聚合物/纳米银复合微球的制备、SERS性能及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面增强拉曼散射光谱(SERS)是一种具有指纹性质和超高检测灵敏度的振动光谱,其在分析领域具有重要的应用价值。特别是SERS信号具有高稳定性、高光谱分辨率等特点使得SERS光谱在生物分析领域受到了极大的关注。基于SERS标签检测生物分子的方法,具有极高的检测灵敏度和优良的多元检测能力,因而在基因治疗、食品安全监测、医学诊断、法医分析、文物鉴定等领域具有巨大的应用前景。SERS光谱的灵敏度和信号重现性主要决定于SERS基底材料的形貌和尺寸等微观结构。因此本论文研究工作主要围绕着高活性SERS基底材料的制备与其在生物分析领域的应用展开,主要取得了以下几方面的研究结果:
     (1)开发了一种简单、高效、环境友好的制备PSA/Ag-NPs复合微球的方法。首先通过无皂乳液聚合法,使用丙烯酸(AA)和苯乙烯(St)为单体制备了表面富含羧基的聚(苯乙烯-co-丙烯酸)(PSA)微球。然后以PSA微球为模板,硝酸银水溶液为银源,PVP为还原剂和稳定剂,原位还原制备了PSA/Ag-NPs复合微球。考察了微球表面羧基含量和反应温度对微球表面银纳米粒子覆盖度的影响。另外,TEM、XRD、TGA、UV-vis表征结果表明,银纳米粒子的覆盖度随PSA微球共聚单体中AA用量的增加而增大,即微球表面银纳米粒子的覆盖度随着PSA微球表面羧基含量增加逐渐增多;高温反应有助于增加微球表面银纳米粒子的覆盖度,但是过高的反应温度会导致在微球表面形成银纳米粒子聚集体,并在反应溶液中生成大量自由银纳米粒子。
     (2)使用PSA/Ag-NPs复合微球作为SERS基底检测三聚氰胺。首先以4-ABT为模型分子,考察了微球表面银纳米粒子覆盖度对PSA/Ag-NPs复合微球SERS活性的影响,得到PSA/Ag-NPs复合微球的SERS活性随着表面银纳米粒子覆盖度的增加而逐渐增大。表面完全被银纳米粒子覆盖的PSA/Ag-NPs复合微球的SERS活性最高,对4-ABT的检测限为10-9M。利用PSA/Ag-NPs复合微球作为SERS基底检测三聚氰胺,得到检测限为10-3M而且谱图中有许多PVP和杂质的信号,信噪比很低。使用四氢呋喃(THF)将PSA/Ag-NPs复合微球表面吸附的PVP和杂质溶解除去后,大大提高了信噪比和检测灵敏度,得到检测限为10-7M。
     (3)SERS-tags的制备和表征。以PSA/Ag-NPs为SERS基底,高Raman活性的芳香类化合物作为Raman条码分子,再通过改进的Stober方法包覆Si02制备了核壳结构的SERS标签(SERS-tags)即PSA/Ag-NPs-Raman repoter/SiO2。通过一系列的实验考察了SERS-tags的性能,发现:(a)SERS-tags能够抵抗强酸的侵蚀,具有高的化学稳定性;(b)SERS信号强度与SERS-tags粒子浓度成线性关系,拟合直线的确定系数(R2)为0.989,因此SERS-tags具有优异的定量检测能力;(c)在二元、三元、四元混合标签的SERS光谱中,能清晰的分辨出各个SERS-tags的特征Raman峰,因此SERS-tags具有优良的多元检测能力。采用芯片式“三明治”夹心方法初步进行了DNA检测,应用三种不同的SERS-tags在三种目标DNA混合溶液中成功的检测到了特异的目标DNA序列。因此该检测方法可以用于复杂的生物体系中生物分子的选择性和特异性检测分析。
     (4)SERS-tags在DNA检测中的应用。首先采用溶剂热法制备了具有高磁饱和强度的四氧化三铁纳米晶簇(MCNCs),再通过蒸馏沉淀的方法在MCNCs外包覆生物相容性的聚丙烯酸(PAA)壳层,得到了表面富含羧基、具有良好的磁响应性和生物相容性的MCNCs/PAA核壳结构磁性复合纳米粒子。然后以磁性复合纳米粒子为悬浮捕获材料和分离手段,结合制备的SERS-tags构建了一类灵敏的“三明治”SERS液相芯片。应用SERS液相芯片技术检测目标DNA,得到检测限为10-11M。最后将磁性复合纳米粒子表面固定三种捕获DNA后构建了多元检测SERS液相芯片,应用该液相芯片在目标DNA混合溶液中同时成功检测到了多个目标DNA。因此该方法在高通量的生物分子检测领域具有巨大的应用潜力。
Surface enhanced Raman spectroscopy (SERS) holds great potential for analytic application due to its fingerprint-like and ultra-highly sensitive property, espically SERS has been subjected to intensive attention in biomolecular analysis because of the advantages of extremely stable signal and high spectral revolution. Biological analysis based on SERS-tags has wide applications in biomedical research, food safety monitoring, medical diagnostics, forensic analysis, cultural relic identification and so on. The sensitivity of SERS mainly depends on the morphology and size of SERS substrates. Based on the research background, this thesis has focused on the preparation of highly active SERS substrates and their application in biological analysis area. The detailed results of each part are listed as following:
     (1) A facile, efficient and environmentally friendly route for preparation of PSA/Ag-NPs composite microspheres was developed. Firstly, a series of poly (styrene-co-acrylic acid)(PSA) microspheres with different contents of-COOH were prepared by surfactant-free emulsion polymerization using different ratios of styrene (St) and acrylic acid (AA) as monomers. Secondly, PSA microspheres served as the supporting template and PVP acted as a reducer and stabilizer to obtain Ag nanoparticles (Ag-NPs) coated PSA composite microspheres (PSA/Ag-NPs) via in situ reduction of AgNO3by PVP in aqueous solution. The effect of carboxyl group amount and reaction temperature on surface coverage and morphology of Ag-NPs immobilized on PSA microspheres was systematically studied. The results reveal that the bigger-COOH amount on the surface of microspheres and higher reaction temperature was in favor of the increase of Ag-NPs coverage, but too high reaction temperature led to the formation of silver nanoparticle agglomerates on the microsphere surface and a great amount of colloidal silver nanoparticles in the solution.
     (2) PSA/Ag-NPs composite microspheres were used as SERS substrates to detect trace melamine in solution. At first, their SERS activity was evaluated using4-ABT as the model molecule. The result shows that the SERS activity of PSA/Ag-NPs composite microspheres increases with the increase of the Ag-NPs coverage on the surface of the PSA/Ag-NPs composite microspheres, and the composite microspheres with the uniform and complete coverage show the highest SERS activity with the detection limit down to10-9M for4-ABT. Potential application of the PSA/Ag-NPs composite microspheres as SERS substrates was demonstrated with the detection of melamine, and the detection limit was about10-3M. Chemical noises from PVP and other impurities were observed, which were attributed mainly to the competitive adsorption of PVP on the surfaces of Ag-NPs. After tetrahydrofuran (THF) washing of the PSA/Ag-NPs that removed the PVP and other residuals, the signal/noise levels of SERS were greatly improved and the detection limit of melamine was increased to be10-7M.
     (3) A class of SERS encoded core-shell microspheres (SERS-tags) was synthesized. The SERS-tags are composed of PSA/Ag-NPs microspheres as SERS-active substrates, Raman active molecules as coding for specific analyte, and silica shell for protecting the Ag-NPs and the Raman molecules from the exterior chemical and biological interferences and conjugation with biomolecules. The experimental results show that:(a) the SERS-tags exhibited high chemical stability and could resist to the etching of strong acid;(b) the SERS-tags at different concentrations produced consistent Raman signals under the identical measuring conditions and a highly linear relationship between SERS signal intensities and concentrations of nanoparticle SERS-tags with an R2=0.989was obtained;(c) At least four different tags (a four "color" system) were quantitatively differentiated in a mixture of SERS-tags indicating an excellent multiplexing potential of SERS-tags. The silica surfaces of SERS-tags were further conjugated with probe DNA to prepare SERS-probes. The detection of single-stranded oligonucleotide (ssDNA) targets was successfully accomplished using SERS-probes in a chip-based sandwich hybridization assay in a mixed ssDNA target solution. Therefore, the as-prepared SERS-probes are suitable for high specific detection of biomolecules with high sensitivity and the remarkable multiplexing capability associated with the SERS method.
