartment Core/Shell Microgels. J. Am. Chem. Soc.2010,132, (33),11470-11472.
    [84]Huang, H. F.; Liu, H. R., Synthesis of the Raspberry-Like PS/PAN Particles with Anisotropic Properties via Seeded Emulsion Polymerization Initiated by gamma-Ray Radiation. J. Polym. Sci. Pol. Chem.2010,48, (22),5198-5205.
    [85]Wang, D.; Yan, R.; Liu, X.; Su, Y.; Zhang, M.; Zhang, W., Fabrication of hierarchical microparticles by depositing the in situ synthesized surface nanoparticles on microspheres during the seed emulsion polymerization. J. Colloid Interf. Sci.2012, 367, (1),249-256.
    [86]Chen, M.; Wu, L.; Zhou, S.; You, B., Synthesis of Raspberry-like PMMA/SiO2 Nanocomposite Particles via a Surfactant-Free Method. Macromolecules 2004,37, (25),9613-9619.
    [87]Nagao, D.; Ueno, T.; Oda, D.; Konno, M., Size control of polystyrene nodules formed on silica particles in soap-free emulsion polymerization with amphoteric initiator. Colloid Polym. Sci.2009,287, (9),1051-1056.
    [88]Putlitz, B. Z.; Landfester, K.; Fischer, H.; Antonietti, M., The generation of "armored latexes" and hollow inorganic shells made of clay sheets by templating cationic miniemulsions and latexes. Adv. Mater.2001,13, (7),500-503.
    [89]Zhou, J.; Chen, M.; Qiao, X.; Wu, L., Facile Preparation Method of SiO2/PS/TiO2 Multilayer Core-Shell Hybrid Microspheres. Langmuir 2006, (26),10175-10179.
    [90]Koh, H. D.; Changez, M.; Lee, J. P.; Lee, J. S., Preparation of Ag-Embedded Polystyrene Nanospheres and Nanocapsules by Miniemulsion Polymerization. Macromol Rapid Comm.2009,30, (18),1583-1588.
    [91]Ugelsted, J.; EI-Aasser, M. S.; Vanderhoff, J. W., J. Polym. Sci.,Polym. Lett.1973, 11,503-513.
    [92]Yang, S.; Liu, H. R.; Zhang, Z. C., A facile route to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via inverse miniemulsion polymerization. J. Polym. Sci. Pol. Chem.2008,46, (12),3900-3910.
    [93]Wu, Y.; Zhang, Y.; Xu, J.; Chen, M.; Wu, L., One-step preparation of PS/TiO2 nanocomposite particles via miniemulsion polymerization. J. Colloid Interf. Sci.2010, 343,(1),18-24.
    [94]Zhang, J.; Yang, J.; Wu, Q.; Wu, M., SiO2/Polymer Hybrid Hollow Microspheres via Double in Situ Miniemulsion Polymerization. Macromolecules 2010,43, 1188-1190.
    [95]Zhang, J.; Liu, N.; Wang, M.; Ge, X.; Wu, M.; Yang, J.; Wu, Q.; Jin, Z., Preparation and Characterization of Polymer/Silica Nanocomposites via Double In Situ Miniemulsion Polymerization. J. Polym. Sci. Pol. Chem.2010,48,3128-3134.
    [96]Ober, C. K.; Lok, K. P.; Hair, M. L., Monodispersed, micron-sized polystyrene particles by dispersion polymerization. J. Polym. Sci. Pol. Lett.1985,23, (2), 103-108.
    [97]Lu, Y. Y.; El-Aasser, M. S.; Vanderhoff, J. W., Dispersion polymerization of styrene in ethanol:Monomer partitioning behavior and locus of polymerization. J. Polym. Sci. Pol. Phys.1988,26, (6),1187-1203.
    [98]Tseng, C. M.; Lu, Y. Y.; El-Aasser, M. S.; Vanderhoff, J. W., Uniform polymer particles by dispersion polymerization in alcohol. J. Polym. Sci. Pol. Chem.1986,24, (11),2995-3007.
    [99]Paine, A. J.; Luymes, W.; McNulty, J., Dispersion polymerization of styrene in polar solvents.6. Influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions. Macromolecules 1990,23, (12),3104-3109.
    [100]Ober, C. K.; Lok, K. P., Formation of large monodisperse copolymer particles by dispersion polymerization. Macromolecules 1987,20, (2),268-273.
    [101]Paine, A. J., Dispersion polymerization of styrene in polar solvents:Ⅰ. Grafting mechanism of stabilization by hydroxypropyl cellulose. J. Colloid Interf. Sci.1990, 138, (1),157-169.
    [102]Nguyen, D.; Duguet, E.; Bourgeat-lami, E.; Ravaine, S.; Bordeaux, D., An Easy Way to Control the Morphology of Colloidal Polymer-Oxide Supraparticles through Seeded Dispersion Polymerization. Langmuir 2010, (26),2005-2009.
    [103]Shi, S.; Kuroda, S.; Hosoi, K.; Kubota, H., Poly(methyl methacrylate)/polyacrylonitrile composite latex particles with a novel surface morphology. Polymer 2005,46, (11),3567-3570.
    [104]Wang, H.; Wang, M. Z.; Ge, X. W., One-step fabrication of multihollow polystyrene particles from miniemulsion system with nonionic surfactant. Polymer 2008,4974-80.
    [105]Xuan, S.; Wang, Y.-X. J.; Leung, K. C.-F.; Shu, K., Synthesis of Fe3O4@Polyaniline Core/Shell Microspheres with Well-Defined Blackberry-Like Morphology. J. Phys. Chem. C 2008,112, (48),18804-18809.
    [106]Wang, H.; Wang, M. Z.; Ge, X. W., Graft copolymers of polyurethane with various vinyl monomers via radiation-induced miniemulsion polymerization: influential factors to grafting efficiency and particle morphology. Radiat. Phys. Chem. 2009,78,(2),112-118.
    [107]Wu, D. Z.; Ge, X. W.; Zhang, Z. C.; Wang, M. Z.; Zhang, S. L., Novel One-Step Route for Synthesizing CdS/Polystyrene Nanocomposite Hollow Spheres. Langmuir 2004,20, (13),5192-5195.
    [108]He, X. D.; Ge, X. W.; Liu, H. R.; Wang, M. Z.; Zhang, Z. C., Cagelike polymer microspheres with hollow core/porous shell structures.J. Polym. Sci. Pol. Chem.2007, 45, (5),933-941.
