基于二氧化硅制备纳米复合空心介孔微球及有机—无机不对称粒子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着纳米科技与胶体科学的发展,人们发现单一类型的纳米材料在许多领域无法发挥出最佳效果,限制了其应用,而纳米复合微球材料由于结合了多种不同的纳米粒子或胶体微球的优势,拓展了其应用范围,提高了使用性能,逐渐成为人们的研究热点。本论文分别基于核壳型Fe3O4@SiO2@mSiO2粒子为模板制备了铃铛型磁性空心介孔碳复合微球,基于聚苯乙烯胶体粒子为模板制备了一系列纳米复合空心介孔SiO2微球,基于单体Pickering乳液界面改性制备了二氧化硅-聚苯乙烯(SiO2-PS)有机无机杂化不对称粒子,具体内容与研究结果如下:
     (1)铃铛型磁性空心介孔碳复合微球的制备及应用。通过溶剂热方法制备了Fe3O4磁簇,并以正硅酸四乙酯(TEOS)及十八烷基三甲氧基硅烷(C18TMS)为前躯体通过溶胶凝胶法分别包覆一层实心SiO2壳层和一层介孔SiO2壳层,得到Fe3O4@SiO2@mSiO2多层核壳微球;通过纳米灌注法向该介孔SiO2壳层中填入蔗糖、硫酸等,并高温碳化,从而形成了Fe3O4@SiO2@mSiO2/carbon复合微球;进
     一步对该复合微球用NaOH溶液选择性刻蚀去除SiO2模板后,制备了一种新颖的具有铃铛型空心结构的磁性空心介孔碳复合微球。通过TEM. SEM观察了制备过程中复合微球的形态变化,实验表明该复合微球由介孔碳空球及空球内部可以移动的磁性团簇两部分组成,且大小比较均一、形态规整。通过氮气吸附脱附测试表明该复合微球不但具有较高的BET比表面积,而且比表面积的大小可通过TEOS与C18TMS的用量及比例进行调整。通过磁学性能测试表明该复合微球具有很高的饱和磁感应强度。由于该复合空球同时具有较高的BET比表面积和磁性,因此,可用于水处理吸附分离水中的有机小分子污染物。以有机染料罗丹明-B的吸附分离为模型,实验表明,该复合微球不但具有很好的吸附能力,而且能够迅速磁性分离,并在乙醇中再生,便于循环使用。同时,由于该铛型磁性介孔碳复合空球的材质和特殊结构,是一种理想的锂离子电池负极材料,与单纯的Fe3O4团簇相比,该复合空球具有较高的比电容和更好的循环充放电性能。
     (2)纳米复合空心介孔SiO2微球的通用制备方法及性能研究。通过无皂乳液聚合制备了表面羧基修饰的聚苯乙烯(PS)微球,然后采用阳离子聚电解质聚二烯丙基二甲基氯化铵(PDDA)进行表面改性,制备了表面正电荷修饰的PS微球;通过PS微球表面PDDA聚电解质层与合成的纳米Au溶胶表面柠檬酸根之间的静电作用,将纳米Au溶胶自组装在PS微球表面,形成了草莓形PS-Au复合微球;进一步以该草莓形PS-Au复合微球为模板,在乙醇/水介质中,通过滴加TEOS和长链有机硅烷C18TMS的混合前躯体同步水解、缩聚形成一层有机-无机杂化的SiO2壳层,得到了核壳型PS-Au@hSiO2复合微球;进一步煅烧去除PS模板及长链烷基致孔剂后,制备得到纳米复合空心介孔Au@SiO2微球。TEM表征发现,Au纳米粒子均匀负载在空心SiO2内壁上,微球大小均一。X射线荧光光谱(XRF)测试表明,Au纳米粒子的载量为4.53wt%,通过自组装方式引入的Au纳米粒子大部分负载在空心介孔Si02微球上。UV-Vis光谱及X射线衍射(XRD)测试发现,Au纳米粒子在煅烧之后,粒径略有增大。氮气吸附脱附测试表明,该复合微球具有介孔结构;通过调节TEOS与C18TMS的比例,其BET比表面积大小可调。实验还发现,通过该方法不但可以非常方便地调控纳米粒子的载量及空心微球的壳层厚度,而且能将Au、Pt、Fe3O4等多种纳米子负载值空心介孔Si02微球内部,是一种通用方法。以纳米复合空心介孔Au@SiO2微球催化NaBH4还原对硝基苯酚(4-NP)的反应为模型,研究发现,该复合微球不但具有非常快速的催化效果,而且与单纯的Au纳米粒子相比,表现出非常好的重复使用性能。
     (3)基于单体Pickering乳液界面改性制备SiO2-PS不对称胶体粒子。通过将苯乙烯、1-乙烯基咪唑、去离子水和二氧化硅(SiO2)粒子混合后,超声乳化形成Pickering乳液;然后加入3-(异丁烯酰氧)丙基三甲氧基硅烷(MPS)对SiO2粒子在Pickering乳液滴界面进行不对称改性,制备得到局部改性的Si02粒子;加入水溶性引发剂过硫酸钾(KPS)引发聚合后,单体从Pickering液滴中扩散出来,与SiO2粒子表面的双键发生反应、聚合生长,最终形成了Si02-PS有机无机杂化不对称粒子。Pickering液滴不但提供了SiO2粒子不对称改性的界面,而且为进一步聚合提供了单体。制备方法比较简单,将无机粒子不对称改性和聚合物在无机粒子表面的沉积生长紧密结合在一起,与传统方法相比,省去了去除模板、离心、洗涤等繁琐过程。实验表明,通过调节单体/SiO2粒子的质量比,可以制备得到具有不同形态的SiO2-PS有机无机杂化不对称粒子:椭圆形、哑铃形、雪人形等。该方法适用于粒径介于80nm-410nm范围内不同粒径大小的Si02粒子制备SiO2-PS不对称胶体粒子。通过透射电镜(TEM)、扫描电镜(SEM)、光学显微镜等研究了聚合过程中,胶体粒子形态以及单体液滴大小的变化规律,进一步探讨了不对称胶体粒子的形成机理。此外,通过该方法制备得到的Si02-PS有机无机杂化不对称粒子形态、大小均一,经垂直蒸发自组装制备的胶体晶体膜中,不对称粒子排列整齐,具有一定的梯度规律性。
In recent years, with the development of nanotechnology and colloid science, nano-composite microspheres have attracted much attention due to a combination of the advantages of several types of nano-particles or colloidal microspheres. Up to now, nano-composite microspheres show good performance in wide application areas, such as catalysis, water purification, lithium ion rechargeable batteries, functional coatings. In order to get better properties and wider applications, designing new types of nano-composite microspheres and developing much feasible, economic preparation methods are main challenges in front of us. In this thesis, we have prepared three types of nano-composite microspheres, and studied their properties. Firstly, we fabricated a novel rattle-type magnetic mesoporous carbon spheres, and studied their properties and applications. Secondly, we presents a general and feasible method for the fabrication of uniform hollow mesoporous nanocomposite silica spheres (HMNSs) loaded with functional nanoparticles (Au, Pt, FesO4, etc.) on their inner walls. Thirdly, we prepared Silica-Polystyrene (SiO2-PS) asymmetric colloid spheres based on the Pickering emulsion modification. All the research content and results are shown as follows:
     (1) In the second chapter, novel rattle-type magnetic mesoporous carbon spheres were successfully prepared using composite spheres with FeaO4as core and mesoporous SiO2as shell plus solid SiO2as a middle layer as templates. These rattle-type spheres possess the magnetization strength of as high as37.5emu/g, high BET surface area (382m2/g) due to mesoporous carbon shells. This magnetic rattle-type structure and the readily accessible mesoporous shell are very favoring for the fast adsorption and release of guest objects triggered by external stimulus, for example, the spheres showed very good adsorptive property to Rhodamine B dye in water. Therefore, they can be used as magnetically recyclable adsorbents for water purification. Because of their special components and novel structure, the rattle-type magnetic mesoporous carbon spheres could sever as an ideal candidate as anode materials for lithium ion rechargeable batteries. Compared with the Fe3O4microspheres, they show a higher reversible capacity and a better cycle performance.