     (4) We demonstrated a strategy for the detection of target DNA based on SERS-tags. Firstly, the magnetite colloidal nanocrystal clusters (MCNCs) with high saturation magnetization value were synthesized via a solvothermal reaction, and then they were coated with high biocompatible poly (acrylic acid)(PAA) to obtain MCNCs/PAA core/sell microspheres with fast magnetic responsiveness and excellent biocompatibility. A proof-of-concept sandwich hybridization assay for DNA detection was performed utilizing DNA-functionalized SERS-tags as probes and magnetic nanoparticles as suspended capture substrates and a separating tool, respectively. The quantitative detection of target DNA strands showed a well-defined linear correlation between SERS signal intensity and concentrations of target DNA strands, and the limit of detection was as low as10-11M. Multiplexed detection was further successfully performed with simultaneous spectral identification of up to three different kinds of DNA targets in an assay in light of the unique spectroscopic fingerprints of each type of SERS-tags. So the as-developed strategy holds significant promise for specific detection of biomolecules with high sensitivity and exquisite multiplexing capability.
引文
(1)Smith, E.; Dent, G. Modern Raman spectroscopy:a practical approach[M]. Wiley, 2005.
    (2)Schlucker, S. Surface enhanced Raman spectroscopy:analytical, biophysical and life science applications[M]. Wiley,2011.
    (3)Oldenburg, S. J.; Westcott, S. L.; Averitt, R. D.; Halas, N. J. Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates[J]. J. Chem. Phys.1999,111,4729-4735.
    (4)Lee, J. M.; Jun, Y. D.; Kim, D. W.; Lee, Y. H.; Oh, S. G. Effects of PVP on the formation of silver-polystyrene heterogeneous nanocomposite particles in novel preparation route involving polyol process:molecular weight and concentration of PVP[J]. Mater. Chem. Phys.2009,114,549-555.
    (5)Chen, L. M.; Luo, L. B.; Chen, Z. H.; Zhang, M. L. ZnO/Au composite nanoarrays as substrates for surface enhanced Raman scattering detection[J]. J. Phys. Chem. C 2010,114,93-100.
    (6)Kunov-Kruse, A. J.; Kristensen, S. B.; Liu, C.; Breg, R. F. Experimental and ab initio DFT calculated Raman spectrum of Sudan I, a red dye[J]. J. Raman Spectrosc.2011,42,1470-1478.
    (7)Xie, Y. F.; Wang, X.; Han, X. X.; Xue, X. X.; Ji, W.; Qi, Z. H.; Liu, J. Q.; Zhao, B.; Ozaki, Y. Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering[J]. Analyst 2010,135,1389-1394.
    (8)Yang, Y. J.; Meng, G W. Ag dendritic nanostructures for rapid detection of poly chlorinated biphenyls based on surface-enhanced Raman scattering effect[J]. J. Appl. Phys.2010,107,044315(1-5).
    (9)Fabris, L.; Schierhorn, M.; Moskovits, M.; Bazan, G. Aptatag-based multiplexed assay for protein detection by surface-enhanced Raman spectroscopy[J]. Small 2010,6,1550-1557.
    (10)Lee, S.; Chon, H.; Lee, M.; Choo, J.; Shin, S. Y.; Lee, Y. H.; Rhyu, I. J.; Son, S. W.; Oh, C. H. Surface-enhanced Raman scattering imaging of HER2 cancer markers over expressed in single MCF7 cells using antibody conjugated hollow gold nanospheres [J]. Biosens. Bioelectron.2009,24,2260-2263.
    (11)Qian, X. M.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q. Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. M. In vivo tumor targeting and spectro-scopic detection with surface-enhanced Raman nanoparticle tags[J]. Nat. Biotechnol.2008,26,83-90.
    (12)Zhang, Y.; Hong, H.; Myklejord, D. V.; Cai, W. B. Molecular imaging with SERS-active nanoparticles[J]. Small 2011,7,3261-3269.
    (13)Zavaleta, C.; Smith, B. R.; Walton, L.; Doering, W.; Davis, G.; Shojaei, B.; Natan, M. J.; Gambhir, S. S. Multiplexed imaging of surface enhanced Raman scattering nano tags in living mice using noninvasive Raman spectroscopy[J]. Proc. Nat1. Acad. Sci.USA 2009,106,13511-13516.
    (14)Zhang, Z. L.; Wen, Y. Q.; Ma, Y.; Luo, J.; Jiang, L.; Song, Y. L. Mixed DNA-functionalized nanoparticle probes for surface-enhanced Raman scattering-based multiplex DNA detection[J]. Chem. Commun.2011,47,7407-7409.
    (15)Raman, C. V.; Krishnan, K. S. A new type of secondary radiation[J]. Nature 1928,121,501-502.
    (16)Xie, W.; Qiu, P. H.; Mao, C. B. Bio-imaging, detection and analysis by using nanostructures as SERS substrates [J]. J. Mater. Chem.2011,21,5190-5202.
    (17)Kneipp, K.; Moskovits, M.; Kneipp, H. Surface enhanced Raman scattering: physics and application[M]. Springer,2006.
    (18)Laserna, J. J. Modern techniques in Raman spectroscopy[M].Wiley,1996.
    (19)Chalmers, J.; Griffiths, P. Handbook of vibrational spectroscopy[M]. Wiley, 2001.
    (20)Tashiro, K.; Ueno, Y.; Yoshioka, A.; Kaneko,F.; Kobayashi, M. Structural changes in solvent-induced crystallization of syndiotactic polystyrene viewed from the time-resolved measurements of infrared/Raman spectra and x-ray diffraction [J]. Macromol. Symp.1999,114,33-46.
    (21)Freeman, J. J.; Fisher, D. O.; Gervasio, G. J. FT-Raman on-line analysis of PCI, reactor material[J]. Appl. Spectrosc.1993,47,1115-1121.
    (22)Kneipp, K.; Moskovits, M.; Kneipp, H. Surface-enhanced Raman scattering[M]. Springer,2006.
    (23)Wen, Z. Q.; Li, G Y.; Ren, D. Detection of trace melamine in raw materials used for protein pharmaceutical manufacturing using surface-enhanced Raman spectroscopy (SERS) with gold nanoparticle[J]. Appl. Spectrosc.2011,65, 514-521.
    (24)Zhu, C. H.; Meng, G. W.; Huang, Q.; Huang, Z. L.; Chu, Z. Q. Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration[J]. Crystal Growth & Design 2011,11,748-752.
    (25)Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chem. Phys. Lett.1974,26,163-166.
    (26)Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroscopy.1. Heterocyclic, amromatic, and aliphatic-amines adsorbed on anodized silver electrode[J]. J. Electroanal. Chem.1977,84,1-20.
    (27)Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman-spectra of pyridine at a silver electrode[J]. J.Am. Chem. Soc.1977,9,215-5217.
    (28)Campion, A.; ambhampati, P. Surface-enhanced Raman scattering[J]. Chem. Soc. Rev.1998,27,241-250.
    (29)Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Surface-enhanced Raman scattering and biophysics[J]. J. Phys.:Condens. Matter.2002,14, 597-624.
    (30)Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment[J]. J. Phys. Chem. B.2003,107,668-677.
    (31)Michaels, A. M.; Jiang, J.; Brus, L. Ag nanocrystal junctions as the site for surface enhanced Raman scattering of single Rhodamine 6G molecules[J]. J. Phys. Chem. B.2000,104,11965-11971.
    (32)Kneipp, J.; Kneipp, H.; Kneipp, K. SERS-a single-molecule and nanoscale tool for bioanalytics[J].Chem. Soc. Rev.2008,37,1052-1060.
    (33)Ru, E. L.; Etchegoin, P. Principle of surface-enhanced Raman spectroscopy and related plasmonic effects[M]. Elsevier,2009.