    [109]He, X. D.; Ge, X. W.; Liu, H. R.; Wang, M. Z.; Zhang, Z. C., Synthesis of Cagelike Polymer Microspheres with Hollow Core/Porous Shell Structures by Self-Assembly of Latex Particles at the Emulsion Droplet Interface. Chem. Mater. 2005,17, (24),5891-5892.
    [110]Yuan, Q.; Yang, L. B.; Wang, M. Z.; Wang, H.; Ge, X. P.; Ge, X. W., The Mechanism of the Formation of Multihollow Polymer Spheres through Sulfonated Polystyrene Particles. Langmuir 2009,25, (5),2729-2735.
    [111]Ge, X. P.; Wang, M. Z.; Wang, H.; Yuan, Q.; Ge, X. W.; Liu, H. R.; Tang, T., Novel Walnut-like Multihollow Polymer Particles:Synthesis and Morphology Control. Langmuir 2010,26, (3),1635-1641.
    [112]Ge, X. P.; Ge, X. W; Wang, M. Z.; Liu, H. R.; Fang, B.; Li, Z.; Shi, X. J.; Yang, C. Z.; Li, G., One-Pot Synthesis of Colloidal Nanobowls and Hybrid Multipod-like Nanoparticles by Radiation Miniemulsion Polymerization. Macromol. Rapid Comm. 2011,32,(20),1615-1619.
    [113]Wang, H.; Ge, X. W.; Song, L. Y.; Liu, H. R., Miniemulsion polymerization of styrene costabilized with polyurethane via 60Co gamma-ray radiation initiation. Colloid & Polymer Science 2007,1093-1100.
    [114]Ge, X. P.; Wang, M. Z.; Yuan, Q.; Wang, H.; Ge, X. W., The morphological control of anisotropic polystyrene/silica hybrid particles prepared by radiation miniemulsion polymerizationw. Chem. Comm.2009,2765-2767.
    [115]Hong, J.; Han, H.; Hong, C. K.; Shim, S. E., A direct preparation of silica shell on polystyrene microspheres prepared by dispersion polymerization with polyvinylpyrrolidone. J. Polym. Sci. Pol. Chem.2008,46, (8),2884-2890.
    [1]Cho, Y. S.; Yi, G. R.; Kim, S. H.; Jeon, S. J.; Elsesser, M. T.; Yu, H. K.; Yang, S. M.; Pine, D. J., Particles with coordinated patches or windows from oil-in-water emulsions. Chem. Mater.2007,19, (13),3183-3193.
    [2]Perro, A.; Duguet, E.; Lambert, O.; Taveau, J. C.; Bourgeat-Lami, E.; Ravaine, S., Chemical Synthetic Route towards "Colloidal Molecules". Angew. Chem. Int. Ed. 2009,48, (2),361-365.
    [3]Fujii, S.; Matsuzawa, S.; Nakamura, Y.; Ohtaka, A.; Teratani, T., Synthesis and Characterization of Polypyrrole-Palladium Nanocomposite-Coated Latex Particles and Their Use as a Catalyst for Suzuki Coupling Reaction in Aqueous Media. Langmuir 2010,26, (13),6230-6239.
    [4]Fleming, M. S.; Mandal, T. K.; Walt, D. R., Nanosphere-microsphere assembly: Methods for core-shell materials preparation. Chem. Mater.2001,13, (6),2210-2216.
    [5]Caruso, R. A.; Susha, A.; Caruso, F., Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres. Chem. Mater.2001,13, (20),400-409.
    [6]Reculusa, S.; Poncet-Legrand, C.; Perro, A.; Duguet, E.; Bourgeat-Lami, E.; Mingotaud, C.; Ravaine, S., Hybrid dissymmetrical colloidal particles. Chem. Mater. 2005,17, (13),3338-3344.
    [7]Colver, P. J.; Colard, C. A. L.; Bon, S. A. F., Multilayered Nanocomposite Polymer Colloids Using Emulsion Polymerization Stabilized by Solid Particles. J. Am. Chem. Soc.2008,130, (50),16850-16851.
    [8]Schmid, A.; Scherl, P.; Armes, S. P.; Leite, C. A. P.; Galembeck, F., Synthesis and Characterization of Film-Forming Colloidal Nanocomposite Particles Prepared via Surfactant-Free Aqueous Emulsion Copolymerization. Macromolecules 2009,42, (11), 3721-3728.
    [9]Eun Mi, L.; Hyun Woo, L.; Jae Hyeung, P.; Han, Y. A.; Byung Chul, J.; Weontae, O.; Yulin, D.; Jeong Hyun, Y, Multihollow structured poly(methyl methacrylate)/silver nanocomposite microspheres prepared by suspension polymerization in the presence of dual dispersion agents. Colloid Polym. Sci.2008, 286,(12),1379-1385.
    [10]Wu, Y. N.; Zhang, J.; Zhao, H. Y, Functional Colloidal Particles Stabilized by Layered Silicate with Hydrophilic Face and Hydrophobic Polymer Brushes. J. Polym. Sci. Pol. Chem.2009,47, (6),1535-1543.
    [11]Schmid, A.; Fujii, S.; Armes, S. P.; Leite, C. A. P.; Galembeck, F.; Minami, H.; Saito, N.; Okubo, M., Polystyrene-silica colloidal nanocomposite particles prepared by alcoholic dispersion polymerization. Chem. Mater.2007,19, (10),2435-2445.
    [12]Chen, T.; Colver, P. J.; Bon, S. A. F., Organic-inorganic hybrid hollow spberes prepared from TiO2-stabilized pickering emulsion polymerization. Adv. Mater.2007, 19, (17),2286-2289.
    [13]Reculusa, S.; Mingotaud, C.; Bourgeat-Lami, E.; Duguet, E.; Ravaine, S., Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites. Nano Lett.2004,4, (9),1677-1682.
    [14]Nguyen, D.; Duguet, E.; Bourgeat-lami, E.; Ravaine, S.; Bordeaux, D., An Easy Way to Control the Morphology of Colloidal Polymer-Oxide Supraparticles through Seeded Dispersion Polymerization. Langmuir 2010,26,6086-6090.
    [15]Putlitz, B. Z.; Landfester, K.; Fischer, H.; Antonietti, M., The generation of "armored latexes" and hollow inorganic shells made of clay sheets by templating cationic miniemulsions and latexes. Adv. Mater.2001,13, (7),500-503.