     (2) In the third chapter, we present a general and feasible method for the fabrication of uniform hollow mesoporous nanocomposite silica spheres (HMNSs) loaded with functional nanoparticles (Au, Pt, Fe3O4, etc.) on their inner walls. In this approach, carboxylic-capped polystyrene (PS) spheres were first synthesized by a soap-free emulsion polymerization and then deposited on a layer of poly(diallyldimethylammonium chloride)(PDDA). Next the functional nanoparticles self-assembled onto the surfaces of the PS spheres through electrostatic interaction between the negatively-charged citrate groups and the positively-charged PDDA layer. After encapsulation of the hybrid shell derived from the sol-gel process of tetraethoxysilane (TEOS) and n-octadecyltrimethylthoxysilane (C18TMS) followed by calcination, various HMNS loaded with functional nanoparticles such as Au@SiO2, Pt@SiO2, Fe3O4@SiO2, etc. could be fabricated. This approach allows controls of the numbers of functional nanoparticles loaded into the hollow spheres very easily and prevents nanoparticle aggregation effectively. The as-obtained Au@SiO2HMNSs displayed excellent catalytic properties and good reusability.
     (3) In the fourth chapter, we present a very simple method to fabricate Silica-Polystyrene (SiO2-PS) asymmetric colloid spheres. In this approach, when silica particles are used as the Pickering emulsifier to stabilize the monomer droplets (styrene) in water via acid-base interaction between silica particles and auxiliary monomer (1-vinylimidazole), the exposed surfaces of silica particles are very easy to be locally modified with3-(trimethoxysilyl)propyl methacrylate (MPS). When water-based initiator is added, polystyrene-silica asymmetric colloid spheres are highly yielded. In comparison with the previous techniques for fabrication of organic-inorganic anisotropic particles, this new approach has following advantages:i) this process is truly simple and cost-efficient, neither multi-step fabrication process nor special equipment is needed; ii) the yield of asymmetric spheres is quietly high, so it can be easily used for rapid and large-scale production of organic-inorganic anisotropic spheres. By adjusting the sizes of silica particles, the monomer/silica weight ratios and reaction time, ellipsoidal, dumbbell-shaped and snowman-like PS-SiO2asymmetric colloid spheres could be obtained. These organic-inorganic anisotropic colloid spheres can self-assemble into an interesting thickness-dependent film.
引文
[1]Hu, J.; Chen, M.; Fang, X.; Wu, L., Fabrication and Application of Inorganic Hollow Spheres [J]. Chem. Soc. Rev.2011,40:5472-5491.
    [2]Zhao, Y.; Jiang, L., Hollow Micro/Nanomaterials with Multilevel Interior Structures [J]. Adv. Mater.2009,21:3621-3638.
    [3]Zeng, H. C., Synthesis and Self-Assembly of Complex Hollow Materials [J]. J. Mater. Chem.2011,21:7511-7526.
    [4]Lou, X. W.; Archer, L. A.; Yang, Z., Hollow Micro-/Nanostructures:Synthesis and Applications [J]. Adv. Mater.2008,20:3987-4019.
    [5]Caruso, F.; Shi, X. Y.; Caruso, R. A.; Susha, A., Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles [J]. Adv. Mater. 2001,13:740-744.
    [6]Caruso, R. A.; Susha, A.; Caruso, F., Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres [J]. Chem. Mater.2001,13:400-409.
    [7]Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A., Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach [J]. Chem. Mater.2001,13:109-116.
    [8]Chen, M.; Wu, L. M.; Zhou, S. X.; You, B., A Method for the Fabrication of Monodisperse Hollow Silica Spheres [J]. Adv. Mater.2006,18:801-806.
    [9]Deng, Z.; Chen, M.; Zhou, S.; You, B.; Wu, L., A Novel Method for the Fabrication of Monodisperse Hollow Silica Spheres [J]. Langmuir 2006,22: 6403-6407.
    [10]Cheng, X. J.; Chen, M.; Wu, L. M.; Gu, G. X., Novel and Facile Method for the Preparation of Monodispersed Titania Hollow Spheres [J]. Langmuir 2006,22: 3858-3863.
    [11]Agrawal, M.; Pich, A.; Gupta, S.; Zafeiropoulos, N. E.; Simon, P.; Stamm, M., Synthesis of Novel Tantalum Oxide Sub-Micrometer Hollow Spheres with Tailored Shell Thickness [J]. Langmuir 2008,24:1013-1018.
    [12]Cheng, X.; Chen, M.; Wu, L.; You, B., A Novel and Facile Preparation Method of Hollow Silica Spheres Containing Small SiO2 Cores [J]. J. Polym. Sci. Part A: Polym. Chem.2007,45:3431-3439.
    [13]Chen, M.; Hu, L.; Xu, J.; Liao, M.; Wu, L.; Fang, X., ZnO Hollow-Sphere Nanofilm-Based High-Performance and Low-Cost Photodetector [J]. Small 2011,7: 2449-2453.
    [14]Deng, Z.; Chen, M.; Gu, G.; Wu, L., A Facile Method to Fabricate ZnO Hollow Spheres and their Photocatalytic Property [J]. J. Phys. Chem. B 2008,112:16-22.
    [15]Qian, J.; Wu, F. P., Synthesis of Thermosensitive Hollow Spheres via a One-Pot Process [J]. Chem. Mater.2007,19:5839-5841.
    [16]Xie, L.; Chen, M.; Wu, L., Fabrication and Properties of Hollow Poly(N-isopropylacrylamide)-Ag Nanocomposite Spheres [J]. J. Polym. Sci. Part A: Polym. Chem.2009,47:4919-4926.
    [17]Lu, A.-H.; Sun, T.; Li, W.-C.; Sun, Q.; Han, F.; Liu, D.-H.; Guo, Y., Synthesis of Discrete and Dispersible Hollow Carbon Nanospheres with High Uniformity by Using Confined Nanospace Pyrolysis [J]. Angew. Chem. Int. Ed.2011,50:11765-11768.
    [18]Xu, X. L.; Asher, S. A., Synthesis and Utilization of Monodisperse Hollow Polymeric Particles in Photonic Crystals [J]. J. Am. Chem. Soc.2004,126: 7940-7945.
    [19]Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H.; Pennycook, S. J.; Dai, S., Dopamine as a Carbon Source:The Controlled Synthesis of Hollow Carbon Spheres and Yolk-Structured Carbon Nanocomposites [J]. Angew. Chem. Int. Ed.2011,50:6799-6802.
    [20]Yoon, S. B.; Sohn, K.; Kim, J. Y.; Shin, C. H.; Yu, J. S.; Hyeon, T., Fabrication of Carbon Capsules with Hollow Macroporous Core/Mesoporous Shell Structures [J]. Adv. Mater.2002,14:19-21.
    [21]Park, J.-U.; Lee, H. J.; Cho, W.; Jo, C.; Oh, M., Facile Synthetic Route for Thickness and Composition Tunable Hollow Metal Oxide Spheres from Silica-Templated Coordination Polymers [J]. Adv. Mater.2011,23:3161-3164.
    [22]Lou, X. W.; Li, C. M.; Archer, L. A., Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage [J]. Adv. Mater.2009,21:2536-2539.
    [23]Sun, X. M.; Li, Y. D., Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles [J]. Angew. Chem. Int. Ed.2004,43:597-601.
    [24]Wang, Q.; Li, H.; Chen, L. Q.; Huang, X. J., Monodispersed Hard Carbon Spheres with Uniform Nanopores [J]. Carbon 2001,39:2211-2214.
    [25]Sun, X. M.; Li, Y. D., Ga2O3 and GaN Semiconductor Hollow Spheres [J]. Angew. Chem. Int. Ed.2004,43:3827-3831.
    [26]Li, X. L.; Lou, T. J.; Sun, X. M.; Li, Y. D., Highly Sensitive WO3 Hollow-Sphere Gas Sensors [J]. Inorg. Chem.2004,43:5442-5449.
    [27]Lai, X.; Li, J.; Korgel, B. A.; Dong, Z.; Li, Z.; Su, F.; Du, J.; Wang, D., General Synthesis and Gas-Sensing Properties of Multiple-Shell Metal Oxide Hollow Microspheres [J]. Angew. Chem. Int. Ed.2011,50:2738-2741.
    [28]Li, Z.; Lai, X.; Wang, H.; Mao, D.; Xing, C.; Wang, D., General Synthesis of Homogeneous Hollow Core-Shell Ferrite Microspheres [J]. J. Phys. Chem. C 2009, 113:2792-2797.
    [29]Lee, J.; Park, J. C.; Bang, J. U.; Song, H., Precise Tuning of Porosity and Surface Functionality in Au@SiO2 Nanoreactors for High Catalytic Efficiency [J]. Chem. Mater.2008,20:5839-5844.
    [30]Lee, J.; Park, J. C.; Song, H., A Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction of P-Nitrophenol [J]. Adv. Mater.2008, 20:1523-1528.
    [31]Zhu, C.-L.; Chou, S.-W.; He, S.-F.; Liao, W.-N.; Chen, C.-C., Synthesis of Core/Shell Metal Oxide/Polyaniline Nanocomposites and Hollow Polyaniline Capsules [J]. Nanotechnology 2007,18:275604.