    (34)Habouti, S.; Solterbeck, C. H.; Es-Souni, M. Synthesis of silver nano-fir-twigs and application to single molecules detection[J]. J. Mater. Chem.2010,20, 5215-5219.
    (35)Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, Y. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature 2010,464, 392-395.
    (36)Fang, P. P.; Li, J. F.; Lin, X. D.; Anema, J. R.; Wu, D. Y.; Ren, B.; Tian, Z. Q. A SERS study of thiocyanate adsorption on Au-core Pd-shell nanoparticle film electrodes[J]. J. Electroanal. Chem.2012,665,70-75.
    (37)Zheng, Y. B.; Payton, J. L.; Chung, C. H.; Liu, R.; Cheunkar, S.; Pathem, B. K.; Yang, Y.; Jensen, L.; Weiss, P. S. Surface enhanced Raman spectroscopy to probe reversibly photoswitchable azobenzene in controlled nanoscale environments[J]. Nano Lett.2011,11,3447-3452.
    (38)Jerez-Rozo, J. I.; Primera-Pedrozo, O. M.; Barreto-Caban, M. A.; Hernandez-Rivera, S. P. Enhanced Raman scattering of 2,4,6-TNT using metallic colloids[J]. Sens. J. IEEE 2008,8,974-982.
    (39)Gu, B. H.; Ruan, C. M.; Wang, W. Perchlorate detection at nanomolar concentrations by surface-enhanced Raman scattering[J]. Appl. Spectrosc.2009, 63,98-102.
    (40)Bao, L. L.; Mahurin, S. M.; Haire, R. G.; Dai, S. Silver-doped sol-gel film as a surface-enhanced Raman scattering substrate for detection of uranyl and neptunyl ions[J]. Anal. Chem.2003,75,6614-6620.
    (41)Bell, S. E. J.; Sirimuthu, N. M. S. Quantitative surface-enhanced Raman spectroscopy[J]. Chem. Soc. Rev.2008,37,1012-1024.
    (42)Bell, S. E. J.; Mackle, J. N.; Sirimuthu, N. M. S. Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid-towards rapid anthrax endospore detection [J]. Analyst 2005,130,545-549.
    (43)Xie, W.; Qiu, P. H.; Mao, C. B. Bio-imaging, detection and analysis by using nanostructures as SERS substrates[J]. J. Mater. Chem.2011,21,5190-5202.
    (44)Das, G.; Mecarini, F.; Gentile, F.; De Angelis, F.; Kumar, H. G. M.; Candeloro, P.; Liberale, C.; Cuda, G.; Di Fabrizio, E. Nano-patterned SERS substrate: Application for protein analysis vs. temperature [J]. Biosens. Bioelectron.2009, 24,1693-1699.
    (45)Aydin, O.; Altas, M.; Kahraman, M.; Bayrak, O. F.; Culha, M. Differentiation of healthy brain tissue and tumors using surface-enhanced Raman scattering. Appl. Spectrosc.2009,63,1095-1100.
    (46)Tian, Z. Q.; Ren, B.; Wu, D. Y. Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures[J]. J. Phys. Chem. B 2002,106,9463-9683.
    (47)Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Expanding generality of surface enhanced Raman spectroscopy with borrowing SERS activity strategy[J]. Chem. Commun.2007,3514-3534.
    (48)Gao, P.; Gosztola, D.; Leung, L. W. H.; Weaver, M. J. Surface-enhanced Raman scattering at gold electrodes:dependence on electrochemical pretreatment conditions and comparisons with silver[J]. J. Electroanal. Chem.1987,233, 211-222.
    (49)Fang, P. P.; Li, J. F.; Yang, Z. L.; Li, L. M.; Ren, B.; Tian, Z. Q. Optimization of SERS activities of gold nanoparticles and gold-core-palladium-shell nanoparticles by controlling size and shell thickness[J]. J. Raman Spectrosc. 2008,39,1679-1687.
    (50)Lee, P. C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. J. Phys. Chem.1982,86,3391-3395.
    (51)Nickel, U.; Castell, A. Z.; Poppl, K.; Schneider, S. A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy[J]. Langmuir,2000,16,9087-9091.
    (52)Li, X. L.; Zhang, J. H.; Xu, W. Q.; Jia, H. Y.; Wang, X.; Yang, B.; Zhao, B.; Li, B. F.; Ozaki, Y. Mercaptoacetic acid-capped silver nanoparticles colloid:formation, morphology and SERS activity[J]. Langmuir,2003,19,4285-4290.
    (53)Kvitek, L.; Prucek, R.; Panacek, A.; Novotny, R.; Hrbac, J.; Zboril, R. The influence of complexing agent concentration on particle size in the process of SERS active silver colloid synthesis[J]. J. Mater. Chem.2005,15,1099-1105.
    (54)Frens, G. Controlled nucleation for regulation of particle-size in monodisperse gold suspensions[J]. Nat. Phys. Sci.1973,241,20-22.
    (55)Nickel, U.; Mansyreff, K.; Schneider, S. Production of monodisperse silver colloids by reduction with hydrazine:the effect of chloride and aggregation on SERS signal intensity[J]. J. Raman Spectrosc.2004,35,101-110.
    (56)Njoki, P. N.; Lim, I. S.; Mott, D.; Park, H. Y.; Khan, B.; Mishra, S.; Sujakumar, R.; Luo, J.; Zhong, C. J. Size Correlation of optical and spectroscopic properties for gold nanoparticles[J]. J. Phys. Chem. C 2007,111,14664-14669.
    (57)Mandal, M.; Jana, N. R.; Kundu, S.; Ghosh, S. K.; Panigrahi, M.; Pal, T. Synthesis of Au-core-Ag-shell type bimetallic nanoparticles for single molecule detection in solution by SERS method[J]. J. Nanopart. Res.2004,6,53-61.
    (58)Freeman, R. G.; Hommer, M. B.; Grabar, K. C.; Jackson, M. A.; Natan, M. J. Ag-clad Au nanoparticles:novel aggregation, optical, and surface-enhanced Raman scattering properties[J]. J. Phys. Chem.,1996,100,718-724.
    (59)Bright, R. M.; Walter, D. G.; Musick, M. D.; Jackson, M. A.; Allison, K. J.; Natan, M. J. Chemical and electrochemical Ag deposition onto preformed Au colloid monolayers:approaches to uniformly-sized surface features with Ag-like optical properties[J]. Langmuir 1996,12,810-817.
    (60)Jana, N. R. Silver coated gold nanoparticles as new surface enhanced Raman substrate at low analyte concentration[J]. Analyst 2003,128,954-956.
    (61)Cui, Y.; Ren, B.; Tian, Z. Q. Synthesis of Ag core Au shell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy[J]. J. Phys. Chem. B 2006,110,4002-4006.
    (62)Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Expanding generality of surface enhanced Raman spectroscopy with borrowing SERS activity strategy[J]. Chem. Commun.2007, (34),3514-3534.
    (63)Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors[J]. Chem. Rev.2011,111,3828-3857.
    (64)Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures[J]. Chem. Rev.2011,111,3913-3961.
    (65)Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J]. J. Phys. Chem. B 2001,105,4065-4067.
    (66)Gole, A.; Murphy, C. J. Seed-mediated synthesis of gold nanorods:role of the size and nature of the seed[J]. Chem. Mater.2004,16,3633-3640.
    (67)Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Surface-enhanced Raman spectroscopy of self-assembled monolayers:sandwich architecture and nanoparticle shape dependence [J]. Anal.Chem.2005,77,3261-3266.
    (68)Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution[J]. J. Am. Chem. Soc.2004, 126,8648-8649.
    (69)Lu, L. H.; Ai, K. L.; Ozaki, Y. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape[J]. Langmuir,2008,24,1058-1063.
    (70)Bakr, O. M.; Wunsch, B. H.; Stellacci, F. High-yield synthesis of multi-branched urchin-likegold nanoparticles[J]. Chem. Mater,2006,18,3297-3301.
    (71)Guo, S. J.; Wang, Y. L.; Wang, E. K. Large-scale, rapid synthesis and application in surface-enhanced Raman spectroscopy of sub-micrometer polyhedral gold nanocrystals[J]. Nanotechnology,2007,18,405602(1-7).