    [16]Zhou, J.; Chen, M.; Qiao, X. G.; Wu, L. M., Facile Preparation Method of SiO2/PS/TiO2 Multilayer Core-Shell Hybrid Microspheres. Langmuir 2006,22, (24), 10175-10179.
    [17]Koh, H. D.; Changez, M.; Lee, J. P.; Lee, J. S., Preparation of Ag-Embedded Polystyrene Nanospheres and Nanocapsules by Miniemulsion Polymerization. Macromol. Rapid Comm.2009,30, (18),1583-1588.
    [18]Ugelsted, J.; EI-Aasser, M. S.; Vanderhoff, J. W., J. Polym. Sci., Pol. Lett.1973, 11,503-513.
    [19]Wu, Y. F.; Zhang, Y.; Xu, J. X.; Chen, M.; Wu, L. M., One-step preparation of PS/TiO2 nanocomposite particles via miniemulsion polymerization. J. Colloid Inter/. Sci.2010,343, (1),18-24.
    [20]Yang, S.; Liu, H. R.; Zhang, Z. C., A facile route to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via inverse miniemulsion polymerization. J. Polym. Sci. Pol. Chem.2008,46, (12),3900-3910.
    [21]Zhang, J. A.; Liu, N. N.; Wang, M. Z.; Ge, X. W.; Wu, M. Y.; Yang, J. J.; Wu, Q. Y; Jin, Z. L., Preparation and Characterization of Polymer/Silica Nanocomposites via Double In Situ Miniemulsion Polymerization. J. Polym. Sci. Pol. Chem.2010,48, 3128-3134.
    [22]Zhang, J. A.; Yang, J. J.; Wu, Q. Y.; Wu, M. Y.; Liu, N. N.; Jin, Z. L.; Fei, W. Y., SiO2/Polymer Hybrid Hollow Microspheres via Double in Situ Miniemulsion Polymerization. Macromolecules 2010,43,1188-1190.
    [23]Wang, H.; Wang, M. Z.; Ge, X. W., One-step fabrication of multihollow polystyrene particles from miniemulsion system with nonionic surfactant. Polymer 2008,49,4974-80.
    [24]Wang, H.; Wang, M. Z.; Ge, X. W.; Liu, H. R.; Zhang, Z. C., Radiation miniemulsion polymerization system with HTPB or its derivative as the costabilizer. Colloid Polym. Sci.2008,286, (8-9),1039-1047.
    [25]Wang, H.; Wang, M. Z.; Ge, X. W., Graft copolymers of polyurethane with various vinyl monomers via radiation-induced miniemulsion polymerization: influential factors to grafting efficiency and particle morphology. Radiat. Phys. Chem. 2009,78,(2),112-118.
    [26]Ge, X. P.; Wang, M. Z.; Yuan, Q.; Wang, H.; Ge, X. W., The morphological control of anisotropic polystyrene/silica hybrid particles prepared by radiation miniemulsion polymerizationw. Chem. Comm.2009,2765-2767.
    [27]Wang, H.; Ge, X. W.; Song, L. Y.; Liu, H. R., Miniemulsion polymerization of styrene costabilized with polyurethane via 60Co gamma-ray radiation initiation. Colloid Polym. Sci.2007,285, (10),1093-100.
    [28]Agrawal, M.; Gupta, S.; Stamm, M., Recent developments in fabrication and applications of colloid based composite particles. J. Mater. Chem.2011,21, (3), 615-627.
    [29]Li, Y X.; Pan, Y F.; Zhu, L. L.; Wang, Z. Q.; Su, D. M.; Xue, G, Facile and Controlled Fabrication of Functional Gold Nanoparticle-coated Polystyrene Composite Particle. Macromol. Rapid Comm.2011,32, (21),1741-1747.
    [30]Ming, W.; Wu, D.; van Benthem, R.; de With, G, Superhydrophobic films from raspberry-like particles. Nano Lett.2005,5, (11),2298-301.
    [31]Tsai, H. J.; Lee, Y L., Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces. Langmuir 2007,23, (25),12687-92.
    [32]Qian, Z.; Zhang, Z. C.; Song, L. Y.; Liu, H. R., A novel approach to raspberry-like particles for superhydrophobic materials. J. Mater. Chem.2009,19, (9), 1297-1304.
    [33]D'Acunzi, M.; Mammen, L.; Singh, M.; Deng, X.; Roth, M.; Auernhammer, G. K.; Butt, H.-J.; Vollme, D., Superhydrophobic surfaces by hybrid raspberry-like particles. Faraday Discuss.2010,146,35-48.
    [34]Yang, C.; Tartaglino, U.; Persson, B. N. J., Influence of Surface Roughness on Superhydrophobicity. Phys. Rev. Lett.2006,97,116103.
    [35]Roach, P.; Shirtcliffe, N. J.; Newton, M. I., Progess in superhydrophobic surface development. Soft Matter 2008,4, (2),224-224.
    [36]Zhang, X.; Shi, F.; Niu, J.; Jiang, Y. G.; Wang, Z. Q., Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem.2008,18, (6), 621-621.
    [37]Li, Y.; Li, C. C.; Cho, S. O.; Duan, G. T.; Cai, W. P., Silver Hierarchical Bowl-Like Array:Synthesis, Superhydrophobicity, and Optical Properties. Langmuir 2007,23,(19),9802-9807.
    [38]Li, Y.; Lee, E. J.; Cho, S. O., Superhydrophobic Coatings on Curved Surfaces Featuring Remarkable Supporting Force. J. Phys. Chem. C 2007,111,14813-14817.
    [39]Li, Y.; Huang, X. J.; Heo, S. H.; Li, C. C.; Choi, Y. K.; Cai, W. P.; Cho, S. O., Superhydrophobic Bionic Surfaces with Hierarchical Microsphere/SWCNT Composite Arrays. Langmuir 2007,23, (4),2169-2174.
    [40]Li, Y.; Cai, W. P.; Duan, G. T.; Cao, B. Q.; Sun, F. Q.; Lu, F., Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method. J. Colloid Interf. Sci.2005,287, (2),634-639.
    [41]Li, Y.; Cai, W. P.; Cao, B. Q.; Duan, G. T.; Sun, F. Q.; Li, C. C.; Jia, L. C, Two-dimensional hierarchical porous silica film and its tunable superhydrophobicity. Nanotechnology 2006,17, (1),238-243.