    [32]Pang, H.; Zhou, S.; Wu, L.; Chen, M.; Cu, G., Fabrication of Silicone Oil Microcapsules with Silica Shell by Miniemulsion Method [J]. Colloids Surf., A 2010, 364:42-48.
    [33]Peng, B.; Chen, M.; Zhou, S.; Wu, L.; Ma, X., Fabrication of Hollow Silica Spheres Using Droplet Templates Derived from a Miniemulsion Technique [J]. J. Colloid Interface Sci.2008,321:67-73.
    [34]Fickert, J.; Rupper, P.; Graf, R.; Landfester, K.; Crespy, D., Design and Characterization of Functionalized Silica Nanocontainers for Self-Healing Materials [J]. J. Mater. Chem.2012,22:2286-2291.
    [35]Lu, W.; Chen, M.; Wu, L., Easy Method for Preparing Nanocrystalline CdS Hollow Spheres Using Miniemulsion Droplets as Templates [J]. J. Colloid Interface Sci.2008,324:220-224.
    [36]Zoldesi, C. I.; Imhof, A., Synthesis of Monodisperse Colloidal Spheres, Capsules, and Microballoons by Emulsion Templating [J]. Adv. Mater.2005,17:924-928.
    [37]Zoldesi, C. I.; Steegstra, P.; Imhof, A., Encapsulation of Emulsion Droplets by Organo-Silica Shells [J]. J. Colloid Interface Sci.2007,308:121-129.
    [38]Peng, Q.; Dong, Y. J.; Li, Y. D., ZnSe Semiconductor Hollow Microspheres [J]. Angew. Chem. Int. Ed.2003,42:3027-3030.
    [39]Gu, F.; Li, C. Z.; Wang, S. F.; Lu, M. K., Solution-Phase Synthesis of Spherical Zinc Sulfide Nanostructures. Langmuir 2006,22:1329-1332.
    [40]Li, X. X.; Xiong, Y. J.; Li, Z. Q.; Xie, Y., Large-scale Fabrication of TiO2 Hierarchical Hollow Spheres. Inorg. Chem.2006,45:3493-3495.
    [41]Wu, X.-J.; Xu, D., Formation of Yolk/SiO2 Shell Structures Using Surfactant Mixtures as Template [J]. J. Am. Chem. Soc.2009,131:2774-2775.
    [42]Wang, S. F.; Gu, F.; Lu, M. K., Sonochemical Synthesis of Hollow PbS Nanospheres. Langmuir 2006,22:398-401.
    [43]Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P., Formation of Hollow Nanocrystals through the Nanoscale Kirkendall Effect [J]. Science 2004,304:711-714.
    [44]Yin, L. W.; Bando, Y.; Li, M. S.; Golberg, D., Growth of Semiconducting GaN Hollow Spheres and Nanotubes with Very Thin Shells via a Controllable Liquid Gallium-Gas Interface Chemical Reaction [J]. Small 2005,1:1094-1099.
    [45]Gao, J. H.; Zhang, B.; Zhang, X. X.; Xu, B., Magnetic-Dipolar-Interaction-Induced Self-Assembly Affords Wires of Hollow Nanocrystals of Cobalt Selenide [J]. Angew. Chem. Int. Ed.2006,45:1220-1223.
    [46]Chiang, R.-K.; Chiang, R.-T., Formation of Hollow Ni2P Nanoparticles based on the Nanoscale Kirkendall Effect. Inorg. Chem.2007,46:369-371.
    [47]Sun Y G, Xia Y N. Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J]. Science 2002,298:2176-2179.
    [48]Liang, H. P.; Guo, Y. G.; Zhang, H. M.; Hu, J. S.; Wan, L. J.; Bai, C. L., Controllable AuPt Bimetallic Hollow Nanostructures. Chem. Commun.2004,13: 1496-1497.
    [49]Zeng, J.; Huang, J.; Lu, W.; Wang, X.; Wang, B.; Zhang, S.; Hou, J., Necklace-Like Noble-Metal Hollow Nanoparticle Chains:Synthesis and Tunable Optical Properties [J]. Adv. Mater.2007,19:2172-2176.
    [50]Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.; Wan, L. J.; Bai, C. L., Pt Hollow Nanospheres:Facile Synthesis and Enhanced Electrocatalysts [J]. Angew. Chem. Int. Ed.2004,43:1540-1543.
    [51]Zhu, Y.; Kockrick, E.; Ikoma, T.; Hanagata, N.; Kaskel, S., An Efficient Route to Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates [J]. Chem. Mater.2009,21:2547-2553.
    [52]Hu, Y.; Zheng, X. T.; Chen, J. S.; Zhou, M.; Li, C. M.; Lou, X. W., Silica-Based Complex Nanorattles as Multifunctional Carrier for Anticancer Drug [J]. J. Mater. Chem.2011,21:8052-8056.
    [53]Chen, Y.; Chen, H.; Zeng, D.; Tian, Y.; Chen, F.; Feng, J.; Shi, J., Core/Shell Structured Hollow Mesoporous Nanocapsules:A Potential Platform for Simultaneous Cell Imaging and Anticancer Drug Delivery [J]. ACS Nano 2010,4:6001-6013.
    [54]Hu, S.-H.; Chen, Y.-Y.; Liu, T.-C.; Tung, T.-H.; Liu, D.-M.; Chen, S.-Y., Remotely Nano-Rupturable Yolk/Shell Capsules for Magnetically-Triggered Drug Release [J]. Chem. Commun.2011,47:1776-1778.
    [55]Zhang, F.; Braun, G. B.; Shi, Y.; Zhang, Y.; Sun, X.; Reich, N. O.; Zhao, D.; Stucky, G., Fabrication of Ag@SiO2@Y2O3:Er Nanostructures for Bioimaging: Tuning of the Upconversion Fluorescence with Silver Nanoparticles [J]. J. Am. Chem. Soc.2010,132:2850-2851.
    [56]Liu, H.; Liu, T.; Wu, X.; Li, L.; Tan, L.; Chen, D.; Tang, F., Targeting Gold Nanoshells on Silica Nanorattles:a Drug Cocktail to Fight Breast Tumors via a Single Irradiation with Near-Infrared Laser Light [J]. Adv. Mater.2012,24:755-761.
    [57]Kim S W, Kim M, Lee W Y, Hyeon T. Fabricationof Hollow Palladium Spheres and Their Successful Application as Therecyclable Heterogeneous Catalyst for Suzuki Coupling Reactions [J]. J. Am. Chem. Soc.2002,124:7642-7643.
    [58]Chen, Z.; Cui, Z.-M.; Niu, F.; Jiang, L.; Song, W.-G., Pd Nanoparticles in Silica Hollow Spheres with Mesoporous Walls:A Nanoreactor with Extremely High Activity [J]. Chem. Commun.2010,46:6524-6526.
    [59]keda, S.; Ishino, S.; Harada, T.; Okamoto, N.; Sakata, T.; Mori, H.; Kuwabata, S.; Torimoto, T.; Matsumura, M., Ligand-Free Platinum Nanoparticles Encapsulated in a Hollow Porous Carbon Shell as a Highly Active Heterogeneous Hydrogenation Catalyst [J]. Angew. Chem. Int. Ed.2006,45:7063-7066.
    [60]Park, J. C.; Bang, J. U.; Lee, J.; Ko, C. H.; Song, H., Ni@SiO2 Yolk-Shell Nanoreactor Catalysts:High Temperature Stability and Recyclability [J]. J. Mater. Chem.2010,20:1239-1246.
    [61]Lou, X. W.; Archer, L. A., A General Route to Nonspherical Anatase TiO2 Hollow Colloids and Magnetic Multifunctional Particles [J]. Adv. Mater.2008,20: 1853-1858.
    [62]Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A., Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity [J]. Adv. Mater.2006,18:2325-2329.
    [63]Chen, J. S.; Li, C. M.; Zhou, W. W.; Yan, Q. Y.; Archer, L. A.; Lou, X. W., One-Pot Formation of SnO2 Hollow Nanospheres and Alpha-Fe2O3@SnO2 Nanorattles with Large Void Space and Their Lithium Storage Properties [J]. Nanoscale 2009,1:280-285.
    [64]Ding, S.; Chen, J. S.; Wang, Z.; Cheah, Y. L.; Madhavi, S.; Hu, X.; Lou, X. W., TiO2 Hollow Spheres with Large Amount of Exposed (001) Facets for Fast Reversible Lithium Storage [J]. J. Mater. Chem.2011,21:1677-1680.
    [65]Yang, S.; Feng, X.; Zhi, L.; Cao, Q.; Maier, J.; Muellen, K., Nanographene-Constructed Hollow Carbon Spheres and Their Favorable Electroactivity with Respect to Lithium Storage [J]. Adv. Mater.2010,22:838-842.