    (72)Wang, D. W.; Liu, Y.; Zhou, X. G.; Sun, J. Y.; You, T. Y. EDTA-controlled one-pot preparation of novel shaped gold microcrystals and their application in surface-enhanced Raman scattering[J]. Chem. Lett.2007,36,924-925.
    (73)Tang, X. L.; Jiang, P.; Ge, G. L.; Tsuji, M.; Xie, S. S.; Guo, Y. J. Poly(N-vinyl-2-pyrrolidone) (PVP)-capped dendritic gold nanoparticles by a one-step hydrothermal route and their high SERS effect[J]. Langmuir,2008,24, 1763-1768.
    (74)Sajanlal, P. R.; Pradeep, T. Mesoflowers:a new class of highly efficient surface-enhanced Raman active and infrared-absorbing materials. Nano Res. 2009,2,306-320.
    (75)Gearheart, J. L.; Murphy, C. J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J].Chem. Commun.2001,617-618.
    (76)Sun, Y. G.; Yin, Y D.; Mayers, B. T.; Herricks, T. Xia, Y. N. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone)[J]. Chem. Mater.2002,14,4736-4745.
    (77)Im Dr, S. H.; Lee, Y. T.; Wiley, B. J. Xia, Y. N. Large-scale synthesis of silver nanocubes:the role of HC1 in promoting cube perfection and monodispersity[J]. Angew. Chem. Int. Ed.2005,44,2154-2157.
    (78)Wiley, B. J.; Im Dr, S. H.; Li, Z.Y.; McLellan, J.; Siekkinen, A.; Xia, Y. N. Maneuvering the surface Plasmon resonance of silver nanostructures through shape-controlled synthesis [J]. J. Phys. Chem. B 2006,110,15666-15675.
    (79)Sun, Y.; Xia, Y. N. Gold andsilver nanoparticles:a class of chromophores with colors tunable in the range from 400 to 750 nm[J]. Analyst 2003,128,686-691.
    (80)Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals [J]. Small,2008,4,310-325.
    (81)McLellan, J.; Siekkinen, A.; Chen, J.; Xia, Y. N. Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes[J]. Chem. Phys. Lett.2006,427,122-126.
    (82)Rycenga, M.; Kim, M. H.; Camargo, P. H. C.; Cobley, C.; Li, Z. Y.; Xia, Y. N. Surface-enhanced Raman scattering:comparison of three different molecules on single-crystal nanocubes and nanospheres of silver [J]. J. Phys.Chem. A 2009, 113,3932-3939.
    (83)Lu, X. M.; Rycenga, M.; Skrabalak, S. E.; Wiley, B.; Xia, Y. N. Chemical synthesis of novel plasmonic nanoparticles[J]. Annu. Rev. Phys. Chem.2009, 60,167-192.
    (84)Wiley, B.; Sun, Y.; Xia, Y. N. Synthesis of silver nanostructures with controlled shapes and properties. Acc. Chem. Res.2007,40,1067-1076.
    (85)Sun, Y.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science 2002,298,2176-2179.
    (86)Lofton, C.; Sigmund, W.; Mechanisms controlling crystal habits of gold and silver colloids[J]. Adv. Func. Mater.2005,15,1197-1208.
    (87)Xiong, Y.; Siekkinen, A. R.; Wang, J.; Yin, Y.; Kim, M. J.; Xia, Y. N. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide[J]. J. Mater. Chem.2007,17,2600-26002.
    (88)Sajanlal, P. R.; Sreeprasad, T. S.; Samal, A. K.; Pradeep, T. Anisotropic nanomaterials:structure, growth, assembly, and functions[J]. Nano Rev.2011,2, 5883 DOI:10.3402/nano.v2i0.5883.
    (89)Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. Plasmonic materials for surface-enhanced sensing and spectroscopy[J]. MRS. Bull.2005,30,368-375.
    (90)Zhang, X.; Young, M. A.; Lyandres, O.; Van Duyne, R. P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy[J]. J. Am. Chem. Soc.2005,127,4484-4489.
    (91)Stuart, D. A.; Yonzon, C. R.; Zhang, X.; Lyandres, O.; Shah, N. C. Glucose sensing using near-infrared surface-enhanced Raman spectroscopy:gold surfaces, 10-day stability, and improved accuracy[J]. Anal. Chem.2005,77,4013-4019.
    (92)Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annu. Rev. Phys. Chem.2007,58,267-297'.
    (93)Haes, A. J.; Zhao, J.; Zou, S.; Own, C. S.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P. Solution-phase, triangular Ag nanotriangles fabricated by nanosphere lithography[J]. J. Phys. Chem. B 2005,109,11158-11162.
    (94)Zhang, X.; Yonzon, C. R.; Young, M. A.; Stuart,D. A.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy biosensors:excitation spectroscopy for optimization of substrates fabricated by nanosphere lithography[J]. EEE Proc. Nanobiotechnol.2005,152,195-206.
    (95)Freeman, R. G.; Grabar, K. C.; Natan, M. J. Self-assembled metal colloid monolayers:an approach to SERS substrates[J]. Science,1995,267,1629-1632.
    (96)Ji, T.; Lirtsman, V. G.; Avny, Y.; Davidov, D. Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads[J]. Adv. Mater.2001,13,1253-1256.
    (97)Zhang, J. H.; Liu, J. B.; Wang, S. Z.; Zhan, P.; Wang, Z. L.; Min, N. B. Facile methods to coat polystyrene and silica colloids with metal[J]. Adv. Funct. Mater. 2004,14,1089-1096.
    (98)Jackson, J. B.; Halas, N. J. Silver nanoshells:variations in morphologies and optical properties[J]. J. Phys. Chem. B,2001,105,2743-2746.
    (99)Yong, K. T.; Sahoo, Y.; Swihart, M. T.; Prasad, P. N. Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold-silver core-shell nanostructures[J]. Colloid Surf. A-Physicochem. Eng. Asp.2006,290,89-105.
    (100)Pol, V. G.; Grisaru, H.; Gedanken, A. Coating noble metal nanocrystals (Ag, Au, Pd, and Pt) on polystyrene spheres via ultrasound irradiation[J]. Langmuir 2005, 21,3635-3640.
    (101)Mayer, A. B. R.; Grebner, W.; Wannemacher, R. Preparation of silver-latex composites[J]. J Phys. Chem. B 2000,104,7278-7285.
    (102)Cassagneau, T.; Caruso, F. Contiguous silver nanoparticle coatings on dielectric spheres[J]. Adv. Mater.2002,14,732-736.
    (103)Liang, Z.; Susha, A. S.; Caruso, F. Metallodielectric opals of layer-by-layer processed coated colloids[J]. Adv. Mater.2002,14,1160-1164.
    (104)Mayya, K. S.; Schoeler, B.; Caruso, F. Preparation and organization of nanoscale polyelectrolyte-coated gold nanoparticles[J]. Adv. Funct. Mater.2003, 13,183-188.
    (105)Hirsch, L. R; Gobin, A. M.; Gobin, L. A. R.; Tam, F.; Drezek, R. A.; Halas, N. J.; West, J. L. Metal nanoshells[J]. Ann. Biomed. Eng.2006,34,15-22.
    (106)Oldenburg, S. J.; Westcott, S. L.; Averitt, R. D.; Halas, N. J. Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates[J]. J. Chem. Phys.1999,111,4729-4735.
    (107)Zhang, J. H.; Liu, J. B.; Wang, S. Z.; Zhan, P.; Wang, Z. L.; Min, N. B. Facile methods to coat polystyrene and silica colloids with metal[J]. Adv. Funct. Mater.2004,14,1089-1096.
    (108)Warshwsky, A.; Upson, D. A. Zerovalent metal polymer composites. I. metallized beads[J]. J. Polym. Sci. Part A:Polym. Chem.1989,27,2963-2994.
    (109)Kobayashi, Y.; Salgueirino-Maceira, V.; Liz-Marzan, L. M. Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating[J]. Chem. Mater.2001,13,1630-1633.