    [42]Du, H. W.; Hamilton, P. D.; Reilly, M. A.; d'Avignon, A.; Biswas, P.; Ravi, N., A facile synthesis of highly water-soluble, core-shell organo-silica nanoparticles with controllable size via sol-gel process.J. Colloid Interf. Sci.2009,340, (2),202-208.
    [43]Hwang, H. S.; Lee, S. B.; Park, I., Fabrication of raspberry-like superhydrophobic hollow silica particles. Mater. Lett.2010,64, (20),2159-2162.
    [44]Bao, Y. B.; Li, Q. Y.; Xue, P. F.; Huang, J. F.; Wang, J. B.; Guo, W. H.; Wu, C. F., Tailoring the morphology of raspberry-like carbon black/polystyrene composite microspheres for fabricating superhydrophobic surface. Mater. Res. Bull.2011,46, (5), 779-785.
    [45]Stober, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range.J. Colloid Interf. Sci.1968,26, (1).
    [46]Vanblaaderen, A.; Vrij, A., SYNTHESIS AND CHARACTERIZATION OF MONODISPERSE COLLOIDAL ORGANO-SILICA SPHERES.J. Colloid Interf. Sci.1993,156, (1),1-18.
    [47]Westcott, S. L.; Oldenburg, S. J.; Lee, T. R.; Halas, N. J., Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 1998,14, (19),5396-5401.
    [48]Berendsen, G. E.; Galan, L. d., Preparation and Chromatographic Properties of Some Chemically Bonded Phases for Reversed-Phase Liquid Chromatography. J. Liq. Chromatogr. Related Technol.1978,1, (5),561.
    [49]Sandoval, J. E., Equation for calculating surface coverage from end-capping of chromatographic bonded phases. J. Chromatogr. A 1999,852,375-381.
    [50]Bourgeat-Lami, E.; Lang, J., Encapsulation of inorganic particles by dispersion polymerization in polar media-1. Silica nanoparticles encapsulated by polystyrene.J. Colloid Interf. Sci.1998,197, (2),293-308.
    [51]Asua, J. M., Miniemulsion polymerization. Prog. Polym. Sci.2002,27, (7), 1283-1346.
    [52]Jin, M. H.; Feng, X. J.; Feng, L.; Sun, T. L.; Zhai, J.; Li, T. J.; Jiang, L., Superhydrohobic Aligned Polystyrene Nanotube Films with High Adhesive Force. Adv. Mater.2005,17,1977-1981.
    [53]Wenzel, R. N., RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Ind. Eng. Chem.1936,28, (8),988-994.
    [54]Cassie, A. B. D.; Baxter, S., Wettability of porous surfaces. T. Faraday Soc.1944, 40,546-550.
    [55]Marmur, A., The Lotus Effect:Superhydrophobicity and Metastability. Langmuir 2004,20, (9),3517-3519.
    [56]Choi, W.; Tuteja, A.; Chhatre, S.; Mabry, J. M.; Cohen, R. E.; McKinley, G. H., Fabrics with Tunable Oleophobicity. Adv. Mater.2009,21, (21),2190-2195.
    [57]Deng, B.; Cai, R.; Yu, Y.; Jiang, H.; Wang, C.; Li, J.; Li, L.; Yu, M.; Li, J.; Xie, L.; Huang, Q.; Fan, C., Laundering Durability of Superhydrophobic Cotton Fabric. Adv. Mater.2010,22, (48),5473-5477.
    [58]Bargeman, D., Contact Angles on Nonpolar Solids. J. Colloid Interf. Sci.1972, 40, (3),344-348.
    [59]Wang, S.; Jiang, L., Definition of Superhydrophobic States. Adv. Mater.2007,19, (21),3423-3424.
    [60]Full, R. J.; Autumn, K.; Liang, Y. A.; Hsieh, S. T.; Zesch, W.; Chan, W. P.; Kenny, T.W.;Fearing,R.,Adhesive force of a single gecko foot-hair.Nature 2000,405, (6787),681-685.
    [61]Ge,X.;Ge,X.;Wang,M.;Liu,H.;Fang,B.;Li,Z.;Shi,X.;Yang,C.;Li,G., One-Pot Synthesis of Colloidal Nanobowls and Hybrid Multipod-like Nanoparticles by Radiation Miniemulsion Polymerization.Macromol.Rapid Comm.2011,32,(20), 1615-1619.
    [1]Okubo, M.; Yamada, A.; Matsumoto, T., Studies on Suspension and Emulsion.36. Estimation of Morphology of Composite Polymer Emulsion Particles by the Soap Titration Method. J. Polym. Sci. Pol. Chem.1980,18, (11),3219-3228.
    [2]Okubo, M.; Katsuta, Y.; Matsumoto, T., Rupture of Anomalous Composite-Particles Prepared by Seeded Emulsion Polymerization in Aging Period. J. Polym. Sci. Pol. Lett.1980,18, (7),481-486.
    [3]Du, Y. Z.; Tomohiro, T.; Kodaka, M., Synthesis of hemispherical poly(2-hydroxylethyl methacrylate-co-methyl methacrylate)/poly(styrene-co-glycidyl methacrylate) composite particles with heterobifunctional groups by soap-free seeded emulsion polymerization. Macromolecules 2004,37, (3),803-812.
    [4]Tolue, S.; Moghbeli, M. R.; Ghafelebashi, S. M., Preparation of ASA (acrylonitrile-styrene-acrylate) structural latexes via seeded emulsion polymerization. Eur. Polym. J.2009,45, (3),714-720.
    [5]Kim, S. H.; Yi, G. R.; Kim, K. H.; Yang, S. M., Photocurable pickering emulsion for colloidal particles with structural complexity. Langmuir 2008,24, (6),2365-2371.
    [6]Bon, S. A. F.; Cauvin, S.; Colver, P. J., Colloidosomes as micron-sized polymerisation vessels to create supracolloidal interpenetrating polymer network reinforced capsules. Soft Matter 2007,3, (2),194-199.
    [7]Zhang, L.; Daniels, E. S.; Dimonie, V. L.; Klein, A., Synthesis and Characterization of PNIPAM/PS Core/Shell Particles. J. Appl. Polym. Sci.2010,118, (5),2502-2511.
    [8]Li, G. L.; Yang, X. L.; Bai, F.; Huang, W. Q., Raspberry-like composite polymer particles by self-assemble heterocoagulation based on a charge compensation process. J. Colloid Interf. Sci.2006,297, (2),705-710.