    [66]Zhang, W.-M.; Hu, J.-S.; Guo, Y.-G.; Zheng, S.-F.; Zhong, L.-S.; Song, W.-G.; Wan, L.-J., Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries [J]. Adv. Mater.2008,20: 1160-1165.
    [67]Du, Y.; Luna, L. E.; Tan, W. S.; Rubner, M. F.; Cohen, R. E., Hollow Silica Nanoparticles in UV-Visible Antireflection Coatings for Poly(methyl methacrylate) Substrates [J]. ACS Nano 2010,4:4308-4316.
    [68]Du, X.; He, J., Facile Fabrication of Hollow Mesoporous Silica Nanospheres for Superhydrophilic and Visible/Near-IR Antireflection Coatings [J]. Chem. Eur. J.2011, 17:8165-8174.
    [69]Deng, X.; Mammen, L.; Zhao, Y.; Lellig, P.; Muellen, K.; Li, C.; Butt, H.-J.; Vollmer, D., Transparent, Thermally Stable and Mechanically Robust Superhydrophobic Surfaces Made from Porous Silica Capsules [J]. Adv. Mater.2011, 23:2962-2965.
    [70]McDonald, C. J.; Devon, M. J., Hollow Latex Particles:Synthesis and Applications [J]. Adv. Colloid Interface Sci.2002,99:181-213.
    [71]Ren, Y.; Chen, M.; Zhang, Y.; Wu, L., Fabrication of Rattle-Type TiO2/SiO2 Core/Shell Particles with Both High Photoactivity and UV-Shielding Property [J]. Langmuir 2010,26:11391-11396.
    [72]De Gennes P G. Soft Matter [J]. Rev. Mod. Phys.,1992,64:645-648.
    [73]Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S.; Granick, S., Janus Particle Synthesis and Assembly [J]. Adv. Mater.2010,22:1060-1071.
    [74]Pawar, A. B.; Kretzschmar, I., Fabrication, Assembly, and Application of Patchy Particles [J]. Macromol. Rapid Commun.2010,31:150-168.
    [75]Walther, A.; Mueller, A. H. E., Janus particles [J]. Soft Matter 2008,4:663-668.
    [76]Wurm, F.; Kilbinger, A. F. M., Polymeric Janus Particles [J]. Angew. Chem. Int. Ed.2009,48:8412-8421.
    [77]Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E. B.; Duguet, E., Design and Synthesis of Janus Micro-and Nanoparticles [J]. J. Mater. Chem.2005,15: 3745-3760.
    [78]Sheu, H. R.; Elaasser, M. S.; Vanderhoff, J. W., Phase-Separation in Polystyrene Latex Interpenetrating Polymer Networks [J]. J. Polym. Sci. Part A:Polym. Chem. 1990,28,3:629-651.
    [79]Kim, J. W.; Larsen, R. J.; Weitz, D. A., Uniform Nonspherical Colloidal Particles with Tunable Shapes [J]. Adv. Mater.2007,19:2005-2009.
    [80]Shah, R. K.; Kim, J. W.; Weitz, D. A., Janus Supraparticles by Induced Phase Separation of Nanoparticles in Droplets [J]. Adv. Mater.2009,21:1949-1953.
    [81]Kim, J. W.; Larsen, R. J.; Weitz, D. A., Synthesis of Nonspherical Colloidal Particles with Anisotropic Properties [J]. J. Am. Chem. Soc.2006,128:14374-14377.
    [82]Park, J. G.; Forster, J. D.; Dufresne, E. R., High-Yield Synthesis of Monodisperse Dumbbell-Shaped Polymer Nanoparticles [J]. J. Am. Chem. Soc.2010, 132:5960-5961.
    [83]Mock, E. B.; De Bruyn, H.; Hawkett, B. S.; Gilbert, R. G.; Zukoski, C. F., Synthesis of Anisotropic Nanoparticles by Seeded Emulsion Polymerization. Langmuir 2006,22:4037-4043.
    [84]Kraft, D. J.; Hilhorst, J.; Heinen, M. A. P.; Hoogenraad, M. J.; Luigjes, B.; Kegel, W. K., Patchy Polymer Colloids with Tunable Anisotropy Dimensions. J. Phys. Chem. B 2011,115:7175-7181.
    [85]Nie, L.; Liu, S.; Shen, W.; Chen, D.; Jiang, M., One-Pot Synthesis of Amphiphilic Polymeric Janus Particles and their Self-Assembly into Supermicelles with a Narrow Size Distribution [J]. Angew. Chem. Int. Ed.2007,46:6321-6324.
    [86]Paunov, V. N.; Cayre, O. J., Supraparticles and "Janus" Particles Fabricated by Replication of Particle Monolayers at Liquid Surfaces Using a Gel Trapping Technique [J]. Adv. Mater.2004,16:788-791.
    [87]Wang, Y.; Zhang, C.; Tang, C.; Li, J.; Shen, K.; Liu, J.; Qu, X.; Li, J.; Wang, Q.; Yang, Z., Emulsion Interfacial Synthesis of Asymmetric Janus Particles [J]. Macromolecules 2011,44:3787-3794.
    [88]Nie Z H, Li W, Seo M, Xu S Q, Kumacheva E. Janus and Ternary Particles Generated by Microfluidic Synthesis:Design, Synthesis, and Self-Assembly [J]. J. Am. Chem. Soc.2006,128:9408-9412.
    [89]Shah, R. K.; Kim, J.-W.; Weitz, D. A., Janus Supraparticles by Induced Phase Separation of Nanoparticles in Droplets [J]. Adv. Mater.2009,21:1949-1953.
    [90]Nisisako, T.; Torii, T.; Higuchi, T., Novel Microreactors for Functional Polymer Beads [J]. Chem. Eng. J.2004,101:23-29.
    [91]Roh, K. H.; Martin, D. C.; Lahann, J., Biphasic Janus Particles with Nanoscale Anisotropy [J]. Nat. Mater.2005,4:759-763.
    [92]Prasad, N.; Perumal, J.; Choi, C.-H.; Lee, C.-S.; Kim, D.-P., Generation of Monodisperse Inorganic-Organic Janus Microspheres in a Microfluidic Device [J]. Adv. Funct. Mater.2009,19:1656-1662.
    [93]Kim, S.-H.; Jeon, S.-J.; Jeong, W. C.; Park, H. S.; Yang, S.-M., Optofluidic Synthesis of Electroresponsive Photonic Janus Balls with Isotropic Structural Colors [J]. Adv. Mater.2008,20:4129-4134.
    [94]Lu, Y.; Xiong, H.; Jiang, X. C.; Xia, Y. N.; Prentiss, M.; Whitesides, G. M., Asymmetric Dimers Can Be Formed by Dewetting Half-Shells of Gold Deposited on the Surfaces of Spherical Oxide Colloids [J]. J. Am. Chem. Soc.2003,125: 12724-12725.
    [95]Love, J. C.; Gates, B. D.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M., Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters [J]. Nano Lett.2002,2:891-894.
    [96]Ye, S.; Carroll, R. L., Design and Fabrication of Bimetallic Colloidal "Janus" Particles [J]. ACS Appl. Mater. Interfaces 2010,2:616-620.
    [97]Bae, C.; Moon, J.; Shin, H.; Kim, J.; Sung, M. M., Fabrication of Monodisperse Asymmetric Colloidal Clusters by Using Contact Area Lithography (CAL) [J]. J. Am. Chem. Soc.2007,129:14232-14239.
    [98]Gu, H. W.; Yang, Z. M.; Gao, J. H.; Chang, C. K.; Xu, B., Heterodimers of Nanoparticles:Formation at a Liquid-Liquid Interface and Particle-Specific Surface Modification by Functional Molecules [J]. J. Am. Chem. Soc.2005,127:34-35.
    [99]Liu, B.; Wei, W.; Qu, X.; Yang, Z., Janus Colloids Formed by Biphasic Grafting at a Pickering Emulsion Interface [J]. Angew. Chem. Int. Ed.2008,47, (21), 3973-3975.
    [100]Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H., Dumbbell-like Bifunctional Au-Fe3O4 Nanoparticles [J]. Nano Lett.2005,5:379-382.
    [101]Wang, C.; Yin, H.; Dai, S.; Sun, S., A General Approach to Noble Metal-Metal Oxide Dumbbell Nanoparticles and their Catalytic Application for CO Oxidation [J]. Chem. Mater.2010,22:3277-3282.
    [102]Chen, T.; Chen, G.; Xing, S.; Wu, T.; Chen, H., Scalable Routes to Janus Au-SiO2 and Ternary Ag-Au-SiO2 Nanoparticles [J]. Chem. Mater.2010,22: 3826-3828.