    (110)Piao, L. L.; Park, S.; Lee, H. B.; Kim, K.; Kim, J. W.; Chung, T. D. Single gold microshell tailored to sensitive surface enhanced Raman scattering probe[J]. Anal. Chem.2010,82,447-451.
    (111)Kim, K.; Lee, Y. M.; Lee, H. B.; Shin, K. S. Silver-coated silica beads applicable as core materials of dual-tagging sensors operating via SERS and MEF[J]. ACS Appl. Mater. Interfaces 2009,1,2174-2180.
    (112)Sanles-Sobrido, M.; Exner, W.; Rodriguez-Lorenzo, L.; Correa-Duarte, M. A.; Alvarez-Puebla, R. A.; Liz-Marzan, L. M. Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles [J]. J. Am. Chem. Soc.2009,131,2699-2705.
    (113)Hu, H. B.; Wang, Z. H.; Pan, L.; Zhao, S. P.; Zhu, S. Y. Ag-coated Fe3O4@ SiO2 three-ply composite microspheres:synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering[J]. J. Phys. Chem. C 2010,114,7738-7742.
    (114)Kim, K.; Kim, H. S.; Park, H. K. Facile method to prepare surface enhanced Raman scattering-active Ag nanostructures on silica spheres[J]. Langmuir 2006, 22,8083-8088.
    (115)Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics[J].Chem. Rev.2005, 105,1547-1562.
    (116)Niemeyer, C. M.; Mirkin, C. A. Nanotechnology[M]. Wiley,2004.
    (117)Sassolas, A.; Leea-Bouvier, B. D.; Blum, L. J. DNA biosensors and microarrays[J]. Chem. Rev.2008,108,109-139.
    (118)Sassolas, A.; Blum, L. J.; Leea-Bouvier, B. D. Optical detection systems using immobilized aptamers[J].Biosens. Bioelectron.2011,26,3725-3736.
    (119)Feuillie, C.; Merheb, M. M.; Gillet, B.; Montagnac, G.; Daniel, I.; Hanni, C. A novel SERRS sandwich-hybridization assay to detect specific DNA target[J]. PLoS One 2011,6,1-7.
    (120)Pafundo, S.; Gulli, M.; Marmiroli, N. Multiplex real-time PCR using SYBR((R)) GreenER for the detection of DNA allergens in food[J]. Anal. Bioanal. Chem. 2010,396,1831-1839.
    (121)Kong, R. M.; Zhang, X. B.; Chen, Z.; Tan, W. H. Aptamer-assembled nanomaterials for biosensing and biomedical applications[J]. Small 2011,17, 2428-2436.
    (122)Thornton, J.; Force, R. K. Surface-enhanced Raman spectroscopy of nucleic acid compounds and their mixtures [J]. Appl. Spectrosc.1991,45,1522-1526.
    (123)Chumanov, G.; Cotton, T. M. Surface-enhanced Raman scattering for discovering and scoring single-base differences in DNA[J]. Biomedical applications of Raman spectroscopy Proceedings of SPIE,1999,3608,204-210.
    (124)Bell, S. E.; Sirimuthu, N. M. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides[J]. J. Am.Chem. Soc. 2006,128,15580-15581.
    (125)Vo-Dinh, T.; Houck, K.; Stokes, D. L. Surface-enhanced Raman gene probes[J]. Anal. Chem.1994,66,3379-3383.
    (126)Wabuyele, M. B.; Vo-Dinh, T. Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes[J]. Anal. Chem.2005,77, 7810-7815.
    (127)Vo-Dinh, T.; Allain, L. R.; Stokes, D. L. Cancer gene detection using surface enhanced Raman scattering (SERS). J. Raman Spectrosc.2002,33,511-516.
    (128)Cao, Y. W. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science 2002,297,1536-1540.
    (129)Braun, G.; Lee, S. J.; Dante, M.; Nguyen, T. Q.; Moskovits, M.; Reich, N. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films[J]. J. Am. Chem. Soc.2007,129,6378-6379.
    (130)Su, X.; Zhang, J.; Sun, L.; Koo, T.-W.; Chan, S.; Sundararajan, N.; Yamakawa, M.; Berlin, A. A. Composite organic-inorganic nanoparticles (COINs) with chemically encodedoptical signatures[J]. Nano Lett.2005,5,49-54.
    (131)Yang, M.; Chen, T.; Lau, W. S.; Wang, Y.; Tang, Q.; Yang, Y.; Chen, H. Development of polymer-encapsulated metal nanoparticles as surface-enhanced Raman scattering probes[J]. Small,2009,5,198-202.
    (132)McCabe, A.F.; Eliasson, C.; Prasath, R. A.; Hernandez-Santana, A.; Stevenson, L.; Apple, I.; Cormack, P. A. G.; Graham, D.; Smith, W. E.; Corish, P.; Lipscomb, S. J.; Holland, E. R.; Prince, P. D. SERRS labelled beads for multiplex detection[J]. Faraday Discuss 2006 132,303-308.
    (133)Liu, X.; Knauer, M.; Ivleva, N. P.; Niessner, R.; Haisch, C. Synthesis of core-shell surface-enhanced Raman tags for bioimaging[J]. Anal. Chem.2010, 82,441-446.
    (134)Schutz, M.; Kustner, B.; Bauer, M.; Schmuck, C.; Schl"ucker, S. Synthesis of glass coated SERS nanoparticles probes via SAMs with terminal SiO2 precursors[J]. Small 2010,6,733-737.
    (135)Mulvaney, S. P.; Musick, M. D.; Keating, C. D.; Natan, M. J. Glass-coated, analyte-tagged nanoparticles:a new tagging system based on detection with surface-enhanced Raman scattering[J]. Langmuir 2003,19,4784-4790.
    (136)Doering, W. E.; Nie, S. M. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering[J]. Anal. Chem.2003, 75,6171-6176.
    (1)Wen, F.; Zhang, W. Q.; Wei, G. W.; Wang, Y.; Zhang, J. Z.; Zhang, M. C.; Shi, L, Q. Synthesis of noble metal nanoparticles embedded in the shell layer of cor-shell poly (styrene-co-4-vinylpyridine) micospheres and their application in catalysis[J]. Chem. Mater.2008,20,2144-2150.
    (2)Kim, J. H.; Bryan, W. W.; Lee, T. R. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores[J]. Langmuir 2008,24,11147-11152.
    (3)Wang, W.; Asher, S. A. Photochemical incorporation of silver quantum dots in monodisperse silica colloids for photonic crystal applications[J]. J. Am. Chem. Soc.2001,123,12528-12535.
    (4)Zhang, J. H.; Liu, J. B.; Wang, S. Z.; Zhan, P.; Wang, Z. L.; Min, N. B. Facile methods to coat polystyrene and silica colloids with metal[J]. Adv. Funct. Mater. 2004,14,1089-1096.
    (5)Piao, L. L.; Park, S.; Lee, H. B.; Kim, K.; Kim, J. W.; Chung, T. D. Single gold microshell tailored to sensitive surface enhanced Raman scattering probe[J]. Anal. Chem.2010,82,447-451.
    (6)Schueler, P. A.; Ives, J. T.; DeLaCroix, F.; Lacy, W. B.; Becker,P. A.; Li, J. M.; Caldwell, K. D.; Drake, B.; Harris, J. M. Physical structure, optical resonance, and surface-enhanced Raman scattering of silver-island films on suspended polymer latex particles[J]. Anal. Chem.1993,65,3177-3186.
    (7)Chen, C. W.; Serizawa, T.; Akashi, M. Synthesis and characterization of poly (N-isopropylacrylamide)-coated polystyrene microspheres with silver nanoparticles on their surfaces[J]. Langmuir 1999,15,7998-8006.
    (8)Pol, V. G.; Grisaru, H.; Gedanken, A. Coating noble metal nanocrystals (Ag, Au, Pd, and Pt) on polystyrene spheres via ultrasound irradiation[J]. Langmuir 2005, 21,3635-3640.
    (9)Dokoutchaev, A.; James, J. T.; Koene, S. C.; Pathak, S.; Prakash, G. K. S.; Thompson, M. E. Colloidal metal deposition onto functionalized polystyrene microspheres[J]. Chem. Mater.1999,11,2389-2399.