    [9]Goncalves, O. H.; Asua, J. M.; de Araujo, P. H. H.; Machado, R. A. F., Synthesis of PS/PMMA core-shell structured particles by seeded suspension polymerization. Macromolecules 2008,41, (19),6960-6964.
    [10]Tan, L.; Cao, L. J.; Yang, M.; Wang, G.; Sun, D. B., Formation of dual-responsive polystyrene/polyaniline microspheres with sea urchin-like and core-shell morphologies. Polymer 2011,52, (21),4770-4776.
    [11]Park, J.-G.; Forster, J. D.; Dufresne, E. R., High-Yield Synthesis of Monodisperse Dumbbell-Shaped Polymer Nanoparticles. J. Am. Chem. Soc.2010,132,5960-5961.
    [12]Kim, J. W.; Larsen, R. J.; Weitz, D. A., Uniform Nonspherical Colloidal Particles with Tunable Shapes. Adv. Mater.2007,19, (15),2005-2009.
    [13]Kim, J.-W.; Larsen, R. J.; Weitz, D. A., Synthesis of Nonspherical Colloidal Particles with Anisotropic Properties. J. Am. Chem. Soc.2006,128,14374-14377.
    [14]Okubo, M.; Fujibayashi, T.; Terada, A., Synthesis of micron-sized, monodisperse polymer particles of disc-like and polyhedral shapes by seeded dispersion polymerization. Colloid Polym. Sci.2005,283, (7),793-798.
    [15]Moghbeli, M. R.; Mohammadi, N.; Bagheri, R., Synthesis of SBR/PMMA core/shell latices:The role of initiator and surfactant on particle morphology and instability performance. J. Appl. Polym. Sci.2007,105, (3),1412-1419.
    [16]Wan, Q. C.; Li, Y. F.; Todd, C.; Harris, J.; Nicholson, D.; Chaput, B., Preparation of Raspberry-Shaped Styrene-Butadiene-Methyl Acrylate-Acrylic Acid Latex Particles by Emulsion Polymerization Followed by Alkali/Heating Method. J. Appl. Polym. Sci.2011,121, (3),1276-1284.
    [17]Shi, S.; Zhou, L. M.; Wang, T.; Bian, L. N.; Tang, Y T.; Kuroda, S., Preparation of Raspberry-like Poly(methyl methacrylate) Particles by Seeded Dispersion Polymerization. J. Appl. Polym. Sci.2011,120, (1),501-508.
    [18]Sommer, F.; Duc, T. M.; Pirri, R.; Meunier, G.; Quet, C., Surface-Morphology of Poly(Butyl Acrylate) Poly(Methyl Methacrylate) Core-Shell Latex by Atomic-Force Microscopy. Langmuir 1995,11, (2),440-448.
    [19]Huang, H. F.; Liu, H. R., Synthesis of the Raspberry-Like PS/PAN Particles with Anisotropic Properties via Seeded Emulsion Polymerization Initiated by gamma-Ray Radiation. J. Polym. Sci. Pol. Chem.2010,48, (22),5198-5205.
    [20]Nakroshis, P.; Amoroso, M.; Legere, J.; Smith, C., Measuring Boltzmann's constant using video microscopy of Brownian motion. Am. J. Phys.2003,71, (6), 568.
    [21]Montes-Burgos, I.; Walczyk, D.; Hole, P.; Smith, J.; Lynch, I.; Dawson, K., Characterisation of nanoparticle size and state prior to nanotoxicological studies. Journal of Nanoparticle Research 2010,12, (1),47-53.
    [22]Neville, F.; Broderick, M. J. F.; Gibson, T.; Millner, P. A., Fabrication and Activity of Silicate Nanoparticles and Nanosilicate-Entrapped Enzymes Using Polyethyleneimine As a Biomimetic Polymer. Langmuir 2011,27, (1),279-285.
    [23]Liu, S. Y.; Chan, C. M.; Weng, L. T.; Jiang, M., Combined X-ray photoelectron spectroscopy and time-of-flight secondary ion MS surface quantitative analysis of polymer blends with varying mixing thermodynamics. Anal. Chem.2004,76, (17), 5165-5171.
    [24]Deng, S.; Bai, R.; Chen, J. P., Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers. J. Colloid Interf. Sci.2003,260, (2),265-272.
    [25]Pels, J. R.; Kapteijn, F.; Moulijn, J. A.; Zhu, Q.; Thomas, K. M., Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995,33, (11),1641-1653.
    [26]Houtz, R. C., "Orlon" Acrylic Fiber:Chemistry and Properties. Textile Research Journal 1950,20, (11),786-801.
    [27]Grassie, N.; Hay, J. N.; McNeill, I. C., Coloration in acrylonitrile and methacrylonitrile polymers. J. Polym. Sci.1958,31, (122),205-206.
    [28]La Combe, E. M., Color formation in polyacrylonitrile. J. Polym. Sci.1957,24, (105),152-154.
    [29]Burlant, W. J.; Parsons, J. L., Pyrolysis of polyacrylonitrile.J. Polym. Sci.1956, 22, (101),249-256.
    [30]Coleman, M. M.; Petcavich, R. J., Fourier transform infrared studies on the thermal degradation of polyacrylonitrile. J. Polym. Sci. Pol. Phys.1978,16, (5), 821-832.
    [31]Fochler, H. S.; Mooney, J. R.; Ball, L. E.; Boyer, R. D.; Grasselli, J. G, Infrared and NMR spectroscopic studies of the thermal degradation of polyacrylonitrile. Spectrochim. Acta A 1985,41, (1-2),271-278.
    [32]Xue, T. J.; McKinney, M. A.; Wilkie, C. A., The thermal degradation of polyacrylonitrile. Polym. Degrad. Stabil.1997,58, (1-2),193-202.
    [33]Schurz, J., Discoloration effects in acrylonitrile polymers. J. Polym. Sci.1958,28, (117),438-439.
    [34]Grassie, N.; Hay, J. N., Thermal coloration and insolubilization in polyacrylonitrile. J. Polym. Sci.1962,56, (163),189-202.
    [35]Dalton, S.; Heatley, F.; Budd, P. M., Thermal stabilization of polyacrylonitrile fibres. Polymer 1999,40, (20),5531-5543.
    [36]Sahiner, N.; Pekel, N.; Guven, O., Radiation synthesis, characterization and amidoximation of N-vinyl-2-pyrrolidone/acrylonitrile interpenetrating polymer networks. Reactive and Functional Polymers 1999,39, (2),139-146.