    [103]Jiang, J.; Gu, H.; Shao, H.; Devlin, E.; Papaefthymiou, G. C.; Ying, J. Y., Manipulation Bifunctional Fe3O4-Ag Heterodimer Nanoparticles for Two-Photon Fluorescence Imaging and Magnetic Manipulation [J]. Adv. Mater.2008,20: 4403-4407.
    [104]Zeng, J.; Huang, J.; Liu, C.; Wu, C. H.; Lin, Y.; Wang, X.; Zhang, S.; Hou, J.; Xia, Y., Gold-Based Hybrid Nanocrystals Through Heterogeneous Nucleation and Growth [J]. Adv. Mater.2010,22:1936-1940.
    [105]Pang, M.; Hu, J.; Zeng, H. C., Synthesis, Morphological Control, and Antibacterial Properties of Hollow/Solid Ag2S/Ag Heterodimers [J]. J. Am. Chem. Soc.2010,132:10771-10785.
    [106]Ge, J. P.; Hu, Y. X.; Zhang, T. R.; Yin, Y. D., Superparamagnetic Composite Colloids with Anisotropic Structures [J]. J. Am. Chem. Soc.2007,129:8974-8975.
    [107]Nagao, D.; Hashimoto, M.; Hayasaka, K.; Konno, M., Synthesis of Anisotropic Polymer Particles with Soap-Free Emulsion Polymerization in the Presence of a Reactive Silane Coupling Agent [J]. Macromol. Rapid Commun.2008,29: 1484-1488.
    [108]Nagao, D.; van Kats, C. M.; Hayasaka, K.; Sugimoto, M.; Konno, M.; Imhof, A.; van Blaaderen, A., Synthesis of Hollow Asymmetrical Silica Dumbbells with a Movable Inner Core [J]. Langmuir 2010,26:5208-5212.
    [109]Nagao, D.; Goto, K.; Ishii, H.; Konno, M., Preparation of Asymmetrically Nanoparticle-Supported, Monodisperse Composite Dumbbells by Protruding a Smooth Polymer Bulge from Rugged Spheres [J]. Langmuir 2011,27:13302-13307.
    [110]Lu, W.; Chen, M.; Wu, L. M., One-Step Synthesis of Organic-Inorganic Hybrid Asymmetric Dimer Particles via Miniemulsion Polymerization and Functionalization with Silver [J]. J. Colloid Interface Sci.2008,328:98-102.
    [111]Teo, B. M.; Suh, S. K.; Hatton, T. A.; Ashokkumar, M.; Grieser, F., Sonochemical Synthesis of Magnetic Janus Nanoparticles [J]. Langmuir 2011,27: 30-33.
    [112]Wang, Y.; Xu, H.; Ma, Y.; Guo, F.; Wang, F.; Shi, D., Facile One-Pot Synthesis and Morphological Control of Asymmetric Superparamagnetic Composite Nanoparticles [J]. Langmuir 2011,27:7207-7212.
    [113]Hu, S.-H.; Gao, X., Nanocomposites with Spatially Separated Functionalities for Combined Imaging and Magnetolytic Therapy. J. Am. Chem. Soc.2010,132: 7234-7237.
    [114]Hong, L.; Jiang, S.; Granick, S., Simple Method to Produce Janus Colloidal Particles in Large Quantity [J]. Langmuir 2006,22:9495-9499.
    [115]Jiang, S.; Granick, S., Controlling the Geometry (Janus Balance) of Amphiphilic Colloidal Particles [J]. Langmuir 2008,24:2438-2445.
    [116]Jiang, S.; Schultz, M. J.; Chen, Q.; Mooret, J. S.; Granick, S., Solvent-Free Synthesis of Janus Colloidal Particles [J]. Langmuir 2008,24:10073-10077.
    [117]Takahara, Y. K.; Ikeda, S.; Ishino, S.; Tachi, K.; Ikeue, K.; Sakata, T. Hasegawa, T.; Mori, H.; Matsumura, M.; Ohtani, B., Asymmetrically Modified Silica Particles:a Simple Particulate Surfactant for Stabilization of Oil Droplets in Water [J]. J. Am. Chem. Soc.2005,127:6271-6275.
    [118]Ge, X. P.; Wang, M. Z.; Yuan, Q.; Wang, H.; Ge, X. W., The Morphological Control of Anisotropic Polystyrene/Silica Hybrid Particles Prepared by Radiation Miniemulsion Polymerization [J]. Chem. Commun.2009:2765-2767.
    [119]Qiang, W.; Wang, Y.; He, P.; Xu, H.; Gu, H.; Shi, D., Synthesis of Asymmetric Inorganic/Polymer Nanocomposite Particles via Localized Substrate Surface Modification and Miniemulsion Polymerization [J]. Langmuir 2008,24:606-608.
    [120]Liu, B.; Zhang, C. L.; Liu, J. G.; Qu, X. Z.; Yang, Z. Z., Janus Non-Spherical Colloids by Asymmetric Wet-Etching. Chem. Commun.2009:3871-3873.
    [121]Ohnuma, A.; Cho, E. C.; Camargo, P. H. C.; Au, L.; Ohtani, B.; Xia, Y. N., A Facile Synthesis of Asymmetric Hybrid Colloidal Particles [J]. J. Am. Chem. Soc. 2009,131:1352-1353.
    [122]Ohnuma, A.; Cho, E. C.; Jiang, M.; Ohtani, B.; Xia, Y., Metal-Polymer Hybrid Colloidal Particles with an Eccentric Structure [J]. Langmuir 2009,25:13880-13887.
    [123]Feyen, M.; Weidenthaler, C.; Schuth, F.; Lu, A. H., Regioselectively Controlled Synthesis of Colloidal Mushroom Nanostructures and Their Hollow Derivatives [J]. J. Am. Chem. Soc.2010,132:6791-6799.
    [124]Chen, T.; Yang, M.; Wang, X.; Tan, L. H.; Chen, H., Controlled Assembly of Eccentrically Encapsulated Gold Nanoparticles [J]. J. Am. Chem. Soc.2008,130: 11858-11859.
    [125]Xing, S.; Feng, Y.; Tay, Y. Y.; Chen, T.; Xu, J.; Pan, M.; He, J.; Hng, H. H.; Yan, Q.; Chen, H., Reducing the Symmetry of Bimetallic Au@Ag Nanoparticles by Exploiting Eccentric Polymer Shells [J]. J. Am. Chem. Soc.2010,132:9537-9539.
    [126]Reculusa, S.; Poncet-Legrand, C.; Perro, A.; Duguet, E.; Bourgeat-Lami, E.; Mingotaud, C.; Ravaine, S., Hybrid Dissymmetrical Colloidal Particles [J]. Chem. Mater.2005,17:3338-3344.
    [127]Kim, J.-W.; Lee, D.; Shum, H. C.; Weitz, D. A., Colloid Surfactants for Emulsion Stabilization [J]. Adv. Mater.2008,20:3239-3243.
    [128]Liang, F.; Shen, K.; Qu, X.; Zhang, C.; Wang, Q.; Li, J.; Liu, J.; Yang, Z., Inorganic Janus Nanosheets. Angew. Chem. Int. Ed.2011,50:2379-2382.
    [129]Tang, C.; Zhang, C.; Liu, J.; Qu, X.; Li, J.; Yang, Z., Large Scale Synthesis of Janus Submicrometer Sized Colloids by Seeded Emulsion Polymerization [J]. Macromolecules 2010,43:5114-5120.
    [130]Chen, Y.; Liang, F.; Yang, H.; Zhang, C.; Wang, Q.; Qu, X.; Li, J.; Cai, Y.; Qiu, D.; Yang, Z., Janus Nanosheets of Polymer-Inorganic Layered Composites [J]. Macromolecules 2012,45:1460-1467.
    [131]Yin, S.-N.; Wang, C.-F.; Yu, Z.-Y.; Wang, J.; Liu, S.-S.; Chen, S., Versatile Bifunctional Magnetic-Fluorescent Responsive Janus Supraballs towards the Flexible Bead Display [J]. Adv. Mater.2011,23:2915-2919.
    [132]Glotzer, S. C.; Solomon, M. J., Anisotropy of Building Blocks and Their Assembly into Complex Structures [J]. Nat. Mater.2007,6:557-562.
    [133]Lattuada, M.; Hatton, T. A., Preparation and Controlled Self-Assembly of Janus Magnetic Nanoparticles [J]. J. Am. Chem. Soc.2007,129:12878-12889.
    [134]Forster, J. D.; Park, J.-G.; Mittal, M.; Noh, H.; Schreck, C. F.; O'Hern, C. S.; Cao, H.; Furst, E. M.; Dufresne, E. R., Assembly of Optical-Scale Dumbbells into Dense Photonic Crystals [J]. Acs Nano 2011,5:6695-6700.