    (10)Mayer, A. B. R.; Grebner, W.; Wannemacher, R. Preparation of silver-latex composites[J]. J Phys. Chem. B 2000,104,7278-7285.
    (11)Oldenburg, S. J.; Westcott, S. L.; Averitt,R. D.; Halas, N. J. Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates [J]. J. Chem. Phys.1999,111,4729-4735.
    (12)Jackson, J. B.; Halas, N. J. Silver nanoshells:variations in morphologies and optical properties[J]. J. Phys. Chem. B 2001,105,2743-2746.
    (13)Warshwsky, A.; Upson, D. A. Zerovalent metal polymer composites. I. metallized beads[J]. J. Polym. Sci. Part A:Polym. Chem.1989,27,2963-2994.
    (14)Kobayashi, Y.; Salgueirino-Maceira, V.; Liz-Marzan, L. M. Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating[J]. Chem. Mater.2001,13,1630-1633.
    (15)Sun, Y. G.; Mayers, B. T.; Xia, Y. N. Template-engaged replacement reaction:a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors[J]. Nano Lett.2002,2,481-485.
    (16)Xia, Y. N.; Xiong, Y. J.; Lim B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics?[J]. Angew. Chem. Int. Ed.2009,48,60-103.
    (17)Cassagneau, T.; Caruso, F. Contiguous silver nanoparticle coatings on dielectric spheres[J]. Adv. Mater.2002,14,732-736.
    (18)Kim, K.; Kim, H. S.; Park, H. K. Facile method to prepare surface enhanced Raman scattering-active Ag nanostructures on silica spheres[J]. Langmuir 2006, 22,8083-8088.
    (19)Sanles-Sobrido, M.; Exner, W.; Rodriguez-Lorenzo, L.; Correa-Duarte, M. A.; Alvarez-Puebla, R. A.; Liz-Marzan, L. M. Design of SERS-encoded, submicron, hollow particles through confined growth of rncapsulated metal nanoparticles[J]. J. Am. Chem. Soc.2009,131,2699-2705.
    (20)Hu, H. B.; Wang, Z. H.; Pan, L.; Zhao, S. P.; Zhu, S. Y. Ag-coated Fe3O4@SiO2 three-ply composite microspheres:synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering[J]. J. Phys. Chem. C 2010,114,7738-7742.
    (21)Schwartzberg, A. M.; Zhang, J. Z. Novel optical properties and emerging applications of metal nanostructures [J]. J. Phys. Chem. C 2008,112, 10323-10337.
    (22)Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science 2002,298,2176-2179.
    (23)Kim, K. S.; Choi, S.; Cha, J. H.; Yeon, S. H.; Lee, H. Facile one-pot synthesis of gold nanoparticles using alcohol ionic liquids[J]. J. Mater. Chem.2006,16, 1315-1317.
    (24)Lee, E. P.; Chen, J. Y.; Yin, Y. D.; Campbell, C. T.; Xia, Y. N. Pd-catalyzed growth of Pt nanoparticles or nanowires as dense coatings on polymeric and ceramic particulate supports[J]. Adv. Mater.2006,18,3271-3274.
    (25)Kan, C. X.; Cai, W. P.; Li, C. C.; Zhang, L. D. Optical studies of polyvinylpyrrolidone reduction effect on free and complex metal ions[J]. J. Mater. Res.2005,44720,320-324.
    (26)Xiong, Y. J.; Washio, I.; Chen, J. Y.; Cai, H. G.; Li, Z. Y.; Xia, Y. N. Poly(vinyl pyrrolidone):a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions[J]. Langmuir 2006,22,8563-8570.
    (27)Yavuz, M. S.; Li, W. Y.; Xia, Y. N. Facile synthesis of gold icosahedra in an aqueous solution by reacting HAuCl4 with N-vinyl pyrrolidone[J]. Chem.-Eur. J. 2009,15,13181-13187.
    (28)Deng, Z. W.; Chen, M.; Wu, L. M. Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced Raman scattering properties [J]. J. Phys. Chem. C 2007,111,11692-11698.
    (29)Cheng, X. J.; Tiong, S. C.; Zhao, Q.; Li, R. K. Y. Facile method to prepare monodispersed Ag/polystyrene composite microspheres and their properties [J]. J. Polym. Sci. Part A:Polym. Chem.2009,47,4547-4554.
    (30)Gong, T.; Wang, C. C. Preparation of highly cross-linked monodispersed functional polystyrene particles by utilizing the delayed addition method [J]. J. Mater. Sci.2008,43,1926-1932.
    (31)Jin, L.; Liu, H. B.; Yang, W. L.; Wang, C. C.; Yu, K. Synthesis and applications of water-dispersible microspheres containing arborescent PAMAM surfaces [J]. J. Polym. Sci. Part A:Polym. Chem.2008,46,2948-2959.
    (32)Shi, W. L.; Sahoo, Y.; Swihart, M. T.; Prasad, P. N. Gold nanoshells on polystyrene cores for control of surface plasmon pesonance[J]. Langmuir 2005, 21,1610-1617.
    (33)Guo, G. Q.; Qin, F.; Yang, D.; Wang, C. C.; Xu, H. L.; Yang, S. Synthesis of platinum nanoparticles supported on poly(acrylic acid) grafted MWNTs and their hydrogenation of citral[J]. Chem. Mater.2008,20,2291-2297.
    (34)Tang, Y. C.; Yang, D.; Qin, F.; Hu, J. H.; Wang, C. C.; Xu, H. L. Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral[J]. J. Solid State Chem.2009,182,2279-2284.
    (1)Smith, W. E.; Dent, G Modern raman spectroscopy-a practical approach[M].2005, Wiley.
    (2)Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode[J] Chem. Phys Lett.1974,26,163-166.
    (3)Jeanmaire, D. L.; Van Duyne R. P. Surface Raman spectroscopy 1. heterocyclic, amromatic and aliphatic-amines adsorbed on anodized silver electrode[J]. Electroanal. Chem.1977,84,1-20.
    (4)Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman-spectra of pyridine at a silver electrode[J]. J.Am. Chem. Soc.1977,99,5215-5217.
    (5)Doering, W. E.; Nie, S. M. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering[J]. Anal. Chem.2003,75,6171-6176.
    (6)Kneipp, J.; Kneipp, H.; Kneipp, K. SERS-a single-molecule and nanoscale tool for bioanalytics[J]. Chem. Soc. Rev.2008,37,1052-1060.
    (7)Schliiucker, S. Surface enhanced Raman spectroscopy:analytical, biophysical and life science applications[M].2011, Wiley.
    (8)Shen, X. S.; Wang, G. Z.; Hong, X.; Zhu, W. Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates [J]. Phys. Chem. Chem. Phys.2009,11,7450-7454.
    (9)Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS[J]. J. Am. Chem. Soc.2010,132,268-274.
    (10)Campion, A.; Kambhampati, P. Surface enhanced Raman scattering[J]. Chem. Soc. Rev.1998,27,241-250.
    (11)Qin, L. D.; Zou, S. L.; Xue, C.; Atkinson, A.; Schatz, G. C.; Mirkin, C. A. Designing, fabricating, and imaging Raman hot spots[J]. Proc. Natl. Acad. Sci. U. S. A.2006,103,13300-13303.
    (12)Habouti, S.; Solterbeck, C. H.; Es-Souni, M. Synthesis of silver nano-fir-twigs and application to single molecules detection[J]. J. Mater. Chem.2010,20, 5215-5219.
    (13)Chen, L. M.; Luo, L. B.; Chen, Z. H.; Zhang, M. L. ZnO/Au composite nanoarrays as substrates for surface enhanced Raman scattering detection[J]. J. Phys. Chem. C 2010,114,93-100.
    (14)Kim, K.; Kim, H. S.; Park, H. K. Facile method to prepare surface enhanced Raman scattering active Ag nanostructures on silica spheres[J]. Langmuir 2006, 22,8083-8088.
    (15)Kim, K.; Lee, Y. M.; Lee, H. B.; Shin, K. S. Silver-coated silica beads applicable as core materials of dual-tagging sensors operating via SERS and MEF[J]. ACS Appl. Mater.Interfaces 2009,1,2174-2180.