    [37]Wang, J.; Li, H.; Yang, X., Preparation of hollow composite spheres with raspberry-like structure based on hydrogen-bonding interaction. Polymers for Advanced Technologies 2009,20, (12),965-971.
    [38]Gupta, M. L.; Gupta, B.; Oppermann, W.; Hardtmann, G, Surface modification of polyacrylonitrile staple fibers via alkaline hydrolysis for superabsorbent applications. J. Appl. Polym. Sci.2004,91, (5),3127-3133.
    [39]Song, Q.-S.; Shi, T.-J.; Ma, H.-H., Preparation and Characterization of PAN/SiO<sub>2</sub> Hybrid Fibers. Polym. Bull.2008,61, (4), 473-480.
    [40]Sawant, S.; Morawetz, H., Microstructure, neighboring group inhibition, and electrostatic effects in the base-catalyzed degradation of polyacrylamide. Macromolecules 1984,17, (11),2427-2431.
    [41]Litmanovich, A. D.; Plate, N. A., Alkaline hydrolysis of polyacrylonitrile. On the reaction mechanism. Macromol. Chem. Phys.2000,201, (16),2176-2180.
    [42]Bajaj, P.; Chavan, R. B.; Manjeet, B., Saponification Kinetics of Acrylonitrile Terpolymer and Polyacrylonitrile. Journal of Macromolecular Science:Part A Chemistry 1985,22, (9),1219-1239.
    [1]Kurayama, F.; Suzuki, S.; Oyamada, T.; Furusawa, T.; Sato, M.; Suzuki, N., Facile method for preparing organic/inorganic hybrid capsules using amino-functional silane coupling agent in aqueous media. J. Colloid Interf. Sci.2010,349, (1),70-76.
    [2]Erdem, B.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S., Encapsulation of inorganic particles via miniemulsion polymerization. I. Dispersion of titanium dioxide particles in organic media using OLOA 370 as stabilizer. J. Polym. Sci. Pol. Chem. 2000,38, (24),4419-4430.
    [3]Erdem, B.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S., Encapsulation of inorganic particles via miniemulsion polymerization. II. Preparation and characterization of styrene miniemulsion droplets containing TiO2 particles. J. Polym. Sci. Pol. Chem.2000,38, (24),4431-4440.
    [4]Whitehead, R. A. H., MA), Chagnon, Mark S. (Lowell, MA), Groman, Ernest V. (Brookline, MA), Josephson, Lee (Arlington, MA) Magnetic particles for use in separations.1985.
    [5]Liu, X.; Ma, Z.; Xing, J.; Liu, H., Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres. Journal of Magnetism and Magnetic Materials 2004,270, (1-2),1-6.
    [6]Plueddemann, E. P., Silane Coupling Agents.1 ed.; Plenum Press:NewYork,1982.
    [7]Iijima, M.; Tsukada, M.; Kamiya, H., Effect of particle size on surface modification of silica nanoparticles by using silane coupling agents and their dispersion stability in methylethylketone.J. Colloid Interf. Sci.2007,307, (2), 418-424.
    [8]Chujo, Y.; Ihara, E.; Ihara, H.; Saegusa, T., A novel silane coupling agent.1. Synthesis of trimethoxysilyl-terminated poly(N-acetylethylenimine). Macromolecules 1989,22, (5),2040-2043.
    [9]Zou, H.; Wu, S.; Shen, J., Polymer/Silica Nanocomposites:Preparation, characterization, propertles, and applications. Chem. Rev.2008,108, (9),3893-3957.
    [10]Lin, J.; Siddiqui, J. A.; Ottenbrite, R. M., Surface modification of inorganic oxide particles with silane coupling agent and organic dyes. Polymers for Advanced Technologies 2001,12, (5),285-292.
    [11]Perruchot, C.; M. Chehimi, M.; Mordenti, D.; Bri, M.; Delamar, M. M. C. D. M. M. B. M.; Delamar, M., The role of a silane coupling agent in the synthesis of hybrid polypyrrole-silica gel conducting particles.J. Mater. Chem.1998,8, (10),2185-2193.
    [12]Stober, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci.1968,26, (1).
    [13]Liu, S. Y.; Chan, C. M.; Weng, L. T.; Jiang, M., Combined X-ray photoelectron spectroscopy and time-of-flight secondary ion MS surface quantitative analysis of polymer blends with varying mixing thermodynamics. Anal. Chem.2004,76, (17), 5165-5171.
    [14]Zhai, L.; Cebeci, F. C.; Cohen, R. E.; Rubner, M. F., Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers. Nano Lett.2004,4, (7),1349-1353.
    [15]Deng, S.; Bai, R.; Chen, J. P., Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers. J. Colloid Interf. Sci.2003,260, (2),265-272.
    [16]Pels, J. R.; Kapteijn, F.; Moulijn, J. A.; Zhu, Q.; Thomas, K. M., Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995,33, (11),1641-1653.
    [17]Badami, D. V; Joiner, J. C.; Jones, G. A., Microstructure of High Strength, High Modulus Carbon Fibres. Nature 1967,215, (5099),386-387.
    [18]Johnson, W.; Watt, W., Structure of High Modulus Carbon Fibres. Nature 1967, 215, (5099),384-386.
    [19]Johnson, J. W.; Marjoram, J. R.; Rose, P. G, Stress Graphitization of Polyacrylonitrile Based Carbon Fibre. Nature 1969,221, (5178),357-358.
    [1]Graf, C.; Vossen, D. L. J.; Imhof, A.; van Blaaderen, A., A General Method To Coat Colloidal Particles with Silica. Langmuir 2003,19, (17),6693-6700.
    [2]Fujita, N.; Asai, M.; Yamashita, T.; Shinkai, S., Sol-gel transcription of silica-based hybrid nanostructures using poly(N-vinylpyrrolidone)-coated [60]fullerene, single-walled carbon nanotube and block copolymer templates. Journal of Materials Chemistry 2004,14, (14),2106-2114.
    [3]Asai, M.; Fujita, N.; Sano, M.; Shinkai, S., Silica gel fabrication of [60]fullerene aggregates and carbon nanotubes utilizing the amphiphilic nature of poly(N-vinylpyrrolidone) as a'glue'. Journal of Materials Chemistry 2003,13, (9), 2145-2149.
    [4]Hong, J.; Han, H.; Hong, C. K.; Shim, S. E., A direct preparation of silica shell on polystyrene microspheres prepared by dispersion polymerization with polyvinylpyrrolidone. Journal of Polymer Science Part A:Polymer Chemistry 2008, 46, (8),2884-2890.