    [135]Hosein, I. D.; Lee, S. H.; Liddell, C. M., Dimer-Based Three-Dimensional Photonic Crystals [J]. Adv. Funct. Mater.2010,20:3085-3091.
    [136]Hosein, I. D.; Liddell, C. M., Convectively Assembled Asymmetric Dimer-based Colloidal Crystals [J]. Langmuir 2007,23:10479-10485.
    [1]Guo, L.; Zhang, L.; Zhang, J.; Zhou, J.; He, Q.; Zeng, S.; Cui, X.; Shi, J., Hollow Mesoporous Carbon Spheres-an Excellent Bilirubin Adsorbent [J]. Chem. Commun. 2009:6071-6073.
    [2]Guo, L.; Zhang, J.; He, Q.; Zhang, L.; Zhao, J.; Zhu, Z.; Wu, W.; Zhang, J.; Shi, J., Preparation of Millimetre-Sized Mesoporous Carbon Spheres as an Effective Bilirubin Adsorbent and Their Blood Compatibility [J]. Chem. Commun.2010,46: 7127-7129.
    [3]Guo, L. M.; Li, J. T.; Zhang, L. X.; Li, J. B.; Li, Y. S.; Yu, C. C.; Shi, J. L.; Ruan, M. L.; Feng, J. W., A Facile Route to Synthesize Magnetic Particles within Hollow Mesoporous Spheres and their Performance as Separable Hg2+ Adsorbents [J]. J. Mater. Chem.2008,18:2733-2738.
    [4]Zhai, Y. P.; Dou, Y. Q.; Liu, X. X.; Tu, B.; Zhao, D. Y., One-Pot Synthesis of Magnetically Separable Ordered Mesoporous Carbon [J]. J. Mater. Chem.2009,19: 3292-3300.
    [5]Taguchi, A.; Schuth, F., Ordered Mesoporous Materials in Catalysis [J]. Micropor. Mesopor. Mater.2005,77:1-45.
    [6]Lu, A. H.; Schmidt, W.; Matoussevitch, N.; Bonnemann, H.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schuth, F., Nanoengineering of a Magnetically Separable Hydrogenation Catalyst [J]. Angew. Chem. Int. Ed.2004,43:4303-4306.
    [7]Zhang, S. L.; Chen, L.; Zhou, S. X.; Zhao, D. Y.; Wu, L. M., Facile Synthesis of Hierarchically Ordered Porous Carbon via in Situ Self-Assembly of Colloidal Polymer and Silica Spheres and its Use as a Catalyst Support [J]. Chem. Mater.2010, 22:3433-3440.
    [8]Valdes-Solis, T.; Valle-Vigon, P.; Sevilla, M.; Fuertes, A. B., Encapsulation of Nanosized Catalysts in the Hollow Core of a Mesoporous Carbon Capsule [J]. J. Catal. 2007,251:239-243.
    [9]Yan, A. H.; Lau, B. W.; Weissman, B. S.; Kulaots, I.; Yang, N. Y. C.; Kane, A. B.; Hurt, R. H., Biocompatible, Hydrophilic, Supramolecular Carbon Nanoparticles for Cell Delivery [J]. Adv. Mater.2006,18:2373-2378.
    [10]Fang, Y.; Gu, D.; Zou, Y.; Wu, Z. X.; Li, F. Y.; Che, R. C.; Deng, Y. H.; Tu, B.; Zhao, D. Y., A Low-Concentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size [J]. Angew. Chem. Int. Ed.2010,49:7987-7991
    [11]Kim, T. W.; Chung, P. W.; Slowing, II; Tsunoda, M.; Yeung, E. S.; Lin, V. S. Y., Structurally Ordered Mesoporous Carbon Nanoparticles as Transmembrane Delivery Vehicle in Human Cancer Cells [J]. Nano Lette.2008,8:3724-3727.
    [12]Zheng, R. B.; Meng, X. W.; Tang, F. Q.; Zhang, L.; Ren, J., A General, One-Step and Template-Free Route to Rattle-Type Hollow Carbon Spheres and their Application in Lithium Battery Anodes [J]. J. Phys. Chem. C 2009,113: 13065-13069.
    [13]Lee, K. T.; Jung, Y. S.; Oh, S. M., Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secondary Batteries [J]. J. Am. Chem. Soc.2003,125:5652-5653.
    [14]Yang, S.; Feng, X.; Zhi, L.; Cao, Q.; Maier, J.; Muellen, K., Nanographene-Constructed Hollow Carbon Spheres and their Favorable Electroactivity with Respect to Lithium Storage [J]. Adv. Mater.2010,22:838-842.
    [15]Li, W.; Chen, D.; Li, Z.; Shi, Y.; Wan, Y.; Huang, J.; Yang, J.; Zhao, D.; Jiang, Z., Nitrogen Enriched Mesoporous Carbon Spheres Obtained by a Facile Method and its Application for Electrochemical Capacitor [J]. Electrochem. Commun.2007,9: 569-573.
    [16]Liu, H. J.; Cui, W. J.; Jin, L. H.; Wang, C. X.; Xia, Y. Y., Preparation of Three-Dimensional Ordered Mesoporous Carbon Sphere Arrays by a Two-Step Templating Route and their Application for Supercapacitors [J]. J. Mater. Chem.2009, 19:3661-3667.
    [17]Guo, L. M.; Cui, X. Z.; Li, Y. S.; He, Q. J.; Zhang, L. X.; Bu, W. B.; Shi, J. L Hollow Mesoporous Carbon Spheres with Magnetic Cores and their Performance as Separable Bilirubin Adsorbents [J]. Chem.-Asian J.2009,4:1480-1485.
    [18]Lu, A. H.; Li, W. C.; Kiefer, A.; Schmidt, W.; Bill, E.; Fink, G.; Schuth, F., Fabrication of Magnetically Separable Mesostructured Silica with an Open Pore System [J]. J. Am. Chem. Soc.2004,126:8616-8617.
    [19]Park, I.-S.; Choi, M.; Kim, T.-W.; Ryoo, R., Synthesis of Magnetically Separable Ordered Mesoporous Carbons Using Furfuryl Alcohol and Cobalt Nitrate in a Silica Template [J]. J. Mater. Chem.2006,16:3409-3416.
    [20]Sevilla, M.; Valle-Vigon, P.; Tartaj, P.; Fuertes, A. B., Magnetically Separable Bimodal Mesoporous Carbons with a Large Capacity for the Immobilization of Biomolecules [J]. Carbon 2009,47:2519-2527.
    [21]Shokouhimehr, M.; Piao, Y. Z.; Kim, J.; Jang, Y. J.; Hyeon, T., A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation [J]. Angew. Chem. Int. Ed.2007,46:7039-7043.
    [22]Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin, Y. D., Core-Satellite Nanocomposite Catalysts Protected by a Porous Silica Shell:Controllable Reactivity, High Stability, and Magnetic Recyclability [J]. Angew. Chem. Int. Ed.2008,47:8924-8928.
    [23]Deng, Y.; Qi, D.; Deng, C.; Zhang, X.; Zhao, D., Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins [J]. J. Am. Chem. Soc. 2008,130:28-29.
    [24]Deng, Y. H.; Cai, Y.; Sun, Z. K.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Wang, Y.; Zhao, D. Y., Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure:A Highly Integrated Catalyst System [J]. J. Am. Chem. Soc.2010,132:8466-8473.
    [25]Zhao, W. R.; Chen, H. R.; Li, Y. S.; Li, L.; Lang, M. D.; Shi, J. L., Uniform Rattle-type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustained-Release Property [J]. Adv. Funct. Mater.2008,18:2780-2788.
    [26]Li, G.; Kang, E. T.; Neoh, K. G.; Yang, X., Concentric Hollow Nanospheres of Mesoporous Silica Shell-Titania Core from Combined Inorganic and Polymer Syntheses [J]. Langmuir 2009,25:4361-4364.
    [27]Chen, Y.; Chen, H.; Zeng, D.; Tian, Y.; Chen, F.; Feng, J.; Shi, J., Core/Shell Structured Hollow Mesoporous Nanocapsules:a Potential Platform for Simultaneous Cell Imaging and Anticancer Drug Delivery [J]. ACS Nano 2010,4:6001-13.
    [28]Chen, Y.; Chen, H. R.; Guo, L. M.; He, Q. J.; Chen, F.; Zhou, J.; Feng, J. W.; Shi, J. L., Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based Selective Etching Strategy [J]. ACS Nano 2010,4:529-539.
    [29]Arnal, P. M.; Comotti, M.; Schueth, F., High-Temperature-Stable Catalysts by Hollow Sphere Encapsulation [J]. Angew. Chem. Int. Ed.2006,45:8224-8227.