    (16)Hu, H. B.; Wang, Z. H.; Pan, L.; Zhao, S. P.; Zhu, S. Y. Ag-coated Fe3O4@SiO2 three-ply composite microspheres:synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering[J]. J. Phys. Chem. C 2010,114,7738-7742.
    (17)Mayer, A. B. R.; Grebner, W.; Wannemacher, R. Preparation of silver-latex composites[J]. J Phys. Chem. B 2000,104,7278-7285.
    (18)Cassagneau, T.; Caruso, F. Contiguous silver nanoparticle coatings on dielectric spheres[J]. Adv. Mater.2002,14,732-736.
    (19)Xiong, Y. J.; Washio, I.; Chen, J. Y.; Cai, H. G.; Li, Z. Y.; Xia, Y. N. Poly (vinyl pyrrolidone):a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions[J]. Langmuir 2006,22, 8563-8570.
    (20)Oldenburg, S. J.; Westcott, S. L.; Averitt,R. D.; Halas, N. J. Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates[J]. J. Chem. Phys.1999,111,4729-4735.
    (21)Kim, K.; Lee, H. B.; Yoon, J. K.; Shin, D.; Shin, K. S. Ag nanoparticle-mediated Raman scattering of 4-aminobenzenethiol on a Pt substrate[J]. J. Phys. Chem. C 2010,114,13589-13595.
    (22)Liang, X. S.; Wei, H. P.; Cui, Z. Q.; Deng, J. Y.; Zhang, Z. P.; You, X. Y.; Zhang, X. E. Colorimetric detection of melamine in complex matrices based on cysteamine modified gold nanoparticles[J]. Analyst 2011,136,179-183.
    (23)Zhang, X. F.; Zou, M. Q.; Qi, X. H.; Liu, F.; Zhu, X. H.; Zhao, B. H. Detection of melamine in liquid milk using surface-enhanced Raman scattering spectroscopy[J]. J. Raman Spectrosc.2010,41,1655-1660.
    (24)Zhang, Q.; Li, W. Y.; Moran, C.; Zeng, J.; Chen, J. Y.; Wen, L. P.; Xia, Y. N. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties[J]. J. Am. Chem. Soc.2010,132,11372-11378.
    (25)Sanles-Sobrido, M.; Exner, W.; Rodriguez-Lorenzo, L.; Correa-Duarte, M. A.; Alvarez-Puebla, R. A.; Liz-Marzan, L. M. Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles[J]. J. Am. Chem. Soc.2009,131,2699-2705.
    (1)Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics[J]. Chem. Rev.2005, 105,1547-1562.
    (2)Niemeyer, C. M.; Mirkin, C. A. Nanotechnology[M]. Germany:Wiley,2004.
    (3)Sassolas, A.; Leea-Bouvier, B. D.; Blum, L. J. DNA biosensors and microarrays[J]. Chem. Rev.2008,108,109-139.
    (4)Sassolas, A.; Blum, L. J.; Leea-Bouvier, B. D. Optical detection systems using immobilized aptamers[J]. Biosens. Bioelectron.2011,26,3725-3736.
    (5)Feuillie, C.; Merheb, M. M.; Gillet, B.; Montagnac, G.; Daniel, I.; Hanni, C. A novel SERRS sandwich-hybridization assay to detect specific DNA target[J]. PLoS One 2011,6,1-7.
    (6)Pafundo, S.; Gulli, M.; Marmiroli, N. Multiplex real-time PCR using SYBR(R) GreenER for the detection of DNA allergens in food[J]. Anal. Bioanal. Chem. 2010,396,1831-1839.
    (7)Kong, R. M.; Zhang, X. B.; Chen, Z.; Tan, W. H. Aptamer-assembled nanomaterials for biosensing and biomedical applications[J]. Small 2011,17, 2428-2436.
    (8)Zhang, Y.; Hong, H.; Myklejord, D. V.; Cai, W. B. Molecular imaging with SERS-active nanoparticles[J]. Small 2011,7,3261-3269.
    (9)Smith, W. E.; Dent, G Modern Raman spectroscopy-a practical approach[M]. 2005, Wiley.
    (10)Ye, Y. K.; Zhao, J. H.; Yan, F.; Zhu, Y. L.; Ju, H. X. Electrochemical behavior and detection of hepatitis B virus DNA PCR production at gold electrode[J]. Biosens. Bioelectron.2003,18,1501-1508.
    (11)Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nat. Biotechnol.2001,19, 631-635.
    (12)Gerion, D,; Chen, F. Q.; Kannan, B.; Fu, A. H.; Parak, W. J.; Chen, D. J.; Majumdar, A. Alivisatos, A, P. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays[J]. Anal. Chem.2003,75,4766-4772.
    (13)Kai, E.; Sawata, S.; Ikebukuro, K.; Iida, T.; Honda, T.; Karube, I. Detection of PCR products in solution using surface plasmon resonance[J]. Anal. Chem.1999, 71,796-800.
    (14)Qiu, F.; Jiang, D. W.; Ding, Y. B.; Zhu, J.; Huang, L. L. Monolayer-barcoded nanoparticles for nn-chip DNA hybridization assay[J]. Angew. Chem. Int. Ed. 2008,47,5009-5012.
    (15)Wang, J.; Liu, G. D.; Merkoci, A. Electrochemical coding technology for simultaneous detection of multiple DNA targets[J]. J. Am. Chem. Soc.2003,125, 3214-3215.
    (16)Xia, F.; White, R. J.; Zuo, X. L.; Patterson, A.; Xiao, Y.; Kang, D.; Gong, X.; Plaxco, K. W.; Heeger, A. J. An electrochemical supersandwich assay for sensitive and selective DNA detection in complex matrices[J]. J. Am. Chem. Soc. 2010,132,14346-14348.
    (17)Sun, L.; Yu, C. X.; Irudayaraj, J. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection[J]. Anal. Chem.2007,79, 3981-3988.
    (18)Mulvaney, S. P.; Musick, M. D.; Keating, C. D.; Natan, M. J. Glass-coated, analyte-tagged nanoparticles:a new tagging system based on detection with surface-enhanced Raman scattering [J]. Langmuir 2003,19,4784-4790.
    (19)Doering, W. E.; Nie, S. M. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering[J]. Anal. Chem.2003,75,6171-6176.
    (20)Kneipp, K.; Moskovits, M.; Kneipp, H. Surface-enhanced Raman scattering[M]. Springer,2006.
    (21)Lim, D. K; Jeon, K. S.; Kim, H. M.; Nam, J. M.; Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection[J]. Nat. Mater.2010,9,60-67.
    (22)Hu, H. B.; Wang, Z. H.; Pan, L.; Zhao, S. P.; Zhu, S. Y. Ag-coated Fe3O4@SiO2 three-ply composite microspheres:synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering[J]. J. Phys. Chem. C 2010,114,7738-7742.
    (23)Xie, W.; Qiu, P. H.; Mao, C. B. Bio-imaging, detection and analysis by using nanostructures as SERS substrates [J]. J. Mater. Chem.2011,21,5190-5202.
    (24)Lee, S.; Chon, H.; Lee, M.; Choo, J.; Shin, S. Y; Lee, Y H.; Rhyu, I. J.; Son, S. W.; Oh, C. H. Surface-enhanced Raman scattering imaging of HER2 cancer markers over expressed in single MCF7 cells using antibody conjugated hollow gold nanospheres [J]. Biosens. Bioelectron.2009,24,2260-2263.
    (25)Kennedy, D. C.; Tay, L. L.; Lyn, R. K.; Rouleau, Y.; Hulse, J.; Pezacki, J. P. Nanoscale aggregation of cellular β2-adrenergic receptors measured by plasmonic interactions of functionalized nanoparticles[J]. ACS NANO 2009,3, 2329-2339.
    (26)Fabris, L.; Schierhorn, M.; Moskovits, M.; Bazan, G. Aptatag-based multiplexed assay for protein detection by surface-enhanced Raman spectroscopy[J]. Small 2010,6,1550-1557.