    [5]Ge, J. P.; Hu, Y. X.; Zhang, T. R.; Yin, Y. D., Superparamagnetic composite colloids with anisotropic structures. J Am Chem Soc 2007,129, (29),8974-8975.
    [6]Cairns, D. R.; Shafran, M. S.; Sierros, K. A.; Huebsch, W. W.; Kessrnan, A. J., Stimulus-responsive fluidic dispersions of rod shaped liquid crystal polymer colloids. Mater Lett 2010,64, (10),1133-1136.
    [7]Murphy, C. J., Nanocubes and nanoboxes. Science 2002,298, (5601),2139-2141.
    [8]Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A., Colloidosomes:Selectively permeable capsules composed of colloidal particles. Science 2002,298, (5595),1006-1009.
    [9]Xu, S. Q.; Nie, Z. H.; Seo, M.; Lewis, P.; Kumacheva, E.; Stone, H. A.; Garstecki, P.; Weibel, D. B.; Gitlin, I.; Whitesides, G. M., Generation of monodisperse particles by using microfluidics:Control over size, shape, and composition. Angew Chem Int Edit 2005,44, (5),724-728.
    [10]Okubo, M.; Fujibayashi, T.; Yamada, M.; Minami, H., Micron-sized, monodisperse, snowman/confetti-shaped polymer particles by seeded dispersion polymerization. Colloid Polym Sci 2005,283, (9),1041-1045.
    [11]Okubo, M.; Fujibayashi, T.; Terada, A., Synthesis of micron-sized, monodisperse polymer particles of disc-like and polyhedral shapes by seeded dispersion polymerization. Colloid Polym Sci 2005,283, (7),793-798.
    [12]Huang, H. F.; Liu, H. R., Synthesis of the raspberry-like PS/PAN particles with anisotropic properties via seeded emulsion polymerization initiated by y-ray radiation. Journal of Polymer Science Part A:Polymer Chemistry 2010,48, (22),5198-5205.
    [13]Lu, S. L.; Qu, R. J.; Forcada, J., Preparation of magnetic polymeric composite nanoparticles by seeded emulsion polymerization. Mater Lett 2009,63, (9-10), 770-772.
    [14]Ge, X.; Wang, M.; Ji, X.; Ge, X.; Liu, H., Effects of concentration of nonionic surfactant and molecular weight of polymers on the morphology of anisotropic polystyrene/poly(methyl methacrylate) composite particles prepared by solvent evaporation method. Colloid Polym Sci 2009,287, (7),819-827.
    [15]Saito, N.; Kagari, Y.; Okubo, M., Effect of colloidal stabilizer on the shape of polystyrene/poly(methyl methacrylate) composite particles prepared in aqueous medium by the solvent evaporation method. Langmuir 2006,22, (22),9397-9402.
    [16]Yin, Y. D.; Lu, Y.; Xia, Y. N., A self-assembly approach to the formation of asymmetric dimers from monodispersed spherical colloids. J Am Chem Soc 2001,123, (4),771-772.
    [17]Manigandan, S.; Majumder, S.; Ganguly, S.; Kargupta, K., Formation of nano-rod and nano-particles of polyaniline using Langmuir-Blodgett technique. Mater Lett 2008,62, (17-18),2758-2761.
    [18]Kim, J. W.; Larsen, R. J.; Weitz, D. A., Synthesis of nonspherical colloidal particles with anisotropic properties. J Am Chem Soc 2006,128, (44),14374-14377.
    [19]Hu, X.; Liu, H. R.; Ge, X. P.; Yang, S.; Ge, X. W., Preparation of Submicron-sized Snowman-like Polystyrene Particles via Radiation-induced Seeded Emulsion Polymerization. Chemistry Letters 2009,38, (8),854-855.
    [20]Kim, J. W.; Larsen, R. J.; Weitz, D. A., Uniform Nonspherical Colloidal Particles with Tunable Shapes. Adv. Mater.2007,19, (15),2005-2009.
    [21]Sheu, H. R.; Elaasser, M. S.; Vanderhoff, J. W., Phase-Separation in Polystyrene Latex Interpenetrating Polymer Networks. J Polym Sci Pol Chem 1990,28, (3), 629-651.
    [22]Nagao, D.; Hashimoto, M.; Hayasaka, K.; Konno, M., Synthesis of Anisotropic Polymer Particles with Soap-Free Emulsion Polymerization in the Presence of a Reactive Silane Coupling Agent. Macromolecular Rapid Communications 2008,29, (17),1484-1488.
    [23]Jin-Gyu, P.; D, F. J.; R, D. E., High-Yield Synthesis of Monodisperse Dumbbell-Shaped Polymer Nanoparticles. J Am Chem Soc 2010,132,5960-5961.
    [24]Chen, M.; Wu, L. M; Zhou, S. X.; You, B., A Method for the Fabrication of Monodisperse Hollow Silica Spheres. Adv Mater 2006,18, (6),801-806.
    [1]Wenz, G.; Han, B. H.; Muller, A., Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev.2006,106, (3),782-817.
    [2]Santos, L.; Ghilane, J.; Martin, P.; Lacaze, P. C.; Randriamahazaka, H.; Lacroix, J. C, Host-Guest Complexation:A Convenient Route for the Electroreduction of Diazonium Salts in Aqueous Media and the Formation of Composite Materials. J. Am. Chem. Soc.2010,132, (5),1690-1698.
    [3]Kemelbekov, U. S.; Hagenbach, a.; Lentz, D.; Imachova, S. O.; Pichkhadze, G. M.; Rustembekov, Z. I.; Beketov, K. M.; Praliev, K. D.; Gabdulkhakov, a.; Guskov, a.; Saenger, W., Pharmacology and structures of the free base of the anaesthetic kazcaine and its complex with β-cyclodextrin. J. Incl. Phenom. Macro.2010,68, (3-4), 323-330.
    [4]Aree, T.; Chaichit, N., A new crystal form of b-cyclodextrinA ethanol inclusion complex:channel-type structure without long guest molecules. Carbohyd. Res.2003, 338,1581-1589.
    [5]Harada, A., Supramolecular polymers based on cyclodextrins. J. Polym. Sci., Part A:Polym. Chem.2006,44, (17),5113-5119.
    [6]Harada, A.; Nishiyama, T.; Kawaguchi, Y.; Okada, M.; Kamachi, M., Preparation and characterization of inclusion complexes of aliphatic polyesters with cyclodextrins. Macromolecules 1997,30, (23),7115-7118.