    [30]Zhu, Y. F.; Kockrick, E.; Ikoma, T.; Hanagata, N.; Kaskel, S., An Efficient Route to Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates [J]. Chem. Mater.2009,21:2547-2553.
    [31]Zhu, Y. F.; Ikoma, T.; Hanagata, N.; Kaskel, S., Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres as Carriers for Drug Delivery [J]. Small 2010,6: 471-478.
    [32]Van Gough, D.; Wolosiuk, A.; Braun, P. V., Mesoporous ZnS Nanorattles: Programmed Size Selected Access to Encapsulated Enzymes [J]. Nano Lett.2009,9: 1994-1998.
    [33]Zhang, F.; Braun, G. B.; Shi, Y.; Zhang, Y.; Sun, X.; Reich, N. O.; Zhao, D.; Stucky, G., Fabrication of Ag@SiO2@Y2O3:Er Nanostructures for Bioimaging: Tuning of the Upconversion Fluorescence with Silver Nanoparticles [J]. J. Am. Chem. Soc.2010,132:2850-2851.
    [34]Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, F. Y.; Zhao, D. Y., Highly Water-Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups [J]. Angew. Chem. Int. Ed.2009,48:5875-5879.
    [35]Gupta, A. K.; Gupta, M., Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications [J]. Biomaterials 2005,26:3995-4021.
    [36]Zhang, W.-M.; Wu, X.-L.; Hu, J.-S.; Guo, Y.-G.; Wan, L.-J., Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries [J]. Adv. Funct. Mater.2008,18:3941-3946.
    [37]Zhang, W.-M.; Hu, J.-S.; Guo, Y.-G.; Zheng, S.-F.; Zhong, L.-S.; Song, W.-G.; Wan, L.-J., Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries [J]. Adv. Mater.2008,20: 1160-1165.
    [1]Hu, J.; Chen, M.; Fang, X.; Wu, L., Fabrication and Application of Inorganic Hollow Spheres [J]. Chem. Soc. Rev.2011,40:5472-5491.
    [2]Zhao, Y.; Jiang, L., Hollow Micro/Nanomaterials with Multilevel Interior Structures [J]. Adv. Mater.2009,21:3621-3638.
    [3]Zhu, Y. F.; Shi, J. L.; Shen, W. H.; Dong, X. P.; Feng, J. W.; Ruan, M. L.; Li, Y. S., Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure [J]. Angew. Chem. Int. Ed. 2005,44:5083-5087.
    [4]Chen, J. F.; Ding, H. M.; Wang, J. X.; Shao, L., Preparation and Characterization of Porous Hollow Silica Nanoparticles for Drug Delivery Application [J]. Biomaterials 2004,25:723-727.
    [5]Kim S W, Kim M, Lee W Y, Hyeon T. Fabricationof Hollow Palladium Spheres and their Successful Application as the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions [J]. J. Am. Chem. Soc.2002,124:7642-7643.
    [6]Deng, Z.; Chen, M.; Gu, G.; Wu, L., A Facile Method to Fabricate ZnO Hollow Spheres and their Photocatalytic Property [J]. J. Phys. Chem. B 2008,112:16-22.
    [7]Ding, S.; Chen, J. S.; Qi, G.; Duan, X.; Wang, Z.; Giannelis, E. P.; Archer, L. A. Lou, X. W., Formation of SnO2 Hollow Nanospheres inside Mesoporous Silica Nanoreactors [J]. J. Am. Chem. Soc.2011,133:21-23.
    [8]Ding, S.; Chen, J. S.; Wang, Z.; Cheah, Y. L.; Madhavi, S.; Hu, X.; Lou, X. W., TiO2 Hollow Spheres with Large Amount of Exposed (001) Facets for Fast Reversible Lithium Storage [J]. J. Mater. Chem.2011,21:1677-1680.
    [9]McDonald, C. J.; Devon, M. J., Hollow Latex Particles:Synthesis and Applications [J]. Adv. Colloid Interface Sci.2002,99:181-213.
    [10]Wang, S.; Zhang, M.; Zhang, W., Yolk-Shell Catalyst of Single Au Nanoparticle Encapsulated within Hollow Mesoporous Silica Microspheres [J]. ACS Catal.2011,1: 207-211.
    [11]Wu, S.-H.; Tseng, C.-T.; Lin, Y.-S.; Lin, C.-H.; Hung, Y.; Mou, C.-Y., Catalytic Nano-Rattle of Au@Hollow Silica:Towards a Poison-Resistant Nanocatalyst [J]. J. Mater. Chem.2011,21:789-794.
    [12]Arnal, P. M.; Comotti, M.; Schueth, F., High-Temperature-Stable Catalysts by Hollow Sphere Encapsulation [J]. Angew. Chem. Int. Ed.2006,45:8224-8227.
    [13]Zhao, W.; Chen, H.; Li, Y.; Li, L.; Lang, M.; Shi, J., Uniform Rattle-type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustained-Release Property [J]. Adv. Funct. Mater.2008,18:2780-2788.
    [14]Lee, J.; Park, J. C.; Song, H., A Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction of P-Nitrophenol [J]. Adv. Mater.2008, 20:1523-1528.
    [15]Kamata, K.; Lu, Y.; Xia, Y. N., Synthesis and Characterization of Monodispersed Core-Shell Spherical Colloids with Movable Cores [J]. J. Am. Chem. Soc.2003,125:2384-2385.
    [16]Li, J.; Zeng, H. C., Nanoreactors-Size Tuning, Functionalization, and Reactivation of Au In TiO2 Nanoreactors [J]. Angew. Chem. Int. Ed.2005,44: 4342-4345.
    [17]Xuan, S.; Zhou, Y.; Xu, H.; Jiang, W.; Leung, K. C.-F.; Gong, X., One Step Method to Encapsulate Nanocatalysts within Fe3O4 Nanoreactors [J]. J. Mater. Chem. 2011,21:15398-15404.
    [18]Lou, X. W.; Yuan, C.; Rhoades, E.; Zhang, Q.; Archer, L. A., Encapsulation and Ostwald Ripening of Au and Au-Cl Complex Nanostructures in Silica Shells [J]. Adv. Funct. Mater.2006,16:1679-1684.
    [19]Wang, Z. X.; Chen, X. B.; Chen, M.; Wu, L. M., Facile Fabrication Method and Characterization of Hollow Ag/SiO2 Double-Shelled Spheres [J]. Langmuir 2009,25: 7646-7651.
    [20]Wang, X.; Cui, T.; Cui, F.; Zhang, Y.; Li, D.; Zhang, Z., Facile Access to Ultrasmall Eu2O3 Nanoparticle-Functionalized Hollow Silica Nanospheres based on the Spontaneous Formation and Decomposition of a Cross-Linked Organic/Inorganic Hybrid Core [J]. Chem. Commun.2011,47:6329-6331.
    [21]Moon, G. D.; Jeong, U., Decoration of the Interior Surface of Hollow Spherical Silica Colloids with Pt Nanoparticles [J]. Chem. Mater.2008,20:3003-3007.
    [22]Yamada, Y.; Mizutani, M.; Nakamura, T.; Yano, K., Mesoporous Microcapsules with Decorated Inner Surface:Fabrication and Photocatalytic Activity [J]. Chem. Mater.2010,22:1695-1703.
    [23]Chen, Z.; Cui, Z.-M.; Niu, F.; Jiang, L.; Song, W.-G., Pd Nanoparticles in Silica Hollow Spheres with Mesoporous Walls:a Nanoreactor with Extremely High Activity [J]. Chem. Commun.2010,46:6524-6526.
    [24]Xia, L. Y.; Zhang, M. Q.; Yuan, C. e.; Rong, M. Z., A Facile Heteroaggregate-Template Route to Hollow Magnetic Mesoporous Spheres with Tunable Shell Structures [J]. J. Mater. Chem.2011,21:9020-9026.
    [25]Frens, G., Controlled Nucleation for Regulation of Particle-size in Monodisperse Gold Suspensions [J]. Nature (London). Physi. Sci.1973,241:20-22.
    [26]Wang, S.; Wang, X.; Jiang, S. P., Self-Assembly of Mixed Pt and Au Nanoparticles on PDDA-Functionalized Graphene as Effective Electrocatalysts for Formic Acid Oxidation of Fuel Cells [J]. Phys. Chem. Chem. Phys.2011,13: 7187-7195.
    [27]Nigam, S.; Barick, K. C.; Bahadur, D., Development of Citrate-Stabilized Fe3O4 Nanoparticles:Conjugation and Release of Doxorubicin for Therapeutic Applications [J]. J. Magn. Magn. Mater.2011,323:237-243.