    (27)Zhang, Z. L.; Wen, Y. Q.; Ma, Y.; Luo, J.; Jiang, L.; Song, Y. L. Mixed DNA-functionalized nanoparticle probes for surface enhanced Raman scattering based multiplex DNA detection[J]. Chem. Commun.2011,47,7407-7409.
    (28)Cao, Y. W. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science 2002,297,1536-1540.
    (29)Sha, M. Y.; Xu, H. X.; Natan, M. J.; Cromer, R. Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood[J]. J. Am. Chem. Soc.2008,130, 17214-17215.
    (30)Doering, W. E.; Piotti, M. E.; Natan, M. J.; Freeman, R. G. SERS as a foundation for nanoscale, optically detected biological labels[J]. Adv. Mater.2007,19, 3100-3108.
    (31)Gong, J. L.; Liang, Y.; Huang, Y.; Chen, J. W.; Jiang, J. H.; Shen, G. L.; Yu, R. Q. Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immune-assay of cancer marker using silica-coated magnetic nanoparticles as separation tools [J]. Biosens. Bioelectron.2007,22,1501-1507.
    (32)Qian, X. M.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q. Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. M. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags[J]. Nat. Biotechnol.2008,26,83-90.
    (34)Dong, H. F.; Yan, F.; Ji, H. X.; Wong, D. K. Y.; Ju, H. X. Quantum dot functionalized poly(styrene-co-acrylic acid) microbeads:step-wise self-assembly, characterization, and applications for sub-femtomolar electrochemical detection of DNA hybridization [J]. Adv. Funct. Mater.2010,20,1173-1179.
    (1)Kneipp, J.; Kneipp, H.; Kneipp, K. SERS-a single-molecule and nanoscale tool for bioanalytics[J]. Chem. Soc. Rev.2008,37,1052-1060.
    (2)Cao, Y. W. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science 2002,297,1536-1540.
    (3)Muvaney, S. P.; Musick, M. D.; Keating, C. D.; Natan, M. J. Glass-coated, ana-lyte-tagged nanoparticles:a new tagging system based on detection with surface enhanced Raman scattering[J]. Langmuir 2003,19,4784-4790.
    (4)Smith, W. E.; Dent, G. Modern Raman spectroscopy-a practical approach[M]. 2005, Wiley.
    (5)Schliiucker, S. Surface enhanced Raman spectroscopy:analytical, biophysical and life science applications[M].2011, Wiley.
    (6)Zhang, H.; Harpster, M. H.; Park, H. J.; Johnson, P. A. Surface-enhanced Raman scattering detection of DNA derived from the west Nile virus genome using mag-netic capture of Raman-active gold nanoparticles[J]. Anal. Chem.2011,83, 254-260.
    (7)Fabris, L.; Schierhorn, M.; Moskovits, M.; Bazan, G. Aptatag-based multiplexed assay for protein detection by surface-enhanced Raman spectroscopy[J]. Small 2010,6,1550-1557.
    (8)Gong, J. L.; Liang, Y.; Huang, Y.; Chen, J. W.; Jiang, J. H.; Shen, G. L.; Yu, R. Q. Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immune-oassay of cancer marker using silica-coated magnetic nanoparticles as separation tools [J]. Biosens. Bioelectron.2007,22,1501-1507.
    (9)Sha, M. Y.; Xu, H. X.; Natan, M. J.; Cromer, R. Surface-enhanced Raman scatter-ing tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood[J]. J. Am. Chem. Soc.2008,130,17214-17215.
    (10)Lee, S.; Chon, H.; Lee, M.; Choo, J.; Shin, S. Y.; Lee, Y. H.; Rhyu, I. J.; Son, S. W.; Oh, C. H.Surface-enhanced Raman scattering imaging of HER2 cancer markers over expressed in single MCF7 cells using antibody conjugated hollow gold nanospheres[J]. Biosens. Bioelectron.2009,24,2260-2263.
    (11)Qian, X. M.; Peng, X. H.; Ansari, D. O; Yin-Goen, Q. Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. M. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags[J]. Nat. Biotechnol.2008,26,83-90.
    (12)Zhang, Y.; Hong, H.; Myklejord, D. V.; Cai, W. B. Molecular imaging with SERS-active nanoparticles[J]. Small 2011,7,3261-3269.
    (13)Zavaleta, C.; Smith, B. R.; Walton, L.; Doering, W.; Davis, G.; Shojaei, B.; Natan, M. J.; Gambhir, S. S. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy[J]. Proc. Nat1. Acad. Sci. USA 2009,106,13511-13516.
    (14)Zhang, Z. L.; Wen, Y. Q.; Ma, Y.; Luo, J.; Jiang, L.; Song, Y. L. Mixed DNA-functionalized nanoparticle probes for surface-enhanced Raman scattering-based multiplex DNA detection[J].Chem. Commun.2011,47,7407-7409.
    (15)Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamag netic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicu-larly aligned mesoporous SiO2 shell for removal of microcystins[J]. J. Am. Chem. Soc.2008,130,28-29.
    (16)Xu, X. Q.; Deng, C. H.; Gao, M. X.; Yu, W. J.; Yang, P. Y.; Zhang, X. M. Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry[J]. Adv. Mater.2006,18,3289-3293.
    (17)Fang, W.; Chen, X.; Zheng, N. Superparamagnetic core-shell polymer particles for efficient purification of his-tagged proteins[J]. J. Mater. Chem.2010,20, 8624-8630.
    (18)Tromsdorf, U. I.; Bigall, N. C.; Kaul, M. G.; Bruns, O. T.; Nikolic, M. S.; Mollwitz, B.; Sperling, R. A.; Reimer, R.; Hohenberg, H.; Parak, W. J.; Rster, S. F.; Beisiegel, U.; Adam, G.; Weller, H. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents[J]. Nano Lett.2007, 7,2422-2427.
    (19)Yang, J.; Lee, C. H.; Park, J.; Seo, S.; Lim, E. K; Song, Y. J.; Suh, J. S.; Yoon, H. G.; Huh, Y. M.; Haam, S. Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer[J]. J. Mater. Chem.2007,17, 2695-2699.
    (20)Cheng, K.; Peng, S.; Xu, C. J.; Sun, S. H. Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin[J]. J. Am. Chem. Soc. 2009,131,10637-10644.
    (21)Shin, J.; Anisur, R. M.; Ko, M. K.; Im, G. H.; Lee, J. H.; Lee, I. S. Hollow mang- anese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery[J]. Angew. Chem. Int. Ed.2009,48,321-324.
    (22)Guo, J.; Yang, W. L.; Wang, C. C.; He, J.; Chen, J. Y. Poly (N-isopropylacrylam-ide)-coated luminescent/magnetic silica microspheres:preparation, characterization, and biomedical applications[J]. Chem. Mater.2006,18, 5554-5562.
    (23)Zhang, F.; Wang, C. C. Fabrication of one-dimensional iron oxide/silica nano-structures with high magnetic sensitivity by dipole-directed self-assembly[J]. J. Phys. Chem. C 2008,112,15151-15156.
    (24)Shao, D. D.; Xia, A.; Hu, J. H.; Wang, C. C.; Yu, W. M. Monodispersed DNA magnetite/silica composite microspheres:preparation and application for plasmid purification [J]. Colloid Surf. A-Physicochem. Eng. Asp.2008,322,61-65.
    (25)Chen, L. B.; Zhang, F.; Wang, C. C. Rational synthesis of magnetic thermo-sensitive micro containers as targeting drug carriers[J]. Small 2009,5,621-628.
    (26)Luo, B.; Xu, S.; Luo, A.; Wang, W. R.; Wang, S. L.; Guo, J.; Lin, Y.; Zhao, D. Y.; Wang, C. C. Mesoporous biocompatible and acid-degradable magnetic colloidal nanocrystal clusters with sustainable stability and high hydrophobic drug loading capacity[J]. ACS Nano 2011,2,1428-1435.
    (27)Zhang, J.; Fu, Y.; Mei, Y. P.; Jiang, F.; Lakowicz, J. R. Fluorescent metal nano-shell probe to detect single miRNA in lung cancer cell[J]. Anal. Chem. 2010,82,4464-4471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700