    [7]Jeromin, J.; Ritter, H., Cyclodextrins in polymer synthesis:Free radical polymerization of a N-methacryloyl-11-aminoundecanoic acid/beta-cyclodextrin pseudorotaxane in an aqueous medium. Macromolecules 1999,32, (16),5236-5239.
    [8]Storsberg, J.; Ritter, H.; Pielartzik, H.; Groenendaal, L., Cyclodextrins in polymer synthesis:Supramolecular cyclodextrin complexes of pyrrole and 3,4-ethylenedioxythiophene and their oxidative polymerization. Adv. Mater.2000,12, (8),567-569.
    [9]Storsberg, J.; Ritter, H., Cyclodextrins in polymer synthesis:free radical polymerization of cyclodextrin host-guest complexes of methyl methacrylate or styrene from homogenous aqueous solution. Macromol. Rapid Comm.2000,21, (5), 236-241.
    [10]Storsberg, J.; van Aert, H.; van Roost, C.; Ritter, H., Cyclodextrins in polymer synthesis:A simple and surfactant free way to polymer particles having narrow particle size distribution. Macromolecules 2003,36, (1),50-53.
    [11]Rimmer, S., Cyclodextrins in the emulsion polymerization of vinyl monomers. Macromol. Symp.2000,150,149-154.
    [12]Storsberg, J.; Ritter, H., Cyclodextrins in polymer synthesis:A "green" route to fluorinated polymers via cyclodextrin complexes in aqueous solution. Macroml. Chem. Phys.2002,203, (5-6),812-818.
    [13]Yu, S. C.; Bochot, A.; Le Bas, G.; Cheron, M.; Mahuteau, J.; Grossiord, J. L.; Seiller, M.; Duchene, D., Effect of camphor/cyclodextrin complexation on the stability of O/W/O multiple emulsions. Int. J. Pharm.2003,261, (1-2),1-8.
    [14]Yu, S. C.; Bochot, A.; Cheron, M.; Seiller, M.; Grossiord, J. L.; Le Bas, G.; Duchene, D., Design and evaluation of an original o/w/o multiple emulsion containing natural cyclodextrins as the emulsifier. Stp Pharm. Sci.1999,9, (3),273-277.
    [15]Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T., Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion./. Agr. Food Chem.1992,40, (6),945-948.
    [16]Shimada, K.; Kawano, K.; Ishii, J.; Nakamura, T., Structure of Inclusion Complexes of Cyclodextrins with Triglyceride at Vegetable Oil-Water Interface. J. Food Sci.1992,57, (3),655-656.
    [17]Inoue, M.; Hashizaki, K.; Taguchi, H.; Saito, Y., Emulsion preparation using beta-cyclodextrin and its derivatives acting as an emulsifier. Chem Pharm. Bull.2008, 56,(9),1335-1337.
    [18]Inoue, M.; Hashizaki, K.; Taguchi, H.; Saito, Y., Preparation and Characterization of n-Alkane/Water Emulsion Stabilized by Cyclodextrin. J. Oleo Sci.2009,90, (2), 85-90.
    [19]Butler, J. E., Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods in Molecular Medicine 2004,94,333-372.
    [20]Rimmer, S.; Tattersall, P. I., Emulsion polymerizations in the presence of beta-cyclodextrin. Polymer 1999,40, (24),6673-6677.
    [21]Liu, S. Y.; Chan, C. M.; Weng, L. T.; Jiang, M., Combined X-ray photoelectron spectroscopy and time-of-flight secondary ion MS surface quantitative analysis of polymer blends with varying mixing thermodynamics. Anal. Chem.2004,76, (17), 5165-5171.
    [22]Uyar, T.; Gracz, H. S.; Rusa, M.; Shin, I. D.; El-shafei, A.; Tonelli, A. E., Polymerization of styrene in y-cyclodextrin channels:Lightly rotaxanated polystyrenes with altered stereosequences. Polymer 2006,47,6948-6955.
    [23]Osaki, M.; Takashima, Y.; Yamaguchi, H.; Harada, A., An artificial molecular chaperone:Poly-pseudo-rotaxane with an extensible axle. J. Am. Chem. Soc.2007, 129, (46),14452-14457.
    [24]Uyar, T.; Hunt, M. A.; Gracz, H. S.; Tonelli, A. E.; Carolina, N.; State, N. C., Crystalline Cyclodextrin Inclusion Compounds Formed with Aromatic Guests: Guest-Dependent Stoichiometries and Hydration-Sensitive Crystal Structures. Cryst. Growth Des.2006,6, (5),1113-1119.
    [25]Uyar, T.; El-shafei, A.; Wang, X.; Hacaloglu, J.; Tonelli, A. E., The Solid Channel Structure Inclusion Complex Formed Between Guest Styrene and Host c-Cyclodextrin.J. Incl. Phenom. Macro.2006,109-121.
    [26]Tonelli, A. E., Nanostructuring and functionalizing polymers with cyclodextrins. Polymer 2008,49,1725-1736.
    [27]Uyar, T.; Gracz, H. S.; Rusa, M.; Shin, I. D.; El-shafei, A.; Tonelli, A. E., Polymerization of styrene in g-cyclodextrin channels:Lightly rotaxanated polystyrenes with altered stereosequences. Polymer 2006,47,6948-6955.
    [28]Rusa, C. C.; Rusa, M.; Gomez, M.; Shin, I. D.; Fox, J. D.; Tonelli, A. E., Nanostructuring High Molecular Weight Isotactic Polyolefins via Processing with γ-Cyclodextrin Inclusion Compounds. Formation and Characterization of Polyolefin-γ-Cyclodextrin Inclusion Compounds. Macromolecules 2004,7992-7999.
    [29]Rusa, C. C.; Bullions, T. A.; Fox, J.; Porbeni, F. E.; Wang, X.; Tonelli, A. E.; Carolina, N., Inclusion Compound Formation with a New Columnar Cyclodextrin Host. Langmuir 2002,3, (13),10016-10023.
    [30]Bullions, T. A.; Wei, M.; Porbeni, F. E.; Gerber, M. J.; Peet, J.; Balik, M.; White, J. L.; Tonelli, A. E., Reorganization of the Structures, Morphologies, and Conformations of Bulk Polymers via Coalescence from Polymer-Cyclodextrin Inclusion Compounds. Polymer 2002,40,992-1012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700