    [28]Deng, Y.; Cai, Y.; Sun, Z.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y. Zhao, D., Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure:a Highly Integrated Catalyst System [J]. J. Am. Chem. Soc.2010,132: 8466-8473.
    [29]Seh, Z. W.; Liu, S.; Zhang, S.-Y.; Shah, K. W.; Han, M.-Y., Synthesis and Multiple Reuse of Eccentric Au@TiO2 Nanostructures as Catalysts [J]. Chem. Commun.2011,47:6689-6691.
    [1]Tissot, I.; Reymond, J. P.; Lefebvre, F.; Bourgeat-Lami, E., SiOH-functionalized Polystyrene Latexes:a Step toward the Synthesis of Hollow Silica Nanoparticles [J]. Chem. Mater.2002,14:1325-1331.
    [2]Liu, B.; Yan, E.; Zhang, X.; Yang, X.; Bai, F., A General Method for The Synthesis of Monodisperse Hollow Inorganic-Organic Hybrid Microspheres with Interior Functionalized Poly(Methacrylic Acid) Shells [J]. J. Colloid Interface Sci. 2012,369:144-53.
    [3]Lu, Y.; Yin, Y. D.; Xia, Y. N., Preparation and Characterization of Micrometer-Sized "Egg Shells" [J].Adv. Mater.2001,13:271-274.
    [4]Dong, A.; Lan, S.; Huang, J.; Wang, T.; Zhao, T.; Xiao, L.; Wang, W.; Zheng, X.; Liu, F.; Gao, G.; Chen, Y., Modifying Fe3O4-Functionalized Nanoparticles with N-Halamine and their Magnetic/Antibacterial Properties [J]. ACS Appl. Mater. Interfaces 2011,3:4228-4235.
    [5]Jo, C.; Lee, H. J.; Oh, M., One-Pot Synthesis of Silica@Coordination Polymer Core-Shell Microspheres with Controlled Shell Thickness [J].Adv. Mater.2011,23: 1716-1719.
    [6]Xu, H.; Cui, L.; Tong, N.; Gu, H., Development of High Magnetization Fe3O4/Polystyrene/Silica Nanospheres via Combined Miniemulsion/Emulsion Polymerization [J]. J. Am. Chem. Soc.2006,128:15582-15583.
    [7]Xu, S.; Ma, W.-F.; You, L.-J.; Li, J.-M.; Guo, J.; Hu, J. J.; Wang, C.-C., Toward Designer Magnetite/Polystyrene Colloidal Composite Microspheres with Controllable Nanostructures and Desirable Surface Functionalities [J]. Langmuir 2012,28: 3271-3278.
    [8]Chen, M.; Wu, L. M.; Zhou, S. X.; You, B., Synthesis of Raspberry-Like PMMA/SiO2 Nanocomposite Particles via a Surfactant-free Method [J]. Macromolecules 2004,37:9613-9619.
    [9]Chen, M.; Zhou, S. X.; You, B.; Wu, L. M., A Novel Preparation Method of Raspberry-Like Pmma/SiO2 Hybrid Microspheres [J]. Macromolecules 2005,38: 6411-6417.
    [10]Schmid, A.; Tonnar, J.; Armes, S. P., A New Highly Efficient Route to Polymer-Silica Colloidal Nanocomposite Particles [J].Adv. Mater.2008,20: 3331-3336.
    [11]Li, G. L.; Tai, C. A.; Neoh, K. G.; Kang, E. T.; Yang, X., Hybrid Nanorattles of Metal Core and Stimuli-Responsive Polymer Shell for Confined Catalytic Reactions [J]. Polym. Chem.2011,2:1368-1374.
    [12]Xie, L.; Chen, M.; Wu, L., Fabrication and Properties of Hollow Poly(N-isopropylacrylamide)-Ag Nanocomposite Spheres [J]. J. Polym. Sci. Part A: Polym. Chem.2009,47:4919-4926.
    [13]Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S.; Granick, S., Janus Particle Synthesis and Assembly [J]. Adv. Mater.2010,22:1060-1071.
    [14]Wurm, F.; Kilbinger, A. F. M., Polymeric Janus Particles [J]. Angew. Chem. Int. Ed.2009,48:8412-8421.
    [15]Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E. B.; Duguet, E., Design and Synthesis of Janus Micro- and Nanoparticles [J]. J. Mater. Chem.2005,15: 3745-3760.
    [16]Kim, J. W.; Larsen, R. J.; Weitz, D. A., Synthesis of Nonspherical Colloidal Particles with Anisotropic Properties [J]. J. Am. Chem. Soc.2006,128:14374-14377.
    [17]Park, J. G.; Forster, J. D.; Dufresne, E. R., High-Yield Synthesis of Monodisperse Dumbbell-Shaped Polymer Nanoparticles [J]. J. Am. Chem. Soc.2010, 132:5960-5961.
    [18]Mock, E. B.; De Bruyn, H.; Hawkett, B. S.; Gilbert, R. G.; Zukoski, C. F., Synthesis of Anisotropic Nanoparticles by Seeded Emulsion Polymerization. Langmuir 2006,22:4037-4043.
    [19]Sheu, H. R.; Elaasser, M. S.; Vanderhoff, J. W., Phase-Separation in Polystyrene Latex Interpenetrating Polymer Networks [J]. J. Polym. Sci. Part A:Polym. Chem. 1990,28:629-651.
    [20]Ge, J. P.; Hu, Y. X.; Zhang, T. R.; Yin, Y. D., Superparamagnetic Composite Colloids with Anisotropic Structures [J]. J. Am. Chem. Soc.2007,129:8974-8975.
    [21]Lu, W.; Chen, M.; Wu, L. M., One-Step Synthesis of Organic-Inorganic Hybrid Asymmetric Dimer Particles via Miniemulsion Polymerization and Functionalization with Silver [J]. J. Colloid Interface Sci.2008,328:98-102.
    [22]Teo, B. M.; Suh, S. K.; Hatton, T. A.; Ashokkumar, M.; Grieser, F., Sonochemical Synthesis of Magnetic Janus Nanoparticles [J]. Langmuir 2011,27: 30-33.
    [23]Wang, Y.; Xu, H.; Ma, Y.; Guo, F.; Wang, F.; Shi, D., Facile One-Pot Synthesis and Morphological Control of Asymmetric Superparamagnetic Composite Nanoparticles [J]. Langmuir 2011,27:7207-7212.
    [24]Nie Z H, Li W, Seo M, Xu S Q, Kumacheva E. Janus and Ternary Particles Generated by Microfluidic Synthesis:Design, Synthesis, and Self-Assembly [J]. J. Am. Chem. Soc.2006,128:9408-9412.
    [25]Shah, R. K.; Kim, J.-W.; Weitz, D. A., Janus Supraparticles by Induced Phase Separation of Nanoparticles in Droplets [J]. Adv. Mater.2009,21:1949-1953.
    [26]Roh, K. H.; Martin, D. C.; Lahann, J., Biphasic Janus Particles with Nanoscale Anisotropy [J]. Nat. Mater.2005,4:759-763.
    [27]Prasad, N.; Perumal, J.; Choi, C.-H.; Lee, C.-S.; Kim, D.-P., Generation of Monodisperse Inorganic-Organic Janus Microspheres in a Microfluidic Device [J]. Adv. Funct. Mater.2009,19:1656-1662.
    [28]Gu, H. W.; Yang, Z. M.; Gao, J. H.; Chang, C. K.; Xu, B., Heterodimers of Nanoparticles:Formation at a Liquid-Liquid Interface and Particle-Specific Surface Modification by Functional Molecules [J]. J. Am. Chem. Soc.2005,127:34-35.
    [29]Liu, B.; Zhang, C. L.; Liu, J. G.; Qu, X. Z.; Yang, Z. Z., Janus Non-spherical Colloids by Asymmetric Wet-etching [J]. Chem. Commun.2009,26:3871-3873.
    [30]Liu, B.; Wei, W.; Qu, X.; Yang, Z., Janus Colloids Formed by Biphasic Grafting at a Pickering Emulsion Interface [J]. Angew. Chem. Int. Ed.2008,47:3973-3975.
    [31]Li, D.; He, Y. J.; Wang, S., On the Rotation of the Janus CuO/CuS Colloids Formed at a Pickering Emulsion Interface. J. Phys. Chem. C 2009,113:12927-12929.
    [32]Stober, W.; Fink, A.; Bohn, E., Controlled Growth of Monodisperse Silica Spheres in Micron Size Range [J]. J. Colloid Interface Sci.1968,26:62-69.
    [33]Hosein, I. D.; Liddell, C. M., Convectively Assembled Asymmetric Dimer-Based Colloidal Crystals [J]. Langmuir 2007,23:10479-10485.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700